
Structural Engineering and Mechanics, Vol. 26, No. 5 (2007) 591-615 591
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Abstract. An improvement is introduced to solve the plane problems of linear elasticity by reciprocal
theorem for orthotropic materials. This method gives an integral equation with complex kernels which will
be solved numerically. An artificial boundary is defined to eliminate the singularities and also an
algorithm is introduced to calculate multi-valued complex functions which belonged to the kernels of the
integral equation. The chosen sample problem is a plate, having a circular or elliptical hole, stretched by
the forces parallel to one of the principal directions of the material. Results are compatible with the
solutions given by Lekhnitskii for an infinite plane. Five different orthotropic materials are considered.
Stress distributions have been calculated inside and on the boundary. There is no boundary layer effect.
For comparison, some sample problems are also solved by finite element method and to check the
accuracy of the presented method, two sample problems are also solved for infinite plate. 

Keywords: elasticity; orthotropy; finite plates having elliptical and circular holes; multi-valued function;
boundary element; reciprocity theorem; singularity.

 

1. Introduction

Stress and displacement analyses in anisotropic elasticity are of interest in mechanics of

composites or geomechanics. Analytical solutions of some basic problems of this subject were

investigated by Lekhnitskii (1947, 1963, 1968). The use of reciprocity theorem or Somigliana's

integral identity is an effective method for the solutions of anisotropic elasticity problems. This

method gives an integral equation. In the absence of the body forces this equation involves only

surface integrals. Boundary Element Method deals with the numerical solution of this integral

equation. 

Rizzo and Shippy (1970) derived a real variable integral formula. Benjumea and Sikarskie (1972)

applied the integral equation techniques to problems of plane orthotropic elasticity. Heng (1988)

presented a technique to modify the boundary element method and solved some elastostatic

problems by using constant elements. Vable and Sikarskie (1988) solved the orthotropic plate with

circular hole for a few different materials using linear elements. Deb and Banerjee (1990)

considered body forces. Jiang and Lee (1994) developed a numerical approach for the stress
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analysis of anisotropic layers under various loading conditions. Manti  and París (1995) presented a

complex formulation of the fundamental displacements and tractions following Lekhnitskii and

Stroh theories. Raju et al. (1996) presented a method for two-dimensional orthotropic problems.

Padhi et al. (2000) investigated the real variable fundamental solution approach to the Boundary

Integral Equation method in two-dimensional orthotropic elasticity, using quadratic isoparametric

elements. Tsutsumi and Hirashima (2000) presented the circular disks or rings under diametrical

loadings. Berbinau and Soutis (2001) worked to solve mixed boundary value problems along holes

in composite plates. Lee et al. (2001) presented an analysis for the displacement and stress fields of

an unbounded isotropic matrix, containing orthotropic cylindrical inclusions and voids. Avila et al.

(1997) investigated the stress distribution in and on the boundary. 

Some singularity problems arise in the solution of integral equation mentioned above. Besides,

there are some difficulties in the calculation of the unknown stress component on the boundary.

This problem is named as boundary layer effect. In this study, whole singularities are eliminated and

the unknown stress component are calculated on the boundary. In the previous study of Kadioglu

and Ataoglu (1999), these two problems had been solved for isotropic materials. Here, in addition, a

new algorithm is also introduced to calculate multi-valued complex functions. The fundamental

solution, which given by Manti  and París (1995), is used in this study. 

Some specific problems are solved to check accuracy of the formulation, for different orthotropic

materials. The present results are seen to be better than those obtained by others, and, they are

compatible with Lekhnitskii’s (1947, 1963, 1968). 

 

2. Basic formulation

The definition of a plane problem of orthotropic elasticity is summarized below. 

A region B with interior volume V and boundary S is considered. The material filling V is

orthotropic. The ordered pair  define a problem in region B.  denote the

displacement vector and the stress tensor respectively. x is the position vector of an arbitrary point.

For an orthotropic material, they satisfy following relations. 

