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Abstract. A numerically efficient superelement is proposed as a low degree of freedom model for
dynamic analysis of rotating tapered beams. The element uses a combination of polynomials and
trigonometric functions as shape functions in what is also called the Fourier-p approach. Only a single
element is needed to obtain good modal frequency prediction with the analysis and assembly time being
considerably less than for conventional elements. The superelement also allows an easy incorporation of
polynomial variations of mass and stiffness properties typically used to model helicopter and wind turbine
blades. Comparable results are obtained using one superelement with only 14 degrees of freedom
compared to 50 conventional finite elements with cubic shape functions with a total of 100 degrees of
freedom for a rotating cantilever beam. Excellent agreement is also shown with results from the published
literature for uniform and tapered beams with cantilever and hinged boundary conditions. The element
developed in this work can be used to model rotating beam substructures as a part of complete finite
element model of helicopters and wind turbines. 

Keywords: rotating beams; superelement; free vibration; finite element method; helicopter blades; wind
turbine blades.

1. Introduction 

Rotating blades are important structural members of wind turbines, steam and gas turbines,

helicopter rotors and aircraft propellers. These blades are often idealized as rotating beams.

Prediction of the natural frequencies of such blades is important because of the design requirement

of keeping the natural frequencies away from multiples of the rotor speed and for dynamic analysis

(Hosseini and Khadem 2005, Al-Qaisia and Al-Bedoor 2005, Lin et al. 2004, Munteanu et al. 2004,

Lee et al. 2004, Furta 2003, Chandiramani et al. 2002, Hu et al. 2002, Yoo et al. 2002, Datta and

Ganguli 1990). For a relatively long helicopter rotor blade, the simple and accurate representation is

the Euler-Bernoulli beam model. A helicopter rotor blade can undergo out-of-plane bending, in-

plane bending and torsion. Due to the centrifugal stiffening effect, the vibration characteristics of

rotating Euler-Bernoulli beams vary significantly from those of non-rotating beams and need

numerical methods such as Galerkin, Ritz or finite element methods for solution (Zhao and Dewolf

2007, Al-Sadder et al. 2006, Lin and Tsai 2006, Tufekci and Arpaci 2006, Lin and Tsai 2005).
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Conventional finite element methods (CFEM) have advantages over the Galerkin and Ritz methods

since they can be easily modified for any boundary conditions and such methods are often used for

rotating beam problems. In finite element development studies, it is typical that couplings are

ignored and transverse bending vibration is studied as mentioned by Wang and Wereley (2004).

However, the blades are non-uniform and both mass and flexural stiffness are represented as

polynomials which is often done in rotor blade dynamic analysis. Wang and Wereley (2004) show

that wind turbine blades are well modeled by linear mass and stiffness distribution and helicopter

blades by linear mass and quartic stiffness distribution. 

Typically, the conventional finite element method (CFEM) for rotating beams uses cubic

polynomials as interpolating functions and convergence is achieved by increasing the number of

elements. Since dynamic analysis requires at least the first five modes, capturing these modes

accurately can need many elements which leads to a large size eigenvalue problem. The resulting

large-degree-of-freedom FEM model is impractical in a real-time dynamic simulation or control

problems for which finite element models are often used (Cai et al. 2004, Yang et al. 2004, Fung et al.

2004, Khulief 2001, Thakkar and Ganguli 2004, Thakkar and Ganguli 2006). As a result, the model

order must be reduced via static or dynamic procedures to a practical number of degrees of

freedom, which is constrained by simulation time, or the control interval in a digital control system

(Wang and Wereley 2004). Furthermore, the use of many elements requires careful development of

the finite element mesh for non-uniform rotor blades and increase in computation time due to

assembly (Ganguli et al. 1998). 

