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Abstract. In the present study, a spline finite strip with higher-order shear deformation is formulated
for the stability and free vibration analysis of composite plates. The analysis is conducted based on
Reddy’s third-order shear deformation theory, Touratier’s “Sine” model, Afaq’s exponential model and
Cho’s higher-order zigzag laminate theory. Consequently, the shear correction coefficients are not required
in the analysis, and an improved accuracy for thick laminates is achieved. The numerical results, based on
different shear deformation theories, are presented in comparison with the three-dimensional elasticity
solutions. The effects of length-to-thickness ratio, fibre orientation, and boundary conditions on the critical
buckling loads and natural frequencies are investigated through numerical examples. 
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1. Introduction

In recent decades, extensive use of fibre-reinforced composite materials in all types of engineering

structures has drawn increased attention from many researchers to develop more accurate and more

efficient analysis methods for predicting the stability and free vibration behaviours of composite

structures.

In composite plate structures, the elastic modulus to shear modulus ratio is relatively high (e.g., of

the order of 25 to 40 for graphite-epoxy and boron-epoxy composites, instead of 2.6 for typical

isotropic materials). Therefore, the classical thin plate theory often overestimates critical buckling

loads and natural frequencies of composite structures with unacceptable errors, since this theory

totally neglects transverse shear deformation.

The transverse shear deformation in the composite plates can be taken into consideration using the

first-order shear deformation theory according to the Mindlin assumptions, which assumes that any

straight line originally normal to the plate middle surface remains straight, but not generally normal to

the middle surface after deformation. This theory accounts for the transverse shear deformation, but

results in a constant distribution of the transverse shear strains in the thickness direction of the plate.
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Although this theory yields satisfactory results for the critical buckling loads and natural frequencies

of moderately thick composite plates, it fails to provide accurate results for very thick plates with a

length-to-thickness ratio lower than 10. Moreover, even for a moderately thick plate, the wavelength

of a higher-order vibration mode may be only a fraction of the plate side length, so that the plate may

dynamically behave like a very thick plate under the higher-order vibrations. In addition, analysis

based on that theory requires a shear correction to the transverse shear stiffness in order to achieve

acceptable accuracy, and evaluation of the correction coefficients is often tedious and inaccurate. 

Analysis can be improved by means of higher-order shear deformation theories. In 1984, J. N.

Reddy published a third-order shear deformation theory (Reddy 1984). That theory assumes a

parabolic variation of the transverse shear strains through the plate thickness, and accounts for zero

transverse shear stresses on the surfaces of the plates. Consequently, there is no need to use shear

correction coefficients in computing the shear stiffness. Based on that theory, analytical solutions

have been obtained for simply supported cross-ply laminates and anti-symmetrical angle-ply

laminates. The results are satisfactory when compared with the three-dimensional elasticity solutions

for thick laminates with the length-to-thickness ratio as low as 4, while the number of degrees of

freedom required in the analysis is the same as that in the analysis based on the first-order shear

deformation theory. As the length-to-thickness ratio increases, the solution automatically converges

to that based on the first-order shear deformation theory or thin plate theory without any numerical

difficulties. In later years, Touratier (1991) proposed a “Sine” model, whereas Afaq et al. (2003)

introduced an exponential model, by respectively assuming sinusoidal and exponential variations of

inplane displacement in the thickness direction, yielding further improved accuracy. In 1993, Cho

developed a higher-order zigzag laminate theory by superimposing a zigzag linearly varying inplane

displacement on a cubic varying displacement field (Cho and Parmerter 1993). The cubic variation

proposed by Reddy accounts for the overall parabolic distribution of transverse shear strains while

the zigzag approach accounts for the strain discontinuities required for stress continuity conditions.