 

 (1)

 

(2)

 

 

(3)

 

where ε is the strain tensor, βkj represents the elastic constants of the material. f denotes the body

force. The expression of reciprocal identity which is written between two different problems, S(u, T)

and S*(u*, T*), for the same body is 
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 (5)

 

t and t* are surface traction vectors in two problems respectively, n is the outward normal of the

surface S. It will be considered that S(u, T) represents a problem to be solved on the region B of

volume V bounded by surface S. In plane problems, V is reduced to a simple or multiply connected

planar region. From now on S(u, T) is considered as the first boundary value problem, (Sokolnikoff

1956). But the solution method can be applied to the second boundary value and mixed boundary

value problems as well. The second problem S*(u*, T*) is named as a fundamental or singular

solution and it represents the displacement and stress fields in an unbounded plane medium due to a

point load applied at a specific point y.

 

3. Fundamental solution

A body force in an orthotropic, infinite planar medium having the same elastic constants with the

problem to be solved is defined as 

 

(6)

where x and y represent the position vectors of an arbitrary point and a specific point of the

medium respectively.  indicates a base vector in Cartesian coordinates.  is a

generalized function, which is known as Dirac delta function satisfying the following property

 

 (7)

 

The solution of this problem can be represented as Sk(uk, Tk). This solution is given by Manti

and París (1995) for different types of orthotropic materials as below. 

 

 (8)

 

(9)

 

 

The quantities in these two expressions are defined depending on two complex constants

, defined in terms of βij coefficients, as the two of the roots of the following nonlinear

equation, (Lekhnitskii 1963, Manti  and París 1995).
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for 

 

 (11)

 

for 

 

where

 

 

 

 (12)

 

In terms of µλ values, Q, P and κ constant matrices are defined as follows

 

(13)

  

(14)

 

There are only two  variables in Eqs. (8) and (9) defined as 

(15)

For a first boundary value problem, S(u, T), in orthotropic plane elasticity the expression of the

reciprocal identity (Eq. (4)) which is written between S(u, T) and S* = Sk(uk, Tk), neglecting body

forces, is reduced to the following form
 

 (16)

 

Using Eq. (16) and Eq. (2) the components of the strain tensor become
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where

 

 (18)

 (19)

 
For the first fundamental problem, (Sokolnikoff 1956), the surface traction vector t(x) is given on

the boundary S of the region V. The expressions (8), (9) and (11) to (15) can be found in the study

of Manti  and París (1995). But the right-side of Eq. (16) has been given as  for

 in their study. This term is named as free term in literature and Ckl is kl component of

C matrix. 

The details have been given in Manti  and París (1995). But their formulation involving C matrix

has not been used in this study. 

For a multiply connected region, the boundary S contains a finite number of disjoint curves and

an integral over S is equal to the summation of the integrals over these disjoint curves. It is clear

that, for the first fundamental problem, the displacement vector can be calculated from Eq. (16) at

any arbitrary point y of the region if the displacement field is known on the boundary. Then using

Eqs. (17) and (3), the stress components can be calculated at y. In that case, the solution of the

problem is reduced to calculate the displacement field u(x) on the boundary S by solving integral

equation given in Eq. (16). The solution of this integral equation is explained below: 

Boundary S is idealized as a collection of line segments. If the number of these line segments is

N, the number of the end points, named as nodal points is also N for a closed boundary. It is

assumed that the variation of any displacement component on a line segment is linear. Then the

unknowns of the problem are reduced to the values of the displacement components at nodal points.

2N integral equations each one of them corresponding to a singular loading at a nodal point in one

direction can be written. In these integral equations, integrals over the boundary are transformed to

the summation of the integrals over the line segments. In addition, an artificial boundary including

all of the line segments but not the nodal point x(I), will be defined for a singular loading on that

nodal point (Fig. 1). Around x(I) a small circular arc, Sε, which leaves the point outside the region

is added to complete this artificial boundary. 