To address the shortcomings of CFEM relating to large number of elements and the consequently

large size eigenvalue problem, another approach of FEM called the spectral finite element method

(SFEM, also called dynamic stiffness method) has evolved for obtaining the same accuracy using

fewer number of elements (Wang and Wereley 2004, Banerjee 2000, Wright et al. 1982). Banerjee

(2000) considered uniform beams and Wang and Wereley (2004) extended the concept to tapered

beams. Banerjee used many elements to model a tapered beam whereas Wang and Wereley

developed a tapered element and used only one spectral element. However, a very large number of

terms in the power series solution were needed. For example, Wang and Wereley used as many as

350 terms in the Frobenius power series method to find the frequencies of non-uniform rotating

beams (Wang and Wereley 2004). In the SFEM, the shape functions are duplicated from exact wave

propagation solutions using the governing equation (Vinod et al. 2006, Vinod et al. 2007). However,

since SFEM uses the solution obtained in frequency domain, the natural frequencies are obtained by

solving transcendental equations instead of solving the eigenvalue problems as in CFEM, which can

be quite complicated. 

Since practical beams are non-uniform, it is advantageous to develop accurate finite element

models for them using a minimum number of finite elements. This could be done by constructing a

superelement with accurate interpolating functions. Using a single element leads to easy handling of

the polynomial variations in mass and stiffness variation across the beam. The superelements have

been widely applied for problems to reduce analysis and assembly time drastically for beam, plate,

and box-beam problems (Ahmadian and Zangench 2002, Fan et al. 2004, Jiang and Olson 1993,

Koko 1992, Vaziri 1996, Zivkovic et al. 2001, Nurse 2001, Qu and Selvam 2000, Cardona 2000,

Tkachev 2000, Belyi 1993) and also permit the assembly of these substructures into a master

structure. They often use a combinations of trigonometric and polynomial functions as interpolating

functions (Ahmadian and Zangench 2002, Koko 1992). This is different from p-version FEM where

only polynomial shape functions are used. Typically, upto five modes are required for dynamic
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analysis of rotating beams and accurate predictions upto the fifth frequency is therefore important and

can require very high values of polynomial order. In p-version FEM, it is not practical to increase p

(order of interpolating polynomial functions) to very high values. This is because high order

polynomial functions are well known to be ill-conditioned (West et al. 1997), e.g., the computer can

hardly find any difference between x10 and x11 with in 0 < x < 1. This problem of p-version FEM can

be addressed by using trigonometric functions along with polynomials which leads to the Fourier p-

version of FEM (Leung and Chan 1998, Leung and Zhu 2004, Houmat 2001, Houmat 2001,

Yongqiang 2006). It is found in these works that higher modes converge much faster using

combinations of trigonometric functions and polynomials than when using polynomials alone. The

Fourier-papproach can therefore be used to develop a superelement for a rotating beam. To the best

of the author’s knowledge, such superelements using mixed polynomial-trigonometric functions have

not been developed for rotating beams, though they appear to be very attractive for this application. 

In this paper, a superelement is developed using a combination of polynomials and Fourier series as

shape functions, which results in an efficient formulation which can be used for practical vibration

analysis and control problems for rotating structures such as helicopter rotor blades. A linear mass

and quartic stiffness distribution which can represent rotor blades is included as a part of the FEM

formulation. Superelements for the blades also permit easy integration with finite element models of

the rotor hub and fuselage for helicopters and the rotor hub and tower for wind turbines. 

2. Governing equation of rotating beams 

A schematic of a rotating tapered beam is shown in Fig. 1. Here m(x) and EI(x) are the mass and

flexural stiffness per unit length at a distance x from the axis of rotation, Ω is the rotational speed,

w(x, t) and f (x, t) are the displacement in the Z direction and force per unit length, respectively. T(x)

is the centrifugal tensile load at a distance x from the axis of rotation, F is an axial force applied at

the end of beam, L is the length of the beam and R is the distance of the beam root from the axis of

rotation. In the present analysis, R is assumed to be zero. Such beams are good models for long

slender structures such as helicopter rotor blades and wind turbine rotor blades whose cross-section

dimensions are much smaller than the length (Kumar et al. 2007, Pawar and Ganguli 2006, Pawar

and Ganguli 2005, Ganguli 2001). In the present work, we consider Euler-Bernoulli beams for the

analysis of out-of-plane bending (flapping) vibration. 

The governing partial differential equation with variable coefficients for out-of-plane (transverse)

bending vibration of an Euler-Bernoulli rotating beam is given by Wang and Wereley (2004)

(1)

where

(2)

where w' and w'' are first and second derivatives of w with respect to x, respectively. 

Unfortunately, although the basic differential equation is linear, analytical solutions do not exist

even for span wise constant properties. 