The unknowns of different planes are expressed in terms of those of midplane after imposing the

interlaminar shear stress continuity conditions and ensuring the plate surfaces free of transverse

shear stresses. Thus, the number of involved unknowns remains the same, but a continuous

distribution of shear stresses is achieved, so that the accuracy of static analysis is significantly

improved with only a little extra computational cost. However, all the above-mentioned higher-order

theories experience difficulties in their finite element implementation, because the required shape

functions must guarantee the inter-element continuity not only for the deflection but also for its first

derivatives. Construction of such elements often requires extra degrees of freedom and lengthy

calculation (Phan and Reddy 1985, Putcha and Reddy 1986), resulting in extra computational cost.

The difficulties can be readily overcome by the finite strip simulation, in which the plate structure

is modeled by a number of longitudinal strips. Within each strip, a series of beam eigenfunctions

are used to express the displacement variations in the longitudinal direction, while the Hermitian

cubic polynomials are employed to interpolate the deflection variation in the lateral inplane

direction (Cheung et al. 1996). Thus, the deflection and its first derivatives are all continuous across

the nodal lines between the finite strips. The finite strip analysis of composite laminates based on

Reddy’s third-order shear deformation theory was published by Akhras et al. in 1994 and 1995.

Although excellent efficiency and satisfactory accuracy have been achieved, the analysis can only

be carried out efficiently for the plates with two opposite ends simply supported because of some

limitations inherent in the semi-analytical solution procedures.

The efficiency of the analysis for the plates with other types of boundary conditions can be
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significantly enhanced by introducing the B-spline function, a piecewise cubic polynomial, as the

longitudinal displacement function (Cheung et al. 1996). This measure makes the finite strip method

as flexible as the finite element method in dealing with different boundary and loading conditions,

while maintaining other features of the finite strip method. This alternative method is referred to as

the spline finite strip method and has been extensively used in the analysis of composite plates

based on the classical thin plate theory and the first-order shear deformation theory (Dawe 2002). In

parallel to the above-mentioned development, the spline finite strip method has been successfully

generalized to incorporate Reddy’s third-order shear deformation for linear static and stability

analysis of thick isotropic and laminated plates (Kong and Cheung 1993, Cheung and Kong 1993).

The strip has two nodal lines. In the transverse in-plane direction of the strip, the Hermitian cubic

polynomials are used for the interpolation of deflection, while the linear functions are used for in-

plane displacements and normal rotations. The application was further extended to the free vibration

and geometrically nonlinear analysis of laminated plates (Kong and Cheung 1995). In that analysis,

the normal rotations were replaced by transverse shear strains as nodal degrees of freedom, so that

the convergence for thin plates was improved. Recently, the approach has been applied to the

analysis of piezolaminated plates by Ramos Loya et al. (2001), and improved flexibility has been

achieved by adopting the spline functions with uneven lengths of section. However, in all these

works, only the results on simply supported cross-ply laminates were presented in the application of

this method to thick composite plates.

Recently, a spline finite strip with higher-order shear deformation has been developed for the static

and free vibration analysis of composite plates using Reddy’s third-order shear deformation theory

(Akhras and Li 2005) and for the static analysis based on Cho’s zigzag theory (Akhras and Li 2007).

The strip has three nodal lines, each of which has an identical number of knots (Fig. 1). The knot on

a side nodal line has six degrees of freedom, while the knot on the middle nodal line has only four

degrees of freedom. This means that the present method employs approximately the same number of

degrees of freedom as the spline finite strip method based on the first-order shear deformation

theory, but will yield improved results for thick composite plates. In the lateral inplane direction, the

quadratic interpolation is adopted for the inplane displacements, while the Hermitian interpolation is

employed for the deflection. This interpolation combination can accurately simulate a linear variation

of the transverse bending moment in the lateral inplane direction for the laminates with bending and

inplane coupling, and consequently the convergence of the analysis is enhanced.