It is assumed that the displacement components are constant and the components of surface
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Fig. 1 Representation of the artificial boundary
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artificial boundary if y is a nodal point x(I), right side of the Eq. (16) becomes zero because y is not

a point in the region bounded by this artificial boundary. After necessary calculations the radius ε,

of the circular arc will be shrunk to the nodal point x(I). The first assumption on circular arc, Sε ,

means that any displacement component at a nodal point is single-valued. The second assumption is

that there is not a singular force acting at that nodal point. The integrals of (x, y) functions over

the circular arc coincide with Ckl (Manti  and París 1995) for some special cases. After all these

assumptions Eq. (16) is reduced to a system of linear algebraic equations as below

 

 AU = K (20)

 

where A is a 2N by 2N matrix, and whose components defined as 

 

 

for I, J = 1, N (21)

 

where δIJ represents Kronecker’s delta and l(J) is the length of the Jth linear segment. U and K are

matrices of order 2N by 1 defined as 
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Before limit process  the integrals over a circular arc Sε, see Fig. 2, about a nodal point

x(I) are reduced to the calculation of the integral given below.
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 (24)

 

is obtained. In order to calculate the imaginary part of this integral, the following algorithm is

developed
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where

 

 (26)

 

It is seen from Eqs. (25) that another difficulty arises in the calculation of the end values of multi-

valued function ln(zλ). To calculate their imaginary parts, an archive function program has been

written to calculate all of the values of the arctan function on the interval [0, 2π]. This makes

possible to achieve a single value for arctan function in this interval. 

Then, the following algorithm is introduced
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Since zλ is a single-valued function using the same way the imaginary part of Qλ can also be
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After determination of the matrices, A and K, the unknown matrix U is calculated by solving Eq. (20).

For calculation of any strain component at any y point, to use the calculated nodal values of the

displacement components in Eq. (17) is enough. New integrals, arising in this process, can be

reduced to the same integrals mentioned above by partial integration. There are some other

integrals, but they are single-valued. 

If the loading point y is on the boundary, this corresponds to the case of θ1 = θ2 ± π which

considered before, see Fig. 3, during calculation of Im(Rλ). Here, there is only one restriction that it

is not possible to calculate the stress components at the nodal points. If it is needed to calculate the

stress components at a point, this point must not be selected as a nodal point. And if there is a

singular force applied at a point on the boundary, this point cannot be selected as a nodal point

either because of our second assumption on circular arc, Sε.

 

4. Examples

 

Two types of sample problems were selected to compare the present method with the other

theoretical (Lekhnitskii 1947, 1963, 1968) and numerical studies (Vable and Sikarskie 1988) and

(Raju et al. 1996).

The first problem is a square orthotropic plate having a circular hole stretched by tensile stresses

parallel to x1 axis (Fig. 4(a)).

Table 1 Material constants (1/MPa)

Material I Material II Material III

 β11 1/12000 1/6000 1/200000

 β22 1/6000 1/12000 1/200000

 β12 −0.071/12000 −0.036/6000 −0.25/200000

 β66 1/700 1/700 1.65/200000

Fig. 4 Sample problem 1(a) and 1(b)
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Three different materials are considered. Material constants are given in Table 1. 

Material I and II are selected to be the same as those used in Lekhnitskii’s (1963) theoretical

solution for an infinite plate and Material I is also used by Raju et al. (1996). Both µ1 and µ2 are

pure imaginary for the cases of material I and II. Material III is selected to consider the case given

by Eqs. (12). The region of the problem is multiply connected. 4N nodal points are selected on the

boundary and the whole boundary is considered. It seems that the number of the nodal points is

more than that employed in each of the other studies, but by taking advantage of the existing

quarter symmetry the number of equations to be solved is reduced from 8N to 2N (Fig. 5). 

It must be emphasized that there is not any nodal point inside the region. For this problem, it is

important to calculate the values of the stress component Tθθ at the boundary points A and B of the

cavity (Fig. 4), which lie on the symmetry axes, so these points were not selected as nodal points. 