EI x( )w″( )″ m x( )w·· T x( )w′( )′–+ f x t,( )=

T x( ) m x( )Ω2
R x+( ) xd F+

x

L

∫=
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3. Shape functions 

Consider the transverse bending (flapping) vibrations of rotating beams. For bending elements, the

shape functions are required to give displacement and slope continuity at the element interfaces.

When considering the bending of a beam of unit length, the appropriate shape functions which are

obtained by considering the quintic polynomial are given by

(3)

(4)

(5)

(6)

(7)

(8)

Here ξ = x/L is the non-dimensional length of beam element. 

For C1 continuity requirement, the Fourier version is either 1 − cosjπξ or  (Leung

and Zhu 2004). Both functions and their first derivatives vanish at ξ = 0 and ξ = 1. For convenience,

the first function is called as the cosine version and the second function as the sine version. Though

the cosine version is simpler, it produces zero shear forces at the nodes and is too flexible for shear

connections. The cosine version is not recommended when the structure has just one element.

Therefore, the sine version is used in this analysis. The enhanced shape functions are given by
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Fig. 1 Rotating tapered beam element geometry 
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(9)

(10)

(11)

(12)

(13)

(14)

(15)

where k indicates the number of sine terms used in the approximating polynomial function and the

value of j varies from 1 to k. 

The total number of degrees of freedom in this method is equal to that of the CFEM model plus

the number of sine terms (k). The CFEM has two degrees of freedom at each node, namely, the

deflection and rotation (slope). The sine terms correspond to the internal degrees of freedom of the

element while the quintic polynomials correspond to the nodal degrees of freedom and two internal

degrees of freedom at L/4 and 3L/4. The number of sine terms can be increased for getting the

solution to converge without increasing the number of elements. Thus, the mixed trigonometric and

polynomial shape functions can be used to obtain convergence with one element only. 

4. Superelement matrices 

The kinetic energy for a rotating beam is given by  

(16)

where  is derivative of  with respect to time t. The potential/strain energy is given by

(17) 

where T(x) is defined in Eq. (2). 

The mass and stiffness matrices (M and K) for such a beam element can be obtained from the

above energy expressions. The calculations for these matrices involve solving the following integrals

 (18)
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(19)

Here superscript T in Eqs. (18) and (19) denotes the transpose of the matrix and N are the shape

functions. Since m(x), EI(x) and T(x) are inside the integrals in Eqs. (18) and (19), the superelement

mass and stiffness matrices can be evaluated easily for a given mass and stiffness distribution. Also,

the element length is equal to the beam length. Note that for conventional FEM, the element

stiffness matrix needs to be calculated at each element because of the centrifugal term, leads to

considerable analysis time. The natural frequencies are obtained by solving the eigen value problem.

 

5. Numerical results 

The natural frequencies are calculated using this model for different rotational speeds using a

single element with 10 Fourier (sine) terms. The results obtained from the present formulation are

compared with those available in the literature. 

5.1 Uniform beam 

Table 1 shows an interesting comparison of non-dimensional natural frequencies of a uniform

cantilever beam with results from Hodges and Rutkowsky (1981), Wright et al. (1982) and Wang

and Wereley (2004). Two values of non-dimensional rotation speed, λ, are chosen for comparison.

Here λ2=  where EIo and mo are the reference flexural stiffness and mass per unit length,

K EI x( )N″ N″( )T xd
0

L

∫ T x( )N′ N′( )T xd
0

L

∫+=

KΦ ω
2
MΦ=

Ω2

EIo/moL
4
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Table 1 Comparison of Non-dimensional natural frequencies of cantilever uniform beam 

Mode Present
Wang and Wereley 

(2004)
Wright et al. 

(1982)
Hodges et al. 

(1981)

λ = 0 

1 3.5160 3.5160 3.5160 3.5160 

2 22.0345 22.0345 22.0345 22.0345 

3 61.6972 61.6972 61.6972 61.6972 

4 120.902 120.902 120.902 N/A 

5 199.860 199.860 199.860 N/A 

λ = 12 

1 13.1702 13.1702 13.1702 13.1702 

2 37.6031 37.6031 37.6031 37.6031 

3 79.6145 79.6145 79.6145 79.6145 

4 140.534 140.534 140.534 N/A 

5 220.537 220.536 220.536 N/A 
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respectively. All the frequencies predicted by superelement agree very well with the published results.