In the present study, this spline finite strip is further formulated for the stability and free vibration

analysis of composite plates using either Reddy’s third-order plate theory, Touratiers “Sine” model,

Afaq’s exponential model and Cho’s zigzag laminate theory. Details are described in the following

sections. The numerical results based on different shear deformation theories are presented in

comparison with the three-dimensional elasticity solutions. The effects of length-to-thickness ratio,

fibre orientation, number of plies and boundary conditions on the critical buckling load and natural

frequencies are investigated through numerical examples. 

Fig. 1 A spline finite strip (on the left) and a section (on the right)
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2. Spline finite strip formulation

In this study, the proposed spline finite strip has three equally spaced nodal lines, labelled by i =

1, 2, 3 respectively (Fig. 1). In the longitudinal direction, the strip is divided into a number of

sections of identical length H. Within a section, the displacement components at any point can be

interpolated from the displacement parameters at 12 knots located on the three nodal lines at local

coordinates y = j H with j equal to −1, 0, 1 and 2, respectively. For the knot identified by i and j,

the following displacement parameters are adopted 

 (1)

where u, v, w denote the displacement components as shown in Fig. 1, while γx and γy represent the

transverse shear deformation measured at midplane. 

The midplane displacements uo, vo, wo and shear deformation γx and γy at any point (x, y, 0) within

a section can be expressed in terms of the above displacement parameters as

(2)

where  for i = 1, 2, 3 are the quadratic interpolation functions defined as

(3)

and b is the spacing between two adjacent nodal lines.
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and  

while  for j = −1, 0, 1, 2 denote B-spline functions, which have the following expressions

within the section with 

 (5)

The required spline functions for unequal lengths of section are provided in Cheung et al. (1996).

The analysis can be conducted based on Reddy’s third-order shear deformation theory (Reddy

1984), Touratier’s “Sine” model (Touratier 1991), Afaq’s exponential model (Afaq et al. 2003) and

Cho’s higher-order zigzag laminate theory (Cho and Parmerter 1993). Based on these theories,

displacements u, v and w at any point (x, y, z) of the laminate have the following relationships with

the midplane displacements

(6)

where , , , while  is a 2 by 2 matrix

related to assumed variation of transverse shear deformation through plate thickness.

Reddy’s theory assumes a parabolic variation of transverse shear strains through plate thickness.

Therefore,  has the following form

 

(7)

in which h is the plate thickness.

Touratier’s model assumes a cosine variation of transverse shear strains. Thus,  is written as

 (8)

Afaq’s model introduces an exponential variation of inplane displacement in the thickness

direction, and  has the following form 

 (9)

Cho’s theory superimposes a zigzag linearly varying inplane displacement on a cubic varying

displacement field, yielding continuous distribution of transverse shear stresses in the thickness
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direction of plate.  takes a more complicated form as follows (Shu and Sun 1994)

 

(10)

in which, the subscript k represents the ordinal number of a layer, while  and

 are determined from the material properties and laminate thicknesses as below

and  

 

where, N is the number of layers in the laminate, zk is the z coordinate of the interface between

layer k and layer k + 1, [I] is the unit matrix, m is the ordinal number of the layer across or next to

the plate midplane (zm = 0 or ),  is the transverse shear stiffness matrix of layer k

defined by . 

Eq. (6) is also applicable to the analysis based on the classical plate theory by assuming 

(11)

as well as for the analysis using the first-order shear deformation theory by taking
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The following relationships between displacements and linear strains are used in the analysis

(15)

By substituting Eq. (13) into Eq. (15), the strain vector can be expressed in terms of the

displacement parameters as

(16)

in which  is the strain matrix. For i = 1 or 3, it takes the following form

(17)

where , while  with

m = 1, 2 and n = 1, 2. For i = 2, the above expression is valid without the third and fourth columns. 

From Eqs. (16) and (17) it can be observed that at any given coordinate z, εx varies linearly in the

x direction, so that the current formulation can accurately simulate a linear variation of the

transverse bending moment in the lateral inplane direction. Consequently, the convergence of the

analysis can be improved significantly over the strips using linear interpolations in the x direction

for inplane displacements (Kong and Cheung 1993, 1995). This is especially important for the

analysis of the composite laminates with the coupling between bending and inplane deformation.