In this study, 32 and 128 are the maximum numbers of the used nodal points on the external and

internal boundaries, respectively. Because of the quarter symmetry, the maximum number of the

Fig. 5 Nodal points

Fig. 6 Variation of dimensionless stress component, Tθθ /p
o
, versus θ, on the circular cavity for material I and

problem 1(a), l = 100 cm, r = 0.5 cm
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unknowns is 80. The variation of the stress component Tθθ versus polar angle θ has been calculated

on the circular cavity for three materials for the case of problem 1(a). The results are given, for the

values l = 100 cm, r = 0.5 cm in Figs. 6, 7 and 8 where θ is given in degrees. For comparison,

results given by Lekhnitskii for an infinite plate for the same materials have been also presented in

these Figs. Tθθ /po has also been calculated at A and B points for l = 100 cm and different r values

for the same problem (Table 2), (Kadioglu and Ataoglu 2001). Tθθ (B) gives the stress concentration

factor for problem 1(a).

For a finite plate, Tθθ (B) must be greater than the value given by Lekhnitskii for an infinite plate.

Lekhnitskii’s theoretical results for Tθθ (A) and Tθθ (B) are given in Table 3, for materials I, II and III

for comparison.

The computed results given in Table 2 have been found to be greater than these values even for

the smallest r which is 0.5 cm. It is seen that the presented results are compatible with those of

Lekhnitskii. Stress concentration factors for the same problem have been calculated by (Vable and

Sikarskie 1988) for two orthotropic materials using the same dimensions, but the uniform tension

was applied in the x2 direction (Fig. 4(b)). In the study of Vable and Sikarskie (1988), Clj notation is

used instead of βlj, but C33 is taken to be equal to 0.5β66. Here, the same problem has been solved

for the same materials to compare the results. The material constants used by Vable and Sikarskie

(1988) are given in Table 4. 

Fig. 7 Variation of dimensionless stress component, Tθθ /p
o
, versus θ on the circular cavity for material II and

problem 1(a), l = 100 cm, r = 0.5 cm

Fig. 8 Variation of dimensionless stress component, Tθθ /p
o
, versus θ, on the circular cavity for material III and

problem 1(a), l = 100 cm, r = 0.5 cm
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Stress concentration factors, corresponding to Tθθ (A)/po for problem 1(b), have been calculated for

materials IV and V. Results, calculated by Vable and Sikarskie (1988) and Lekhnitskii as well as

those computed in this study, are given in Table 5. 

It is seen from Table 5 that the present result is better than given by Vable and Sikarskie (1988)

for material IV. Their result (3.053) is less than Lekhnitskii’s result (3.1908), for an infinite plate.

Table 2 Variations of dimensionless stress component, Tθθ /p
o
, on A and B points with the radius of the

circular cavity for problem 1(a)