In this study, whole beam is considered as a single element and 10 Fourier (sine) terms are used

with quintic polynomials as shape functions. Thus, the total number of degrees of freedom is 14

after application of cantilever boundary conditions and it gives fairly good accuracy for frequencies

of up to the fifth mode. It is found that the same accuracy level for up to fifth mode frequency

using h-FEM requires at least 50 finite elements, i.e., 102 degrees of freedom (2 degrees of freedom

for every node) or 100 degree of freedom after applying cantilever boundary conditions. 

Similar results are obtained for a hinged uniform beam and compared with the results from

published literature in Table 2. These results also show excellent agreement. 

5.2 Tapered rotating beam 

For a better approximation to the practical rotor blade, we analyze it as a tapered beam. Although

any type of tapered beam can be analyzed using the present approach, for illustrative purposes two

different types of linearly tapered cantilever beams are selected from the published literature by

Hodges and Rutkowsky (1981) and Wright et al. (1982). 

The beam element used in this analysis is a tapered element. The element stiffness and mass

matrices are calculated exactly for a tapered element. Thus the tapered beam is not idealized using

several piece-wise uniform beam elements as often done in conventional formulation. Therefore,

this approach gives more accurate results with one element. 

In general, we assume that variation of mass along the beam length is defined as 

(20)

where m0 corresponds to the value of mass per unit length at the thick end of the beam (ξ = 0), α is

the taper parameter such that 0 < α < 1. , which results in a singularity at ξ = 1. flexural

stiffness variation along the length of beam element is defined as 

m x( ) m0 1 αξ–( )=

α 1≠

Table 2 Comparison of Non-dimensional natural frequencies of hinged uniform beam 

Mode Present Wang and Wereley (2004) Wright et al. (1982)

λ = 0 

1 0.0000 0.0000 0.0000 

2 15.4182 15.4182 15.4182 

3 49.9649 49.9649 49.9649 

4 104.248 104.248 104.248 

5 178.270 178.270 178.270 

λ = 12 

1 12.0000 12.0000 12.0000 

2 33.7603 33.7603 33.7603 

3 70.8373 70.8373 70.8373 

4 126.431 126.431 126.431 

5 201.123 201.122 201.122 
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 (21)

where EI0 correspond to the value of flexural rigidity at the thick end of the beam (ξ = 0). Here βi,

i = 1 to 4 are taper parameters for stiffness distribution. These parameters can be determined by α

for beams with a rectangular cross-sectional area and thickness varying along the beam length.

However, as with the example studied by Wright et al. (1982), the taper parameters for mass and

flexural stiffness are not necessarily related. They are independent variables. However, these

parameters should not result in a singularity for flexural stiffness at ξ = 1. 

5.2.1 Example 1 (Linear mass, cubic stiffness, cantilevered beam) 

In this example, the taper is such that the variations of the mass per unit length m(x), and the

bending flexural rigidity EI(x) at a distance x from the thick end are governed by the following

expressions

(22)

and

 (23)

Taper parameters are 

     

,

EI x( ) EI0 1 β1ξ– β2ξ
2

– β3ξ
3

– β4ξ
4

–( )=

m x( ) m0 1 0.5ξ–( )=

EI x( ) EI0 1 0.5ξ–( )3=

α 0.5= β1 3α 1.5= =

β2 3α
2

– 0.75–= = β3 α
3

0.125= = β4 0=

Table 3 Comparison of Non-dimensional natural frequencies of tapered cantilever beam under different
rotational speeds (Example 1)

First mode Second mode Third mode

λ Present
Wang and 
Wereley 
(2004)

Hodges and 
Rutkowsky  

(1981)
Present

Wang and 
Wereley 
(2004)

Hodges and 
Rutkowsky  

(1981)
Present

Wang and 
Wereley 
(2004)

Hodges and 
Rutkowsky  

(1981)