It is assumed that the laminates are manufactured from orthotropic layers (or plies) of

preimpregnated unidirectional fibrous composite materials. Neglecting σz, for each layer, the stress-

strain relationships in the x-y-z coordinate system can be stated as

(18)
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be formed by following standard procedures in the spline finite strip analysis (Cheung et al. 1996,
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(21)

where  ρ is the mass density of the laminate, V denotes the volume of the section, 

and  are defined as 

(22)

 is the initial inplane stress matrix expressed as 

(23)

which are calculated from the initial edge loads by assuming that the laminate is initially in a state

of uniform strain (Srinivas et al. 1970). In some works on the stability analysis,  and 

in Eq. (21) were neglected based on the classical plate theory. However, these two items compose

the so-called “curvature” terms, which gain importance as the plate becomes relatively thicker

(Dawe and Roufaeil 1982). Therefore,  and  are included in the current analysis,

particularly for the thick and moderately thick plates. 

In the present study, the boundary conditions are imposed by means of the penalty function

method (Cheung et al. 1996). For instance, deflection w at knot ij can be fixed by adding an

imaginary elastic support to this knot in the z direction. The stiffness matrix of this support is the

square matrix combined with a factor C in the following equilibrium matrix equation 

(24)

in which  represents the general force applied by the support to the degree of freedom  of

knot ij, while C is the stiffness coefficient of the support. It should be much higher (in the order of

100 times) than the maximum value of the diagonal items in the structural stiffness matrix.

After assembling the stiffness matrices, mass matrices and geometrical stiffness matrices over all

the sections in the structure, followed by imposing boundary conditions, the natural frequencies ω

and the critical load factors λ of the laminate can be determined by solving the following structural

matrix equations using standard computer subroutines
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3. Numerical examples 

Several numerical examples are presented to verify the convergence of the proposed method, and

to show the effects of length-to-thickness ratio, fibre orientation, number of plies and boundary

conditions on the critical buckling load and natural frequencies of composite laminates. In all the

examples, the lamina properties are assumed to be , 

and , where the subscripts 1 and 2 respectively denote the fibre and transverse to fibre

inplane directions, while 3 refers to the direction normal to the plate midplane. In addition, all the

layers in a plate have equal thickness.

3.1 Free vibration of simply supported square (0o/90o/90o/0o) and (0o/90o/0o/90o) laminates

Free vibration of square (0o/90o/90o/0o) and (0o/90o/0o/90o) laminates with side length, a, and

thickness, h, are analyzed using the present method. Each plate is simply supported on all four

edges with permissible displacement in the normal inplane direction. By virtue of the symmetry,

E1 40.0E2 G12 G13 0.6E2= =,= G23 0.5E2=

ν12 0.25=

Table 1 Dimensionless fundamental frequencies  of simply supported square
(0o/90o/90o/0o) laminates

a/h Mesh & Solution
Theory in the present method

Reddy Touratier Afaq Cho

5

1 × 1 Section 10.799 10.804 10.821 10.840

 2 × 2 Sections 10.788 10.794 10.812 10.831

 3 × 3 Sections 10.787 10.793 10.811 10.830

Theory  10.7871  10.7932  10.8102  10.8302

Elasticity3 10.752

FSDT1 10.854

CLPT1 18.299

10

1 × 1 Section 15.140 15.143 15.158 15.155

 2 × 2 Sections 15.109 15.115 15.130 15.127

 3 × 3 Sections 15.108 15.113 15.128 15.125

Theory2 15.107 15.113 15.128 15.125

Elasticity4 15.069

FSDT2 15.143

CLPT1 18.738

100

1 × 1 Section 19.076 18.905 18.905 18.905

 2 × 2 Sections 18.848 18.840 18.841 18.840

 3 × 3 Sections 18.837 18.837 18.837 18.837

Elasticity4 18.835

FSDT2 18.836

CLPT2 18.890

References: 1. Reddy 2004, 2. Rayleigh-Ritz solution using exact displacement functions, 3. Noor
1973, 4. Finite layer solution (Cheung et al. 1996).