Material I Material II Material III

r (cm)  Tθθ (A)/p
o

  Tθθ (B)/p
o

 Tθθ (A)/p
o

  Tθθ (B)/p
o

 Tθθ (A)/p
o

  Tθθ (B)/p
o

 0.5  −0.7293  5.7408  −1.4404  4.3690  −1.1236  2.7969

 1  −0.7317  5.7500  −1.4453  4.3733  −1.1254  2.7993

 2  −0.7415  5.7868  −1.4650  4.3903  −1.1329  2.8086

 3  −0.7579  5.8472  −1.4979  4.4185  −1.1454  2.8242

 4  −0.7810  5.9299  −1.5592  4.4276  −1.1631  2.8462

 5  −0.8111  6.0335  −1.6164  4.4304  −1.1860  2.8747

 6  −0.8416  6.1166  −1.6843  4.4881  −1.2144  2.9100

 7  −0.8850  6.2525  −1.7688  4.5553  −1.2286  2.9254

 8  −0.9360  6.4033  −1.8641  4.6316  −1.2377  2.9728

 9  −1.0623  6.5671  −1.9723  4.7168  −1.2496  3.0257

 10  −1.2239  6.7426  −2.0937  4.8107  −1.2973  3.0861

 11  −1.1384  6.9285  −2.2286  4.9130  −1.3513  3.1542

 12  −1.2239  7.1240  −2.3773  5.0239  −1.4120  3.2306

 13  −1.3193  7.3285  −2.5406  5.1436  −1.4799  3.3158

 14  −1.4551  7.5420  −2.7190  5.2723  −1.5555  3.4105

 15  −1.5421  7.7647  −2.9137  5.4106  −1.6394  3.5154

  

   

Table 3 Theoretical values of dimensionless stress component, Tθθ /p
o
, on A and B points given by Lekhnitskii

for an infinite plate for problem 1(a)

Material I Material II Material III

 Tθθ (A)/p
o

  Tθθ (B)/p
o

 Tθθ (A)/p
o

  Tθθ (B)/p
o

 Tθθ (A)/p
o

  Tθθ (B)/p
o

 −0.7071  5.4530 −1.4142  4.1485 −1  2.7748

Table 4 Material constants used by Vable and Sikarskie

β11 β22 β12 β66

 Material IV 1  1 −0.25  3.3

 Material V  1.96  1 −0.25  2.5

Table 5 Stress concentration factors for problem 1(b)

 Lekhnitskii  Vable and Sikarskie  Present

 Material IV  3.1908  3.053  3.3251

 Material V  2.5649  2.604  2.6024
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Raju  et al. (1996) solved the same problem given in Fig. 4(b) for material I. The direction of the

tension is the same as that applied by Vable and Sikarskie (1988), but it was considered that r =a

and l = 20a. The r/l ratio is greater than in the previous examples presented in this study, but the

value of Tθθ (A)/po has been found to be quite smaller than the theoretical result given by

Lekhnitskii as 4.1485, for an infinite plate. This cannot be an acceptable result. In the study of Raju

et al. (1996), variations of the stress component T22/po have been given along the vertical line of

x1 = 1.0015r which is nearly tangent to the circular cavity at the point A, (Fig. 4(b), AE line). Here,

for comparison, the same variation was calculated on x1 = r line using the same r/l ratio since we do

not have any problem for calculating any stress component at the boundary and the results have

been given in Fig. 9 and Table 6, for r = 5 cm. For an infinite plate stress concentration factor is

4.1485. Our result for l/r = 20 is 4.363281. Using three different method, Raju et al. (1996) have

given the values of 3.316, 3.344 and 3.366. It seems that all of them quite smaller than the lower

limit even though a big r/l ratio exists. It was thought that the difference could occur because of the

small distance between the vertical lines x1 = r and x1 = 1.0015r. To check this, T22/po was calculated

using present formulation at x1 = 1.0015r, x2 = 0 point but the result has been found as 4.294 being

quite different from theirs. We presented the tables to show the differences better. Problem 1(a) was

also solved by (Heng 1988), but there is no information about the material used and he has not

calculated the stress concentration factor for small ratios of r/l which is significant for the accuracy

of any method used. 

The second sample problem is a square orthotropic plate but having an elliptical hole stretched by

forces parallel to x2 axis (Fig. 10).

The equation of an elliptical contour in the parametric form is 

 (28)

where a and b are the lengths of the principal semi-axes of the ellipse, and ϑ is the parameter

x acosϑ, y bsinϑ= =

Fig. 9 Variation of dimensionless stress component, T22/po
, along line AE for material I
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Table 6 Variation of dimensionless stress component, T22/po
, along AE line for 

  material I and problem 1(b)

