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Abstract. Composite laminated structures supported on elastic foundations are being increasingly used
in a great variety of engineering applications. Composites exhibit larger dispersion in their material
properties compared to the conventional materials due to large number of parameters associated with their
manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter
is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a
better modeling of the material properties and foundation, these are treated as random variables. This
paper deals with effects of randomness in material properties and foundation stiffness parameters on the
free vibration response of laminated composite plate resting on an elastic foundation. A C0 finite element
method has been used for arriving at an eigen value problem. Higher order shear deformation theory has
been used to model the displacement field. A mean centered first order perturbation technique has been
employed to handle randomness in system properties for obtaining the stochastic characteristic of
frequency response. It is observed that small amount of variations in random material properties and
foundation stiffness parameters significantly affect the free vibration response of the laminated composite
plate. The results have been compared with those available in the literature and an independent Monte
Carlo simulation.
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1. Introduction

Composite materials permit the designer to uniquely fashion the structural components to achieve

specific objectives, such as high strength to weight ratio, stiffness to weight ratio, excellent

corrosion resistance, very good fatigue characteristics, etc. However, these advantages may be offset

by larger uncertainty in system properties of the composite compared to the conventional materials.

The uncertainties in the properties are due to large number of parameters associated with

manufacturing, fabrication and modeling processes of the composites. These uncertainties are

reflected as random variations in the system properties of composite laminates. Components like

plates resting on elastic foundation often find application in the construction of aerospace, civil,

mechanical, etc. The modeling and determination of the foundation properties to obtain accurate

response is also a matter of concern in the practice. The uncertainty in the foundation stiffness

parameters cannot be avoided for accurate design in the constructions. Hence, the scatter in the

response is due to variations in material as well as foundation stiffness parameters. In the present

study parameters like elastic modulus, shear modulus, Poisson’s ratio and foundation stiffness

parameters are considered as random.

Mean values of system parameters are used in the conventional structural analysis. This gives

only the mean response and misses the deviation caused by the randomness in the system

parameters. For accurate analysis required in sensitive applications, it is necessary that the analysis

technique incorporate the effect of system parameter randomness. This is of special importance for

an accurate analysis of composites, which yield wide dispersion in the structural parameters,

compared to conventional materials. 

Considerable efforts have been made in the past by researchers and investigators on the prediction

of the free vibration response of structures made of laminated composites considering the system

properties as deterministic. Notably among them are due to Reddy and Phan (1985), Handian and

Nayfeh (1993), Reddy (1996), Shankara and Iyenger (1996), Aiello and Ombres (1999) and Shen

et al. (2003). Extensive literature is available on the response analysis of the deterministic structures

to random excitations (Nigam and Narayanan 1994). However, the analysis of the structures with

random system properties is not adequately reported in the literature. Some literature is available on

the analysis of the structures made of metallic materials with random system properties. Zhang and

Chen (1990) have presented a method to estimate the standard deviation of eigen value and eigen

vector of random multiple degree of freedom system. Zhang and Ellingwood (1993) have evaluated

the effect of random material field characteristics on the instability of a simply supported beam on

elastic foundation and a frame using perturbation technique. Yamin et al. (1996) have investigated

the stochastic perturbation method to vector-valued and matrix-valued function for response and

reliability of uncertain structures. Manohar and Ibrahim (1999) have presented excellent reviews of

structural dynamic problems with parameters uncertainities. Limited literature is available on

analysis of the composite structures with random material properties. Salim et al. (1993) have

employed first order perturbation technique for the analysis of composite plates. The problem is

formulated using classical laminate theory and energy approach. The material properties have been

modeled as random variables. Rayleigh-Ritz technique has been used for the solution. Specially

orthotropic composite laminates with all edges simply supported have been analyzed with

deterministic loading to obtain the standard deviation (SD) of deflections. In another paper, Salim

et al. (1998) have obtained the second order statistics of natural frequencies of the laminate. The

results have been compared with that of Monte Carlo simulation (MCS). Naveenthraj et al. (1998)
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have obtained the static response statistics of graphite – epoxy composite laminates with

randomness in material properties under deterministic loading by using combination of finite

element method (FEM) and MCS. Singh et al. (2001) have investigated the natural frequencies of

composite plate using exact solution approach in conjunction with higher order shear deformation

theory (HSDT) considering random material properties. They have employed a first order

perturbation technique (FOPT) to obtain the second order statistics of the first five natural

frequencies. Venini and Mariani (2002) have investigated the eigenproblem associated with the free

vibrations of uncertain composite plates. The elastic moduli of the system, the stiffness of the

Winkler foundation on which the plate rests and the mass density are considered to be uncertain.

Given their random field-based description, a new method is presented for the computation of the

second order statistics of the eigen properties of the laminate. Onkar and Yadav (2003) have

investigated nonlinear response statistics of composite laminates using classical approach with

random material properties under random loading. Onkar et al. (2006) have investigated the

buckling analysis of laminated composite plates with random material properties using stochastic

finite elements based on a generalized layer-wise theory. The statistics of buckling strength has been

determined using first order perturbation technique. 