0 3.8238 3.8238 3.8238 18.3173 18.3173 18.3173 47.2649 47.2648 47.2648 

1 3.9866 3.9866 3.9866 18.4740 18.4740 18.4740 47.4173 47.4173 47.4173 

2 4.4368 4.4368 4.4368 18.9366 18.9366 18.9366 47.8717 47.8716 47.8716 

3 5.0927 5.0927 5.0927 19.6839 19.6839 19.6839 48.6190 48.6190 48.6190 

4 5.8788 5.8788 5.8788 20.6852 20.6852 20.6852 49.6457 49.6456 49.6456 

5 6.7434 6.7434 6.7345 21.9053 21.9053 21.9053 50.9338 50.9338 50.9338 

6 7.6551 7.6551 7.6551 23.3093 23.3093 23.3093 52.4633 52.4633 52.4633 

7 8.5956 8.5956 8.5956 24.8647 24.8647 24.8647 54.2125 54.2124 54.2124 

8 9.5540 9.5540 9.5540 26.5437 26.5437 26.5437 56.1595 56.1595 56.1595 

9 10.5239 10.5239 10.5239 28.3227 28.3227 28.3227 58.2834 58.2833 58.2833 

10 11.5015 11.5015 11.5015 30.1827 30.1827 30.1827 60.5639 60.5639 60.5639 

11 12.4845 12.4845 12.4845 32.1084 32.1085 32.1085 62.9829 62.9829 62.9829 

12 13.4711 13.4711 13.4711 34.0877 34.0877 34.0877 65.5237 65.5237 65.5237 
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This type of tapered beam is used by Hodges and Rutkowsky (1981) for analysis. These equations

cover all beams having a solid rectangular cross section with constant width and linearly varying

depth. The results obtained for this case are compared with those obtained by Wang and Wereley

(2004) and Hodges and Rutkowsky (1981) in Table 3. Since results for higher modes are not

available in the published literature, a comparison of only three modes is shown in this table. The

results obtained using superelement show excellent agreement with the published results. 

Wang and Wereley (2004) used a single spectral finite element with the first 80 terms in the

Frobenius power series for similar accuracy level while Hodges and Rutkowsky (1981) used a

variable order finite element with 15th order polynomials. The present analysis uses a single

superelement with only 10 sine terms as interpolating functions to get comparable results. 

5.2.2 Example 2 (Linear mass, linear stiffness, cantilevered beam) 

In the second example, the tapered beam used by Wright et al. (1982) is considered. For this

particular problem, the taper is such that both the mass per unit length m(x), and the bending

flexural rigidity EI(x) vary linearly along the length of the beam so that 

(24)

and

 (25)

Taper parameters coresponding to Eqs. (20) and (21) stated earlier are 

m x( ) m0 1 0.8ξ–( )=

EI x( ) EI0 1 0.95ξ–( )=

α 0.8, β1 0.95, β2 β3 β4 0= = == =

Table 4 Comparison of Non-dimensional natural frequencies of tapered cantilever beam under different
rotational speeds (Example 2)

First mode Second mode Third mode

λ Present
Wang and 
Wereley 
(2004)

Wright 
et al. 

(1982)
Present

Wang and 
Wereley 
(2004)

Wright 
et al. 

(1982)
Present

Wang and 
Wereley 
(2004)

Wright 
et al. 

(1982)

0 5.2738 5.2738 5.2738 24.0041 24.0041 24.0041 59.9702 59.9708 59.9701 

1 5.3903 5.3903 5.3903 24.1069 24.1069 24.1069 60.0697 60.0703 60.0696 

2 5.7249 5.7249 5.7249 24.4130 24.4129 24.4130 60.3670 60.3676 60.3669 

3 6.2402 6.2402 6.2402 24.9149 24.9148 24.9149 60.8591 60.8598 60.8590 

4 6.8928 6.8928 6.8928 25.6013 25.6013 25.6013 61.5469 61.5420 61.5412 

5 7.6443 7.6443 7.6443 26.4581 26.4581 26.4581 62.4070 62.4078 62.4069 

6 8.4653 8.4653 8.4653 27.4693 27.4692 27.4693 63.4484 63.4494 63.4483 

7 9.3347 9.3347 9.3347 28.6185 28.6184 28.6185 64.6567 64.6579 64.6566 

8 10.2379 10.2379 10.2379 29.8894 29.8893 29.8894 66.0223 66.0238 66.0222 

9 11.1650 11.1651 11.1650 31.2669 31.2667 31.2669 67.5352 67.5370 67.5351 

10 12.1092 12.1092 12.1092 32.7369 32.7367 32.7369 69.1852 69.1875 69.1851 

11 13.0657 13.0657 13.0657 34.2871 34.2868 34.2871 70.9623 70.9653 70.9622 

12 14.0313 14.0313 14.0313 35.9064 35.9060 35.9064 72.8566 72.8604 72.8565 
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As mentioned by Wright et al. (1982), this beam design is used in wind turbine blades. As shown

in the preceding equation, when ξ = 1, the flexural stiffness drops to 5% of the initial value of EI0.