ω ωa
2
ρ/E2h

2
( )

0.5

=
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only a quarter of the laminate is modeled. In each case, one, two or three proposed spline strips

with identical number of sections are employed. The resulting dimensionless fundamental

frequencies  are listed in Table 1 and Table 2. 

Results show that the present solutions based on all the included higher-order shear deformation

theories converge quickly to the respective theoretical solutions (Theory), which are taken from

references or obtained by means of Rayleigh-Ritz method using exact displacement functions. In

comparison with three-dimensional elasticity solutions (Elasticity), the errors of the present results

are less than 1% for the symmetrical cross-ply laminates and less than 5% for the anti-symmetrical

ones. In most cases, the proposed method yields improved accuracy over the first-order shear

deformation theory (FSDT with shear correction coefficients ) and the classical plate

theory (CLPT). Among all the included higher-order shear deformation theories, Reddy’s theory

yields the best results for the symmetrical cross-ply laminates, whereas Cho’s zigzag theory yields

the best ones for antisymmetric laminates. However, the differences between the results based on

different higher-order shear deformation theories are not as significant as in the static analysis

(Reddy 1984, Touratier 1991, Afaq et al. 2003, Cho and Parmerter 1993). 

ω ωa
2
ρ/E2h

2( )
0.5

=

k1

2
k2

2
5/6= =

Table 2 Dimensionless fundamental frequencies  of simply supported square 
(0o/90o/0o/90o) laminates

a/h  Mesh & Solution
Theory in the present method

Reddy Touratier Afaq Cho

5

1 × 1 Section 11.183 11.176 11.176 11.054

 2 × 2 Sections 11.172 11.165 11.165 11.043

 3 × 3 Sections 11.172 11.163 11.163 11.042

Theory1 11.172 11.163 11.163 11.041

Elasticity2 10.680

FSDT1 11.271

CLPT1 16.673

10

1 × 1 Section 14.873 14.863 14.859 14.792

 2 × 2 Sections 14.848 14.841 14.837 14.770

 3 × 3 Sections 14.847 14.838 14.835 14.768

Theory1 14.846 14.838 14.834 14.767

Elasticity3 14.495

FSDT1 14.921

CLPT1 17.145

100

1 × 1 Section 17.500 17.339 17.339 17.338

 2 × 2 Sections 17.290 17.283 17.283 17.282

 3 × 3 Sections 17.280 17.279 17.279 17.278

Elasticity3 17.273

FSDT1 17.280

CLPT1 17.308

References: 1. Rayleigh-Ritz solution using exact displacement functions, 2. Noor 1973, 3. Finite
layer solution (Cheung et al. 1996).

ω ωa
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=
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3.2 Buckling of simply supported square (0o/90o/90o/0o) and (0o/90o/0o/90o) laminates 

The square cross-ply laminates in the previous example are subjected to a uniform compressive

force Nx. The stability of the laminates is evaluated using the present method with a quarter of each

plate being modeled by four proposed strips and the same number of spline sections. A further

refined model yields little improvement. The resulting critical buckling loads are given in Table 3.

The findings from the previous example can also be observed in this example.

3.3 Free vibration and buckling of clamped square cross-ply laminates 

The square cross-ply laminates in Example 1 are clamped on all the edges. The stability under a

uniform compressive force Nx and free vibration of the plates are analyzed using the present

method. All the degrees of freedom on the plate edges are fixed in the analysis (Reddy 2004). In

addition, wy'  = 0 is also imposed on the two edges y = 0 and y = a.