However, to the best of authors’ knowledge no work dealing with free vibration analysis of the

laminated composite plate resting on an elastic foundation using the HSDT with random material

properties and random foundation stiffness parameters has been reported in the literature. 

In the present study, the second order statistics of the fundamental frequency of laminated

composite plates has been investigated. The plates are supported by elastic medium in the presence

of small random variations in system parameters. The transverse shear strains are taken into account

using the higher order shear deformation theory. The uncertain material properties including

Young’s modulus, Poisson’s ratio, etc. of each constituent material and the stiffness parameters of

the foundation are modeled as independent random variables. A C0 finite element method in

conjunction with a mean centered first order perturbation technique are employed to determine the

second-order statistics (mean and standard deviation) of the natural frequency of laminated

composite plate. Numerical results are presented for different boundary conditions. The numerical

results showing the effect of uncertain materials properties, uncertain foundation parameters, and

plate side to thickness ratio on the fundamental frequency and its dispersion with respect to various

random variables are presented.

 

 

2. Formulation

Consider a rectangular laminated composite plate of length a, width b, and thickness h, which

consist of N number of orthotropic layers. All orthotropic layers of the composite plate are of

uniform thickness. The mid plane of the plate is considered as the reference plane. The thickness

coordinates z of the top and bottom surfaces of any (kth) layer are denoted by z(k+1) and zk,

respectively. The fibers of kth layer are oriented at an angle θk to the x-axis. 

The plate is supported by the foundation excluding any separation during the process of

deformation as shown in Fig. 1. The load displacement relation between the plate and the

supporting foundation follows the two- parameters model (Pasternak-type) as

 (1)P K1w K2∇
2
w–=
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where P is the foundation reaction per unit area, and  is Laplace differential

operator; K1 and K2 are normal and shear stiffnesses of the foundation, respectively. This model is

simply known as Winkler type when K2 = 0 (e.g., Shen et al. 2003, Huang and Zheng 2003). 

2.1 Displacement field model 

In the present work the higher order shear deformation theory has been used. The following

displacement fields are assumed (Reddy 1984, 1996)

 (2)

where  and  denote the displacements of a point along the (x, y, z) coordinates; u, v, and w

are corresponding displacements of a point on the mid plane;  and  are the rotations of the

normal to the mid plane about the y-axis and x-axis, respectively. The functions  and 

are the higher-order terms in the Taylor series expansion, also defined in the mid-plane of the plate.

These functions are determined using the condition that the transverse shear stresses  and

 vanish on the plate top and bottom surfaces. Applying boundary conditions, the

displacement field becomes
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Fig. 1 Geometry of laminated composite plate resting on an elastic foundation
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To avoid the difficulties associated with C1 elements, the displacement model has been slightly

modified, so that a C0 continuous element would be sufficient. In modified form, displacements

along the x-, y-, and z-directions for an arbitrary composite laminated plate are 

(4)

where, 

It can be seen that the number of degrees of freedom (DOFs) per node, by treating θx and θy as

separate DOFs, increases from 5 to 7 for the HSDT model (e.g., Shankara and Iyengar 1996, Singh

et al. 2002).

The displacement vector for the model is 

 (5)

2.2 Strain-displacement relations

The strain-displacements relations are obtained by using small deformation theory. The strain

vectors corresponding to the displacement field given by Eq. (3) are expressed as

(6a)

where

(6b)

2.3 Stress-strain relation

 

The linear constitutive relation for an orthotropic layer is given by
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(8)

where,  and  are stress vector, strain vector and reduced elastic material constants,

respectively (Jones 1975). 

2.4 Strain energy of the plate 

Using the stress-strain relations, the elastic strain energy due to bending of a laminated composite

plate can be expressed as 

    (9)

where

 (10)

and

(11)

with 

for i, j = 1, 2, 6 

where  are the reduced elastic material constants of the kth lamina (layer).

2.5 Strain energy due to foundation

The strain energy due to the foundation is expressed as 
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 (12)

2.6 Kinetic energy of the laminate 

The kinetic energy of the vibrating laminated plate can be expressed as

 (13)

where ρ and  are the density and global displacement vector of the plate. 

For N number of layers of composite plate, the kinetic energy can be expressed as

 (14)

where  is the density of the kth layer of the laminate. 

2.7 Finite element model

2.7.1 Strain energy analysis

For an isoparametric element, the displacement vector and the element geometry are represented

by same interpolation functions. 

(15)

where ϕi is the interpolation function for the ith node,  is the vector of unknown

displacements for the ith node, NN is the number of nodes per element and xi and yi are Cartesian

coordinates of the ith node.

Using Eq. (6b), the strain vector given in Eq. (10) can be written as 

 (16)

where [L] is a differential operator (Appendix).