The singularity is very close to ξ = 1, which results in a slower convergence of the results. The

results obtained for this case are compared with those of Wright et al. (1982). Wang and Wereley

(2004) have also analyzed the same beam using a spectral finite element method. Table 4 shows the

comparison of our results with the published works for the first three modes and Table 5 shows the

comparison for fourth and fifth modes. 

Wang and Wereley (2004) used a single spectral finite element with as many as 350 terms in

Frobenius power series. The present analysis uses one superelement with only 10 sine terms as the

interpolating functions and the results compare very well with published work. 

5.2.3 Example 3 (Linear mass, linear stiffness, hinged beam) 

In the third example, the tapered beam used by Wright et al. (1982) with hinged boundary

conditions is considered. The same superelement model can be used to obtain the natural

frequencies of hinged tapered beams with different geometric boundary conditions. 

For this particular problem, the taper is such that both the mass per unit length m(x), and the

bending flexural rigidity EI(x) vary linearly along the length of the beam so that 

 (26)

and 

 

 (27)

Taper parameters are thus identical to those considered in Example 2 and the only difference is in

m x( ) m0 1 0.8ξ–( )=

EI x( ) EI0 1 0.95ξ–( )=

Table 5 Comparison of Non-dimensional natural frequencies of tapered cantilever beam under different
rotational speeds (Example 2)

Fourth mode  Fifth mode 

λ Present
Wang and Wereley 

(2004)
Wright et al. 

(1982)
Present

Wang and Wereley
(2004)

Wright et al. 
(1982)

0 112.910 112.892 112.909 183.029 183.473 183.024 

1 113.010 112.992 113.009 183.129 183.576 183.124 

2 113.308 113.290 113.307 183.429 183.887 183.424 

3 113.803 113.784 113.803 183.928 184.404 183.923 

4 114.493 114.472 114.492 184.623 185.127 184.619 

5 115.373 115.351 115.372 185.514 186.055 185.509 

6 116.439 116.414 116.439 186.596 187.186 186.591 

7 117.686 117.658 117.685 187.867 188.520 187.862 

8 119.108 119.075 119.107 189.321 190.055 189.316 

9 120.697 120.659 120.696 190.955 191.793 190.950 

10 122.447 122.403 122.446 192.764 193.734 192.759 

11 124.351 124.298 124.350 194.743 195.882 194.737 

12 126.401 126.336 126.401 196.885 198.243 196.880 
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the boundary conditions. The taper parameters are given by 

 α = 0.8, β1 = 0.95, β2 = β3 = β4 = 0 

Earlier, Wright et al. (1982), and Wang and Wereley (2004) have discussed this type of tapered

Table 6 Comparison of Non-dimensional natural frequencies of tapered hinged beam under different rotational
speeds (Example 3)

First mode Second mode Third mode

λ Present
Wang and 
Wereley 
(2004)

Wright 
et al. 

(1982)
Present

Wang and 
Wereley 
(2004)

Wright 
et al. 

(1982)
Present

Wang and 
Wereley 
(2004)

Wright 
et al. 

(1982)