A quarter of each laminate is modeled by four strips of four spline sections. Upgraded models yield

negligible changes. The results of dimensionless fundamental frequencies  and

uniaxial buckling loads  are given in Table 4 as the function of the length-to-

ω ωa
2
ρ/E2h

2( )
0.5

=

N Nx

o
a
2
/E2h

3
=

Table 3 Dimensionless critical buckling loads  of simply supported square 
(0o/90o/90o/0o) and (0o/90o/0o/90o) laminates 

a/h Method (0o/90o/90o/0o) (0o/90o/0o/90o)

10

Present (Reddy) 22.967 22.332

Present (Touratier) 22.984 22.307

Present (Afaq) 23.028 22.295

Present (Cho) 23.020 22.094

Elasticity1 22.881 21.280

FSDT2 23.077 22.558

CLPT2 35.168 29.782

20

Present (Reddy) 31.474 27.831

Present (Touratier) 31.484 27.820

Present (Afaq) 31.507 27.815

Present (Cho) 31.494 27.737

Elasticity3 31.499 27.396

FSDT2 31.521 27.923

CLPT2 35.907 30.213

100

Present3 (Reddy) 35.944 30.250

Present (Touratier) 35.944 30.249

Present (Afaq) 35.945 30.249

Present (Cho) 35.945 30.245

Elasticity3 35.944 30.228

FSDT2 35.945 30.253

CLPT2 36.150 30.353

References: 1. Noor 1975, 2. Rayleigh-Ritz solution using exact displacement functions, 
3. Finite layer solution (Cheung et al. 1996)

N N
x

o
a
2
/E2h

3
=
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thickness ratio a/h. The converged finite strip solutions based on the first-order shear deformation

theory (FSDT) and the classical thin plate theory (CLPT) obtained by the authors are also listed in

the table. 

Comparison of the results in Tables 1 to 4 shows that changing boundary conditions from simple

supported edges to clamped edges raises natural frequencies and buckling loads of thin plates

substantially. However, the increment is not as obvious for thick plates. 

3.4 Square (45o/−45o/…) anti-symmetrical angle-ply laminate: buckling and free vibration

A square (45o/−45o/…) anti-symmetrical angle-ply laminate is either clamped or simply supported

on its four edges. The boundary conditions for the clamped edges are basically imposed in the same

manner as in the previous example. However, because of the coupling between bending and inplane

deformations, the inplane displacements are included in the analysis. In addition, the edge of the

plate is assumed to be free in the tangential inplane direction, but immovable in the normal inplane

direction for both the simply-supported and clamped boundaries. The critical buckling loads under

uniform in-plane load Nx and fundamental frequencies are determined using the present method

based on Reddy’s theory. The entire laminate is modeled by eight strips and eight spline sections.

Results are summarized in Table 5. The analytical solutions obtained by Reddy and Phan (1985) are

also listed in this table for comparison. The agreement is excellent.

It can be observed from the table that the fundamental frequency and critical buckling load of the

Table 4 Dimensionless fundamental frequencies  and uniaxial buckling loads
 of square cross-ply laminates with all the edges clamped

a/h Method
(0o/90o/90o/0o) (0o/90o/0o/90o)

10

Present (Reddy) 41.850 23.033 37.560 24.015

Present (Touratier) 42.182 23.107 37.715 24.094

Present (Afaq) 42.580 23.169 37.875 24.112

Present (Cho) 42.386 23.206 36.600 23.803

FSDT - 22.593 37.076 23.636

CLPT 127.79 41.408 82.192 37.733

20

Present (Reddy) 87.146 32.622 76.301 32.356

Present (Touratier) 87.272 32.684 76.303 32.366

Present (Afaq) 87.437 32.728 76.284 32.360

Present (Cho) 87.379 32.717 75.334 32.188

FSDT 87.196 32.341 76.221 32.243

CLPT 134.78 41.722 108.93 38.070

100

Present (Reddy) 134.10 41.265 108.32 37.884

Present (Touratier) 134.10 41.274 108.30 37.880

Present (Afaq) 134.11 41.277 108.29 37.879

Present (Cho) 134.10 41.275 108.36 37.869

FSDT 134.18 41.257 110.10 37.884

CLPT 137.28 41.825 110.15 38.179

ω ωa
2
ρ/E2h

2
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0.5

=

N N
x

o
a
2
/E2h
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laminates increase with the number of layers. This effect is particularly significant for the thin plates

(a/h = 100) when the number of layers is doubled from two to four. However, the effect is not as

noteworthy when the number of layers is further increased or when the plates become relatively

thicker. 