The functional is computed for each element and then summed over all the elements in the

domain to get total functional for the domain. Following this, Eq. (9) can be written as
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 (18)

Here  is the displacements vector of the eth element and  is the bending stiffness

matrix of the eth element, which is expressed as

(19)

where, 

where  is the strain-displacement matrix for the ith node.

Adopting numerical integration, the element bending stiffness matrix can be obtained from

Eq. (19), by transforming expression in x, y coordinate system to natural coordinate system ξ, η. 

 

2.7.2 Foundation analysis

Using finite element notation given in Eq. (15), Eq. (12) may be written as 

(20)
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where, [Lg] is a differential operator due to the foundation (Appendix).

Hence Eq. (21a) may be written as 
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Here  is the stiffness matrix of eth element due to the foundation and written as 

(23)

Here 

Adopting numerical integration in natural coordinate system, the stiffness matrix due to the

foundation can be obtained using Gaussian quadrature. 

2.7.3 Kinetic energy analysis 

The displacement field model given by Eq. (4) may be represented as

 (24)

where, [N] is given in Appendix.

Using Eqs. (13), (14) and (24), the following is obtained
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Substituting Eqs. (17), (18), (22) and (27) in Eq. (28), ones obtain as 

(29)

Assuming the system vibrates in principal mode in free vibration case, the Eq. (29) can be written

as

(30)

where,  and . Also {q},

[K], , and [M] and λ are defined as a global displacement vector, global bending stiffness

matrix, global foundation stiffness matrix, global mass matrix and eigenvalues, respectively, and ω

is the frequency of natural vibration.

Eq. (30) is random in nature, being dependent on the system properties. Consequently, the natural

frequencies and mode shapes are random in nature. A mean centered first order perturbation

technique in conjunction with C0 finite element method has been used to obtain the solution of the

governing random equations.

 

3. Solutions-perturbation technique

We consider a class of problems where the random variation is very small as compared to the

mean part of random material properties. Further it is quite logical to assume that the dispersions in

the derived quantities like [K], λ, etc. are also small with respect to their mean values. In the

present analysis, the elastic constants (Young’s modulus, shear modulus, Poisson’s ratio, etc.) of

each constituent material are treated as independent random variables. Since the foundation stiffness

parameters are totally dependent on the material properties of the supporting elastic medium which

also possess random fluctuations, the randomness in both k1 and k2 is taken into consideration.

Consequently, λ, [Ks], and {q} in Eq. (30) are random. In general, a random variable can be

represented as the sum of the mean value and a zero mean random variable, denoted by superscripts

‘d’ and ‘r’, respectively (Singh et al. 2001)

 (31)
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Because Eq. (33) is the deterministic equation relating to the mean values, the mean eigenvalues

and corresponding mean eigenvectors can be determined by conventional eigen solution procedures.

According to the orthogonality properties, the normalized eigenvector meet the following conditions  

 (35)

where  is the Kronecker delta. 

The eigenvectors, after being properly normalized, form a complete orthonormal set and any

vector in the space can be expressed as a linear combination of these eigenvectors. Hence, the ith

random part of the eigenvectors can be expressed as

 (36)

where ’s are small random coefficients to be determined. 

Substituting Eq. (36) in Eq. (34), premultiplying the first by  and the second by 

, respectively and making use of orthogonality Eq. (35), we have

(37)

(38)

Substituting Eq. (38) into Eq. (36), we obtain

(39)

For the present case, as discussed earlier, the derived quantities are random because of the system

properties. Let b1, b2, …., bn denote random system properties. Following Eq. (31), bi can be

expressed as

 

   (40)

The FEM in conjunction with FOPT has been found to be accurate and efficient (e.g., Vanmarke

and Grigoriu 1983, Kareem and Sun 1990, Kleiber and Hein 1992, Yamin et al. 1996, Lin and Kam

2000). According to this method, the random variables are expressed by Taylor’s series. Keeping

the first-order terms and neglecting the second- and higher-order terms, Eq. (31) can be written as

follows because, the first order is sufficient to yield results with desired accuracy for problems with

low variability. 

 

  (41)

Substituting Eq. (41) into Eqs. (37) and (39), we obtain

qi

d{ }
T

M[ ] qi

d{ } δij=

qi

d{ }
T

Ks

d[ ] qi

d{ } δijλi

d
, i j,( ) 1 2 … p, , ,= =

δij

qi

r{ } Cij

r
qi

d{ }, i j, Ci i

r≠
j 1=

p

∑ 0, i 1 2 … p, , ,= = =

Cij

r

qi

d{ }
T

qi

d{ }
T

j i≠( )