0 0.0 0.0 0.0 16.7328 16.7328 16.7328 48.4692 48.4696 48.4691 

1 1.0 1.0 1.0 16.8711 16.8711 16.8711 48.5872 48.5876 48.5872 

2 2.0 2.0 2.0 17.2794 17.2793 17.2794 48.9395 48.9399 48.9395 

3 3.0 3.0 3.0 17.9390 17.9389 17.9388 49.5210 49.5214 49.5210 

4 4.0 4.0 4.0 18.8233 18.8233 18.8233 50.3234 50.3239 50.3234 

5 5.0 5.0 5.0 19.9023 19.9022 19.9022 51.3360 51.3366 51.3360 

6 6.0 6.0 6.0 21.1457 21.1456 21.1456 52.5464 52.5471 52.5463 

7 7.0 7.0 7.0 22.5260 22.5259 22.5260 53.9406 53.9415 53.9405 

8 8.0 8.0 8.0 24.0195 24.0194 24.0195 55.5043 55.5054 55.5042 

9 9.0 9.0 9.0 25.6061 25.6059 25.6060 57.2231 57.2245 57.2230 

10 10.0 10.0 10.0 27.2692 27.2690 27.2692 59.0828 59.0847 59.0828 

11 11.0 11.0 11.0 28.9956 28.9953 28.9956 61.0701 61.0727 61.0700 

12 12.0 12.0 12.0 30.7745 30.7741 30.7745 63.1723 63.1758 63.1722 

Table 7 Comparison of Non-dimensional natural frequencies of tapered hinged beam under different rotational
speeds (Example 3)

Fourth mode  fifth mode 

λ Present
Wang and Wereley 

(2004)
Wright et al. 

(1982)
Present

Wang and Wereley
(2004)

Wright et al. 
(1982)

0 97.1709 97.1599 97.1704 163.004 163.277 163.002 

1 97.2828 97.2717 97.2823 163.114 163.388 163.111 

2 97.6177 97.6062 97.6172 163.441 163.723 163.438 

3 98.1732 98.1611 98.1727 163.985 164.281 163.983 

4 98.9455 98.9324 98.9450 164.744 165.059 164.741 

5 99.9292 99.9147 99.9287 165.714 166.055 165.771 

6 101.118 101.102 101.117 166.892 167.268 166.889 

7 102.504 102.485 102.504 168.272 168.695 168.269 

8 104.080 104.058 104.079 169.851 170.333 169.847 

9 105.836 105.809 105.835 171.621 172.180 171.618 

10 107.762 107.730 107.762 173.577 174.236 173.573 

11 109.851 109.810 109.850 175.711 176.500 175.708 

12 112.091 112.040 112.090 178.019 178.978 178.105 
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beam with hinged boundary conditions. Wang and Wereley (2004) have used one spectral finite

element with 350 terms in Frobenius functions to obtain the results. The method used by them is

based on a similar principle of using power series as that of Wright et al. (1982). The results

obtained using the present approach for first three modes are compared with those of published

literature in Table 6. Table 7 presents comparison of fourth and fifth modes of same beam. Again,

excellent agreement is obtained with the published results. 

5.3 Effect of hub radius and slenderness ratio 

In this section, the effect of hub radius R (Fig. 1) and slenderness ratio L/L0 is studied for a linear

mass, cubic stiffness, tapered cantilever beam as presented in example 1. The first three natural

frequencies are obtained by varying the hub radius as a percentage of the total length of the beam

Fig. 2 Effect of hub radius on first three natural frequencies at λ = 12

Fig. 3 Effect of slenderness ratio on first three natural frequencies at λ = 12
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and the slenderness ratio at a constant non-dimensional rotation speed of λ = 12 and are presented

in Figs. 2 and 3. Here L0 is the reference length. The natural frequencies are non-dimensionalized

with EI0/mL0

4 . The non-dimensional natural frequencies increase with increase in hub radius

because of increased centrifugal stiffening of the beam and the natural frequencies decrease with

increase in slenderness ratio. 

6. Conclusions 

A superelement is used for finding the natural frequencies of rotating uniform and tapered beams,

with cantilever and hinged boundary conditions. The shape functions used for modeling the finite

element consist of a combination of product of polynomial functions and Fourier series, in addition

to quintic polynomials. The classical h-FEM is therefore enhanced using the trigonometric functions

to form the superelement. Since Fourier series are well behaved, the limitation of the higher order

polynomial functions of being ill-conditioned, is removed. The results obtained from the current

approach show an excellent match with the results obtained from different methods in the published

literature for uniform and tapered rotating beams with cantilever and hinged boundary conditions.

The superelement is easy to use for non-uniform mass and stiffness distributions which occur in

helicopter and wind turbine blades. The stiffness matrix of even uniform rotating beams vary due to

centrifugal effects and need to be calculated for each element in the conventional FEM formulation,

leads to considerable analysis and assembly time, which is saved by the superelement. 
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