3.5 Square symmetrical angle-ply laminate: buckling and free vibration

The stability and free vibration of a square (45o/−45o/−45o/45o) laminate are analyzed using the

present method based on Reddy’s third order shear deformation theory. The four edges of the plate

are either all simply supported or all clamped. In both cases, the entire laminate is modeled by eight

strips and eight spline sections. The results are listed in Table 6, which shows a close agreement

with the solutions obtained by Chen et al. (1997) using the p-Ritz method. 

Similarly to the findings from the previous examples, clamping plate edges raises the fundamental

frequency and critical buckling load substantially for the thin plate. However, the effect becomes

not as significant for the thick plate.

The effects of fibre-orientation can be found by comparing the data in all the tables. For a visual

comparison, the results for four layer laminates based on Reddy’s theory are illustrated in Figs. 2 to

5. For simply supported square thin plates, the anti-symmetrical angle-ply yields the highest

Table 5 Dimensionless fundamental frequencies  and uniaxial buckling loads
 of square anti-symmetrical angle-ply (45o/−45o/…) laminates

a/h
Number of 

layers

Four edges clamped Four edges simply-supported

 (Reddy)

10

2 25.659 18.780 17.823 13.263 13.263

4 34.812 23.012 32.705 18.321 -

8 37.311 23.938 35.063 19.264 19.266

20

2 36.502 21.796 20.564 14.246 14.246

4 70.571 30.706 48.180 21.805 -

8 78.225 32.410 54.718 23.238 23.239

100

2 42.703 23.370 21.661 14.622 14.621

4 104.52 36.500 55.722 23.451 -

8 119.84 39.078 64.214 25.175 25.174

ω ωa
2
ρ/E2h

2
( )

0.5

=

N N
x

o
a
2
/E2h

3
=

N ω N ω ω

Table 6 Dimensionless fundamental frequency  and uniaxial buckling loads
 of (45o/−45o/−45o/45o) laminate

a/h Method
Four edges clamped Four edges simply-supported

10
Present 29.811 21.883 27.678 17.433

p-Ritz - 21.672 - 17.381

20 Present 59.201 29.936 41.106 20.809

100 Present 89.198 36.575 48.451 22.534

ω ωa
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ρ/E2h
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fundamental frequency and critical buckling load, whereas the cross-ply laminates yield higher

fundamental frequency and critical buckling load than the angle-ply laminates for clamped

laminates. However, the results may be different for thick plates. Therefore, a case to case study is

recommended. 

4. Conclusions

In this study, a spline finite strip method has been formulated for stability and free vibration

analysis of composite plates respectively based on Reddy’s third-order shear deformation theory,

Touratier’s “Sine” model, Afaq’s exponential model and Cho’s zigzag laminate theory. This method

does not require shear correction coefficients but yields improved accuracy for thick laminates. In

addition, the selected shape functions can accurately simulate a linear variation of transverse

Fig. 2 Critical buckling loads of simply supported
laminates

Fig. 3 Fundamental frequencies of simply supported
laminates

Fig. 4 Critical buckling loads of clamped laminates Fig. 5 Fundamental frequencies of clamped laminates
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bending moment in the transverse inplane direction, and avoid shear locking for thin plates.

The effects of boundary conditions, length-to-thickness ratios, fibre-orientations and number of

layers on the critical buckling loads and fundamental frequencies of composite plates are

investigated. In general, these effects are found to be more significant for thin plates than for thick

plates.
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