λi

r
qi

d{ }
T

Ks

r[ ] qi

d{ }=

Ci j

r
qj

d{ } Ks

r[ ] qi

d{ }/ λi

d
λj

d
–( ), j i≠=

qi

r{ } qi

d{ }
qj

d{ } Ks

r[ ] qi

d{ }

λi

d
λj

d
–

----------------------------------,  
j 1=

p

∑= j i≠

bi bi

d
bi

r
+=

λi

r ∂λi

d

∂bi

---------bi

r
; qi

r{ }
∂ qi

d{ }
∂bi

---------------bi

r
; Ks

r[ ]
∂ Ks

d[ ]
∂bi

--------------bi

r
 

i 1=

p

∑=  
i 1=

p

∑=  
i 1=

p

∑=



210 Achchhe Lal, B. N. Singh and Rakesh Kumar

(42)

 (43)

The variances of the eigenvalues and the eigenvectors can now be expressed as  

 (44)

  (45)

where  is the cross variance between  and . The standard deviation (SD) is

obtained by the square root of the variance (Nigam and Narayanan 1994).

 

4. Numerical results and discussion

The approach outlined for the free vibration analysis of the composite plates resting on elastic

foundation with random system properties is illustrated through a number of examples. The

technique has been validated by comparing the results. A nine noded Lagrange isoparametric

element, with 63 degrees of freedom (DOFs) for the present HSDT model has been used for

discretizing the laminate. Based on convergence study conducted for the fundamental frequency, a

(5 × 5) mesh has been used throughout the study. All the results reported in this paper have been

obtained by employing the full (3 × 3) integration rule for thick plate and reduced (2 × 2) integration

rule for thin plates. The following dimensionless mean fundamental frequency and foundation

stiffness parameters k1 and k2 have been used in this study as 

 and , where , k1 and k2 are dimensional mean natural

frequency, dimensionless Winkler foundation stiffness parameter and dimensionless Pasternak

foundation parameter, respectively. 

In the present study various combination of edge support conditions namely clamped (C), free (F)

and simply supported (S) have been used for the investigation. For example, CFCF means clamped

edges at x = 0, a and free edges at y = 0 and b. The boundary conditions for the plate are

Simply supported edges:
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Free edges:

The second order statistics of dimensionless fundamental frequency of graphite-epoxy plate

resting on Winkler and Pasternak foundations with various boundary conditions have been presented

for a standard deviation (SD) of system properties varying from 0 to 25 percent. Uncertain

variations of system properties are incorporated into the prediction of the dimensionless fundamental

frequency of laminated composite plate resting on elastic foundations. The lamina material

properties and foundation stiffness parameters modeled as independent RVs are longitudinal and

transverse elastic moduli  in plane shear modulus G12 out of plane shear moduli G13, G23,

Poisson ratio ν12 and the elastic foundation stiffness parameters k1 and k2. These RVs  are

sequenced as  and b8 = k2. The

following numerical values and relationship between the mean values of the material properties for

graphite/epoxy composite have been used in the present investigation:

The plate geometry used is characterized by aspect ratios (a/b) = 1 and 2, side to thickness ratios

(a/h) = 10 and 100.

4.1 Validation study

4.1.1 Mean value

The proposed outlined approach is validated by comparing the present obtained mean fundamental

frequency with those available in the literature. The dimensionless mean fundamental frequency for

u v≠ w≠ θy≠ θx ψy≠ ψx 0,≠ ≠   at  x≠ 0,  a  and y 0,  b==

E11 E22,
bi( )

b1 E11= b2 E22= b3 G12= b4 E13= b5 G23 b6 ν12= b7 k1=, ,=, , , ,

E11

d
40E22

d
= G12

d
G13

d
0.6E22

d
= = G23

d
0.5E22

d
= v12

d
0.25=, , ,

Table 1 Comparison of dimensionless mean fundamental frequency,  for cross-ply
laminated composite square plates with all edges simply supported

a/h Present Singh et al. (2001)

[0o/90o] [0o/90o/90o/0o] [0o/90o] [0o/90o/90o/0o]

10 10.5684 15.0794 10.56565 15.10799

100 11.5261 19.1406 11.9049 19.13079

ϖ ω
d
a
2

ρ/E22

d
( )/h=

Table 2 Comparison of dimensionless mean fundamental frequency,  for a [0/90]s all
edges simply supported laminated square plate with various side to thickness ratios (a/h) 

a/h Dimensionless mean fundamental frequency

Present Shen et al. (2003) Handian and Nayfeh (1993)

5
10
20
25
50

100

10.6786
15.0794
17.6786
18.1163
18.7724
19.1406

10.263
14.702
17.483
17.950
18.641
18.828

10.263
14.702
17.483

-
18.681
18.828

ϖ ω
d
a
2

ρ/E22

d
( )/h=
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all edges simply supported anti-symmetric and symmetric cross-ply square plate with various side to

thickness ratios has been obtained. The results are presented in Tables 1-3 and compared with those

available in the literature (e.g., Handian and Nayfeh 1993, Singh et al. 2001, Shen et al. 2003). It is

observed that the results are in good agreement. 