x2/r  T22/po

 0  4.363281

 0.05  4.2406019

 0.1  3.9141748

 0.15  3.5095652

 0.2  3.1285144

 0.25  2.8053583

 0.3  2.5404175

 0.35  2.3240318

 0.4  2.1461556

 0.45  1.9985067

 0.5  1.8746809

 0.55  1.7698358

 0.6  1.6803268

 0.65  1.6034028

 0.7  1.5369765

 0.75  1.4794509

 0.8  1.4295703

 0.9  1.3484653

 1  1.2845892

 1.1  1.2296805

 1.2  1.181218

 1.3  1.1393909

 1.4  1.1038102

 1.5  1.0736358

Fig. 10 Sample problem 2
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which assumes all values from zero to 2π for a complete circuit of the contour. The theoretical

solution of this problem for an infinite plate was also solved by Lekhnitskii (1947, 1963, 1968). If

the semi-axes a and b of the ellipse are relatively small in comparison to l, the value of stress

component Tϑϑ /po at point A must approach from above to the theoretical result given by

Lekhnitskii for an infinite plate. To verify this, Tϑϑ (A)/po and Tϑϑ (B)/po values were calculated for

different ratios of a/b for material I and l = 100 cm, b = 0.5 cm (Table 7). It is interesting that

Tϑϑ (B)/po remains nearly constant for different a values. Lekhnitskii’s result for Tϑϑ (B)/po has also

been found out to be independent from a/b ratio for an infinite plate and for material I being equal

1.4142. The variation of Tϑϑ (B)/po was also calculated on the boundary of the elliptical cavity by

choosing l = 100 cm, a = 0.7 cm and b = 0.5 cm (Fig. 11). It must be emphasized that θ indicates

the polar angle.

Table 7 Variations of dimensionless stress components, Tϑϑ (A)/p
o
 and Tϑϑ (B)/p

o
, with the 

  ratio of a/b for the elliptical cavity, b = 0.5 cm and l = 100 cm and material I

 Present solution Lekhnitskii

a/b  Tϑϑ (A)/p
o

Tϑϑ (B)/p
o

 Tϑϑ (A)/p
o

 1.2  5.0413  −1.4541  4.78

 1.4  5.6954  −1.4591  5.4104

 1.6  6.3283  −1.4596  6.040

 1.8  6.9381  −1.4579  6.6706

 2  7.5239  −1.455  7.307

 2.2  8.085  −1.4515  7.9307

 2.4  8.622  −1.4476  8.5608

 2.6  9.7087  −1.4376  9.1909

 2.8  10.3601  −1.4357  9.821

 3  11.0025  −1.434  10.451

 3.2  11.6351  −1.4324  11.0811

 3.4  12.2575  −1.431  11.7111

 3.6  12.8693  −1.4296  12.3412

 3.8  13.4704  −1.4284  12.9713

 4  14.0605  −1.4273  13.6013

Fig. 11 Variation of dimensionless stress component, Tϑϑ (θ )/p
o
, versus θ, on the elliptical cavity for material

I, a = 0.7 cm, b = 0.5 cm and l = 100 cm
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Fig. 12 Variation of dimensionless stress component, T22 /p
o
, along the horizontal symmetry axis for sample

problem 2, material I, a = 5 cm and l = 100 cm

Fig. 13 Variation of dimensionless stress component, T22/po
, along the line AE for material I 
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Table 8 Variation of dimensionless stress component, T22/po
, along the 

horizontal symmetry axis for problem 2 and material I

 x1/a  T22 /p
o

 1  14.33708

 1.005  9.507749

 1.01  7.456024

 1.015  6.321028

 1.02  5.578929

 1.025  5.046719

 1.03  4.641871

 1.035  4.321044

 1.04  4.059035

 1.045  3.840065

 1.05  3.653693

 1.055  3.492701

 1.06  3.351916

 1.065  3.227528

 1.07  3.116655

 1.075  3.017076

 1.08  2.927048

 1.085  2.845178

 1.09  2.770342

 1.095  2.70162

 1.1  2.638251

 1.105  2.579599

 1.11  2.525129

 1.115  2.474385

 1.12  2.426979

 1.125  2.382575

 1.13  2.340885

 1.135  2.301654

 1.14  2.264662

 1.145  2.229714

 1.15  2.196637

 1.155  2.165281

 1.16  2.135507

 1.165  2.107196

 1.17  2.080237

 1.175  2.054533

 1.18  2.029994

 1.185  2.006542

 1.19  1.984102

 1.195  1.96261

 1.2  1.942003
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The same problem has been solved by Raju et al. (1996) with a/b = 4 and l = 20a and for the