4.1.2 Standard deviation

The proposed outlined probabilistic approach has also been validated by comparing the present

standard deviation results of the fundamental frequency with independent Monte Carlo simulation

which is considered to be exact method in probabilistic analysis and those available in the literature

(Singh et al. 2001). Figs. 2(a) and (b) present a comparison between results obtained by the present

Table 3 Comparison of dimensionless mean fundamental frequency,  for all edges
simply supported composite square plates resting on elastic foundation

Lay-up a/h Dimensionless mean fundamental frequency

Present
Shen et al. 

(2003)
Present

Shen et al. 
(2003)

Present
Shen et al. 

(2003)

(k1, k2)
= (0, 0)

(k1, k2)
= (0, 0)

(k1, k2)
= (100, 0)

(k1, k2)
= (100, 0)

(k1, k2)
= (100, 10)

(k1, k2)
= (100, 10)

0/90/0

(+45)2T

50
20
10
5
50
20
10
5

18.7695
17.5231
14.7106
10.3745
24.0159
22.4154
18.6916
12.7037

18.689
17.483
14.702
10.263
23.225
21.812
18.333
12.544

21.2656
20.1561
17.7559
14.362
26.0135
24.5376
21.1833
16.1502

21.152
20.132
17.753
14.244
25.285
23.989
20.868
16.022

25.4874
24.5577
22.7414
19.9434
29.5619
28.2538
25.3679
21.2923

25.390
24.536
22.596
19.879
28.924
27.789
25.132
21.278

ϖ ω
d
a
2

ρ/E22

d
( )/h=

Fig. 2 Validation of SD/mean of the plate fundamental frequency from MCS and Singh et al. (2001) with the
present SFEM for all edges simply supported [0o/90o/90o/0o] laminated composite square plate with
a/h = 10 (a) no foundation (k1 = 0, k2 = 0), and (b) Pasternak foundation (k1 = 100, k2 = 10)
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approach, the MCS and the FOPT based on close form solution by Singh et al. (2001) for

 symmetric cross-ply square plate, b/h = 10, without foundation and between the

present approach and the MCS for  square plate resting on Pasternak foundation

(k1 = 100, k2 = 10), respectively. All edges are simply supported. Only one material property E11 has

been considered random, others deterministic. For the MCS approach, the samples are generated

using MatLab to fit the desired mean and SD. These samples are used in Eq. (30), which is solved

repeatedly, adopting conventional eigen value procedure, to generate a sample of the fundamental

frequency. The number of samples used for MCS approach is 10,000 based on satisfactory

convergence of the results. The normal distribution has been assumed for random number

generations in MCS. However, the present perturbation approach used in the study does not put any

limitation as regard to probability distribution of the system property. This is an advantage over the

MCS. It is observed that the results are in overall good agreement.

4.2 Numerical results: Mean and standard deviation

4.2.1 Mean fundamental frequency

Table 4 presents dimensionless mean fundamental frequency with a/b = 1 and 2, (k1 = 0, k2 = 0),

(k1 = 100, k2 = 0), and (k1 = 100, k2 = 10) and a/h = 10 and 100 for stacking sequence of [0o/90o/

90o/0o] and [0o/90o/0o/90o] graphite-epoxy plates with SSSS boundary condition. It is observed that

the fundamental frequency changes significantly with a/h ratio. It is also observed that the

fundamental frequency of Pasternak model is higher than that obtained by Winkler model. The

changes between three cases of the foundation are very small for moderately thick rectangular plates

(a/h = 10) and large for thin rectangular plates (a/h = 100). However, the changes are almost same

order of magnitude for moderately thick and thin square laminates. The effect of nature of lay-up,

i.e., symmetry and anti-symmetry of cross-ply laminate has significant role on the fundamental

frequency. The aspect ratio of the plate also plays important roles. The fundamental frequency in

general increases as the aspect ratio changes from 1 to 2 for both the foundation models. 

Table 5 presents the dimensionless mean fundamental frequency with a/b = 1, (k1 = 0, k2 = 0), (k1

= 100, k2 = 0), and (k1 =100, k2 = 10) and a/h = 10 and 100 for an anti-symmetric angle ply [45o/

−45o/45o/−45o] laminated composite plates with SSSS, CCCC and CFCF boundary conditions.

0
o
/90

o
/90

o
/0

o[ ]
0

o
/90

o
/90

o
/0

o[ ]

Table 4 Dimensionless mean fundamental frequency,  for all edges simply supported
cross-ply symmetric and anti-symmetric composite plates resting on elastic foundation

Lay-up
a/h a/b Dimensionless mean fundamental frequency

(k1 = 0, k2 = 0) (k1 = 100, k2 = 0) (k1 = 100, k2 = 10)

[0o/90o/90o/0o]

10
1 15.5261 18.0955 22.8767

2 24.1116 24.3181 24.3181

100
1 19.1404 21.8977 26.024

2 34.2855 52.4057 68.5534

[0o/90o/0o/90o]

10
1 14.899 17.9131 22.7243

2 24.6260 24.6414 24.6389

100
1 17.5999 20.2420 24.6415

2 49.6917 63.7369 77.9896

ϖ ω
d
a
2

ρ/E22

d
( )/h=
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There are significant changes in the fundamental frequency between the three cases of the

foundations. The fundamental frequency of the plate on Pasternak foundation is the largest, while it

is the lowest for the plate with no foundation. It is noticed that the fundamental frequency changes

significantly with a/h ratios. The fundamental frequency for the CCCC boundary condition is the

largest as compared to any other support conditions, while it is the smallest for CFCF for both the

a/h ratios and the three elastic foundation cases.

 

4.2.2 Standard deviation of fundamental frequency
Figs. 3(a)-(f) show the variation of SD/Mean of dimensionless fundamental frequency with

random changes in only one material property at a time, keeping the others deterministic for [0o/90o/

90o/0o] laminated square plate with SSSS boundary condition for three elastic foundation cases (k1 =

0, k2 = 0), (k1 =100, k2 = 0), (k1 = 100, k2 = 10), with a/h = 10. Among the three foundation cases

considered,  and  correspond to the Pasternak type and the

Winkler type foundation, respectively, whereas  corresponds to no elastic

foundation, the scattering in the fundamental frequency is the lowest in case of the plate resting on

two-parameter Pasternak foundation model, while it is the highest in case of no elastic foundation.

In general, the plate on Winkler model shows approximately 27-32 percent less scattering, while the

plate on Pasternak foundation shows approximately 55-58 percent less scattering as compared to the

plate with no foundation. The effect of E11 on scattering of fundamental frequency is the highest,

while it is the lowest for ν12. It is seen that foundation stiffness has a significant effect on the

frequency response of the plate. With reference to Pasternak foundation, the dispersion in the

fundamental frequency of the plate decreases more sensibly as compared to Winkler foundation and

no elastic foundation and these are about 30 and 38 percent, respectively.

From application point of view, it is appropriate to consider the case where all the material

properties vary simultaneously. Fig. 4 shows the variation of the SD of the fundamental frequency

with the SD of basic RVs (bi, i = 1, 2, ..., 6) changing simultaneously and with the same value of

the ratio of its SD to mean. It has been analyzed 4-layers symmetric [0o/90o/90o/0o], square laminate

with a/h = 10 and 100 for the three foundation cases, as explained before. It is observed that the

dispersion in the frequency increases if side to thickness ratio increases from a/h = 10 to 100. For

both the values of a/h, no elastic foundation plate is more sensitive as compared to the plate resting

on elastic foundation. It is interesting to note that the Pasternak model shows about 56 percent for

a/h = 10 and 43.75 percent for a/h = 100 and the Winkler model shows about 30 percent for a/h =

10 and 21 percent for a/h = 100 less scattering as compared to the plate with no elastic foundation.

k1 k2,( ) 100 10,( )= k1 k2,( ) 100 0,( )=

k1 k2,( ) 0 0,( )=

Table 5 Dimensionless mean fundamental frequency,  for an anti-symmetric angle-ply
composite square plate resting on elastic foundation with various support conditions

Lay-up a/h BCs Dimensionless mean fundamental frequency

(k1 = 0, k2 = 0) (k1 = 100, k2 = 0) (k1 = 100, k2 = 10) 

[45o/−45o/45o/−45o]

10

SSSS 18.7272 21.2147 25.4234

CCCC 22.8167 24.9020 28.7305

CFCF 6.7448 11.9827 13.9787

100

SSSS 24.6154 26.5688 30.0581

CCCC 41.1869 42.3832 45.4118

CFCF 7.7769 12.5094 15.3158

ϖ ω
d
a
2

ρ/E22

d
( )/h=
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Fig. 3 Dispersion of the fundamental frequency square (ω2) of a simply supported square plate with a/h = 10
resting on elastic foundations: (a) with respect to E11 (b) with respect to E22 (c) with respect to G12 (d)
with respect to G13 (e) with respect to G23 (f) with respect to ν12 
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The comparison of variation of the SD of the fundamental frequency with the SD of basic random

material properties changing simultaneously, as explained before, for 4 layers symmetric [0o/90o/90o/

0o], and 4 layers anti-symmetric [0o/90o/0o/90o], square laminates with a/h = 10 is shown in Fig. 5

for three foundation cases, as explained before. It is observed that the anti-symmetric cross ply

laminate is more sensitive than symmetric cross-ply laminate. The anti-symmetric plate shows 4.9,

4.8 and 4 percent more dispersion for the plate with no foundation, Winkler foundation and

Pasternak foundation, respectively as compared to the symmetric plate with the respective cases of

foundation. In general, it can been seen that the scattering in the frequency is significantly affected

by simultaneous change in the all random material properties considered. 