same material. They have given the variation of the stress component T22/po along both a vertical

and an horizontal lines. In their study, the starting points of these two lines are very close to each

other but not T22/po values on them. It should be noted that the material constants have been given

in psi in their study. In order to compare the presented results with those obtained (Raju et al.

1996), the variations of dimensionless stress component T22/po were calculated along these specific

lines by choosing a = 5 cm with the same a/b and a/l ratios for material I and shown in Figs. 12

and 13 and Tables 8 and 9. It must be indicated that Raju et al. (1996) had used three different

methods for calculating the values of Table 9. They had been named as Averaging approach, Non-

Averaging approach and Discontinuous element approach, respectively. 

 

 

5. Examples for the accuracy of the presented method and comparison with FEM

 

To check the accuracy of the presented method one more time, two sample problems are also

solved. First problem is an infinite plate with a circular hole under tension po in the x1 direction

Table 9 Variation of dimensionless stress component, T22/po
, along AE line for problem 2

and material I

 x2/a  T22/po

Present Raju et al. 1
(Averaging 
approach)

Raju et al. 2
(Non-Averaging 

approach)

Raju et al. 3
(Discontinuous 

element approach)

0 14.33708

0.001 13.21895 8.696 8.692 8.697

0.01 11.37188 8.134 8.134 8.137

0.02 8.422955 6.934 6.935 6.934

0.03 6.603969 5.775 5.776 5.780

0.04 5.566324 4.891 4.891 4.896

0.05 4.876935 4.257 4.258 4.262

0.06 4.383839 3.797 3.798 3.803

0.07 4.011685 3.454 3.455 3.460

0.08 3.719406 3.189 3.190 3.195

0.09 3.482877 2.978 2.979 2.985

0.1 3.286951 2.806 2.807 2.813

0.11 3.121589

0.12 2.979847

0.13 2.856755

0.14 2.748655

0.15 2.652792

0.16 2.567049

0.17 2.489771

0.18 2.419648

0.19 2.355631

0.20 2.296869
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(Problem 1(c)), (Fig. 14). To handle this problem, the loading in Fig. 15 is considered as the first

step. In that stage, on the circular hole in the infinite plate, an uniform surface traction po in the x1
direction on the segment BAB' and on the segment BA'B the same po in the opposite direction are

considered. The boundary values of the displacement, strain and stress components 

related to this problem can be calculated following the same procedure explained in Sect. 3. The

actual stress field , corresponding to the loading in Fig. 14 (problem 1(c)) can be

calculated as follows:

 

After calculating the stress values on the boundary the unknown stress component Tθθ can be

calculated for different values of θ in the interval of [0, 2π] for problem 1(c). Variation of Tθθ /po

versus θ are given in Fig. 16 for material I with the theoretical results of Lekhnitskii for the same

material. But during the determination of stress components on the boundary the stress components

cannot be calculated on B and B' points for that problem. These points become artificial nodal

points because of the discontinuity of the surface traction. But, the stresses can be calculated on the

other points and values of Tθθ are compatible with those given by Lekhnitskii. This kind of

approximation gives good results for a crack problem in an infinite plate because the end points of

crack have already stress singularities. Of course, during calculation of the coefficient of the

matrices A and K some singularities arise on the boundary elements including B and B' points. Let

the numbers of the elements including B and B' points be M and N − M, respectively. The

construction of the matrix A given by Eq. (21) does not produce any additional singularity problem.