Fig. 6 shows the comparison of variation of SD of the fundamental frequency with the SD of

basic RVs (bi, i = 1, 2, ..., 6) changing simultaneously each assuming the same value for the ratio of

its SD to mean for 4 layers symmetric [0o/90o/90o/0o] cross-ply laminate with a/b = 1 and 2 for

a/h = 10. It is observed that the dispersion in the frequency is higher if aspect ratio increases

from to a/b = 1 to 2, i.e., the scattering in rectangular plate is greater than that of square plate for

all three foundation cases considered, thus indicating that randomness in basic variables has more

effect on the sensitivity of the fundamental frequency as the plate aspect ratio increases. In case of

Pasternak and Winkler models, the rectangular plate shows relatively very large value of dispersion,

while the rectangular plate with no foundation shows almost same sensitivity if compared with the

square plate.

The comparison of variation of the SD of the fundamental frequency with all basic material

properties simultaneously each assuming the same value for the ratio of its SD to mean for 2-layers

anti-symmetric [0o/90o], 3-layers symmetric [0o/90o/0o], and 4-layers anti-symmetric [0o/90o/0o/90o]

square laminates with a/h = 10 and 100 for no elastic foundation and Winkler foundation case is

Fig. 4 Effect of side-to-thickness ratio (a/h) on the
dispersion of the fundamental frequency square
(ω2) of a simply supported square plate resting
on elastic foundations with all random material
variables changing simultaneously

Fig. 5 Comparison of variation of SD/Mean of
fundamental frequency square (ω2) with SD
of material properties, for symmetric and
anti-symmetric cross-ply laminated composite
plate resting on elastic foundation with all
basic material properties changing simulta-
neously
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shown in Fig. 7. It is observed that the dispersion in the frequency increases with number of layer

of lay-ups. With reference to 2 layers anti-symmetric case, the [0o/90o/0o] and [0o/90o/0o/90o]

laminates give 1 percent and 12.6 percent higher scattering in case of no foundation and 22.5

percent and 32.3 percent higher scattering in case of Winkler foundation.

Fig. 8 Effect of randomness of the foundation
stiffness parameters on the dispersion of the
fundamental frequency square (ω2) of simply
supported square plates, a/h = 10 and 100,
resting on elastic foundation

Fig. 9 Effect of randomness of the foundation
stiffness parameters on the dispersion of the
fundamental frequency square (ω2) of simply
supported square plates, a/h 10, a/b = 1 and
2, resting on elastic foundation

Fig. 6 Effect of plate aspect ratio (a/b) on the
dispersion of the fundamental frequency
square (ω2) of simply supported square plates
resting on elastic foundations with all random
material variables changing simultaneously

Fig. 7 Effect of stacking sequence on the dispersion
of the fundamental frequency square (ω2) of a
simply supported square plate resting on
elastic foundations with all random material
variables changing simulaneously
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Fig. 8 examines the influence of scattering in the foundation stiffness parameters k1 and k2 on the

fundamental frequency for 4-layer symmetric [0o/90o/90o/0o] cross-ply square laminate with a/h = 10

and 100 for two cases of foundation, (k1 = 100, k2 = 0) and (k1 = 100, k2 = 10). The lamina material

properties of the constituent materials are kept deterministic. It is observed that the frequency of

moderately thick plate is more sensitive as compared to thin plate for each case of the foundation.

Out of all, the Pasternak model for a/h = 10 is the most sensitive, while Winkler model for a/h =

100 is the least sensitive. The scattering in the plate of a/h = 10 on Winkler and the plate of a/h =

100 on Pasternak is close to each other in comparison to other combinations of the plate and

foundation. The Pasternak model shows 38.3 percent and 55.4 percent more dispersion as compared

to Winkler model for a/h = 10 and 100, respectively.

Fig. 9 examines the influence of scattering in the foundation stiffness parameters, k1 and k2 for 4-

layer anti-symmetric [0o/90o/0o/90o] cross-ply square laminate with two cases of foundation, (k1 =

100, k2 = 0) and (k1 = 100, k2 = 10) for a/h = 10 and 100. The lamina material properties of the

constituent materials are kept deterministic. It is noticed from the figure that the fundamental

frequency is more sensitive for the plate of a/h = 10 as compared to the plate of a/h = 100. The

trends are similar to the Fig. 8. However, the Pasternak model shows 37.3 percent and 49.2 percent

more dispersion for a/h 01 and 100, respectively as compared to Winkler model. 

Figs. 10(a) and (b) present the variation of the scattering in the fundamental frequency with

simultaneous changes in the foundation stiffness parameters for 4-layer symmetric [0o/90o/90o/0o]

and anti-symmetric [0o/90o/0o/90o] cross-ply rectangular (a/b = 2) laminates, respectively with two

cases of foundation, as explained in Fig. 9 for a/h = 10 and 100. It is interesting to note that the

moderately thick plate is almost insensitive to the random changes in the foundation stiffness

parameters. Similar observations have been noted for the plate having side to thickness ratio less

than 10. However, the results for the plate having a/h ratio less than 10 are not presented here. The

symmetric cross-ply plate is more sensitive as compared to anti-symmetric cross-ply plate. The

sensitivity of the thin plate is the largest, while the sensitivity is the smallest for thick plates and as

Fig. 10 Effect of randomness of the foundation stiffness parameters on the dispersion of the fundamental
frequency square (ω2) of simply supported rectangular (a/b = 2), a/h = 10 and 100, resting on elastic
foundation (a) [00o/90o/90o/0o], and (b) [0o/90o/0o/90o]
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stated earlier it almost negligible.

Fig. 11 shows the effect of CCCC, SSSS and CFCF support conditions on the dispersion of the

dimensionless fundamental frequency for lay-up of [45o/−45o/45o/−45o] angle-ply square laminate

with all system properties changing simultaneously for a/h = 10. All the inputs RVs (bi, i = 1, 2, ...,

8) are assumed to have same SD to mean ratio. It is observed that the scatter in dimensionless

fundamental frequency is of equal order of magnitude for CCCC (k1 = 100, k2 =10) and CFCF ((k1 =

0, k2 = 0); CFCF (k1 = 100, k2 = 0) and SSSS (k1 = 100, k2 = 10); CCCC (k1 = 100, k2 = 0) and SSSS

(k1 = 100, k2 = 0). The scatter in the fundamental frequency is strongest in case of plate with SSSS

(k1 = 0, k2 = 0), while it is lowest for CFCF (k1 = 100, k2 = 10). The plate with Winkler and

Pasternak foundation shows 22 percent and 30 percent for SSSS boundary condition, 15.9 percent

and 36 percent for CCCC boundary condition and 34.4 percent and about 50 percent for CFCF

boundary condition more dispersion as compared to the plate with no elastic foundation. 

 

 

5. Conclusions

A C0 finite element method in conjunction with FOPT has been outlined to obtain the second

order statistics of dimensionless fundamental frequency of laminated composite plates that are

resting on elastic foundation. A higher order shear deformation theory has been used and different

boundary conditions analyzed. The following conclusions can be drawn from this limited study: 

(1) The SD of the fundamental frequency shows different sensitivity to different system properties.

The sensitivity changes with the lay-up sequence, the plate side to thickness ratio, the plate

aspect ratio, the boundary condition, the material properties and the foundation stiffness

parameters.

Fig. 11 Effect of support conditions on the dispersion of the fundamental frequency square (ω2) of laminated
composite square plates resting on elastic foundations with all system properties changing
simultaneously for a/h = 10
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(2) Among the different system properties studied, E11 causes the highest scatter in the

fundamental frequency, while ν12 the lowest scatter.

(3) Among the different stacking sequences studied, 4 layers anti-symmetric and symmetric cross-

ply plates show the highest dispersion in the fundamental frequency for random material

properties and foundation stiffness parameters, respectively. 

(4) Thick plates show almost negligible sensitivity with random foundation stiffness parameters.

(5) The effect of different foundation cases on the scattering of the dimensionless fundamental

frequency is quite significant and comparable with the material properties. The uncertainty in

these parameters cannot be ignored in design.
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(A-3)

Notation

Aij, Bij, etc : Laminate stiffnesses
BB : Strain-displacement matrix
BBg : Strain-displacement matrix due to foundation
a, b : Plate length and breadth
bi : Basic random system properties
E11, E22 : Longitudinal and Transverse elastic moduli
G12, G13, G23 : Shear moduli
h : Thickness of the plate
K : Bending stiffness matrix
K1, k1 : Winkler elastic foundation stiffness (normal) and its dimensionless form
K2, k2 : Pasternak elastic foundation stiffness (shear) and its dimensionless form
M, m : Mass and inertia matrices
NE, N : Number of elements, number of layers in the laminated plate 
NN : Number of nodes per element
ϕi : Shape function of ith node

: Reduced
 

elastic material constants
Λ, {Λ}(e) : Vector of unknown displacements, displacement vector of eth element
U, Uf : Strain energy due to bending and foundation, respectively
u, v, w : Displacements of a point on the mid plane of plate

: Displacement of a point (x, y, z)
{σ}, {ε} : Stress vector, Strain vector
ψx, ψy : Rotations of normal to mid plane about the x and y axis respectively
θx, θy, θk : Two slopes and angle of fiber orientation wrt x-axis for kth layer
x, y, z : Cartesian coordinates
ρ, λ, Var(.) : Mass density, eigenvalue, variance
ω, ϖ : Natural frequency and its dimensionless form
RVs : Random variables

N[ ]
1  0  0  0  f2 z( )  0  f1 z( )

0  1  0  f2 z( )  0  f1 z( )  0

0  0  1  0  0  0  0
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