But, during construction of K matrix some singularity problems arise. The components of K matrix

have been defined by Eq. (22). In these expressions if I and J equal to M or N − M, the first

T11
′ T12

′ T22
′, ,( )

T11 T12 T22, ,( )

T11 T11
′ po+=

T12 T12
′= , T22 T22

′=

Fig. 14 Sample problem 1(c) Fig. 15 First stage of problem 1(c) 
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integrals, in the expressions of KI and K(I+N) given by Eq. (22), do not produce any singularity. The

second terms in these expressions are singular but they vanish since t2(x) is zero. 

The second sample problem to check the accuracy of the presented method is an infinite plate

with an elliptical hole, under tension po in the x2 direction (Problem 1(d)), (Fig. 17). To solve this

problem, the loading in Fig. 18 is considered as the first step. In that stage, on an elliptical hole in

the infinite plate an uniform surface traction po in the x2 direction on the segment A'BA and on the

segment A'B'A the same po in the opposite direction are considered. The boundary values of the

displacement, strain and stress components  related to this problem can be calculated 

using the presented method, the actual stress field T11, T12, T22 corresponding to the loading in Fig. 17,

can be calculated as follows:

T11
′ T12

′ T22
′, ,( )

T22 T22
′ po+=

Fig. 16 Variation of Tθθ /p
o
 versus θ for material I (sample problem 1(c))

Fig. 17 Sample problem 1(d) 
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After calculating the stress values on the boundary, the unknown stress component Tϑϑ can be

calculated for different values of ϑ in the interval of [0, 2π] for problem 1(d). Variation of Tϑϑ /po

versus polar angle θ are given in Fig. 19 for material I with the theoretical results of Lekhnitskii for

the same material. But during the determination of stress components on the boundary the stress

components cannot be calculated on A and A' points. These points also become artificial nodal

points because of the discontinuity of the surface traction. But, the stresses can be calculated on the

other points and values of Tϑϑ are compatible with those given by Lekhnitskii. Let the numbers of

the elements including A and A' points be M and N − M, respectively. The construction of the matrix

A given by Eq. (21) does not produce any additional singularity problem. But, during construction

of K matrix some singularity problems arise. The components of K matrix have been defined by

Eq. (22). In these expressions if I and J equal to M or N − M the second integrals, in the

T11 T11
′= , T12 T12

′=

Fig. 18 First stage of problem 1(d) 

Fig. 19 Variation of Tϑϑ (θ )/p
o
 versus θ for material I (sample problem 1(d))
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expressions of KI and K(I+N) given by Eq. (22), do not produce any singularity. The first terms in

these expressions are singular but they vanish since t1(x) is zero. 

Moreover, to check the accuracy of the presented results for finite plate problems, two of the

sample problems which have been solved by the presented method, are also solved by finite

element method. The details are explained below. The problem 1(b) is solved for both materials IV

and V by finite element method. The results are determined using ANSYS 10.0. The element type

is PLANE82. Only a quarter of the plate is modelled since the problem is completely symmetric

with respect to the horizontal and vertical centerlines. Since the purpose is to determine the stress

concentration factor, a mesh is created that gets finer in the neighbourhood of the hole. To perform

this, the number of divisions and spacing ratio of selected lines are defined. For grading, the left

and bottom lines of the region are used. The same spacing ratio (=0.25) is used since both lines

have the same length. Both lines are divided into 500. The curve that defines the hole is also

divided into 40 divisions. But the spacing ratio does not specified in this case. Size level was

changed 1 (fine) for the SmartSize command to generate the mesh. The next commands specify the

element shape to be used for meshing and whether mapped or free meshing. Quad and free are

selected in this meshing. And then, modify mesh command is selected to refine the nodes around

the hole. The level of refinement was changed to 5 (maximum). The next command specify

symmetry boundary conditions along the left and bottom lines. Later, the pressure is applied to the

top line changing its sign from plus to minus. The 86115 nodes and 28096 elements were used for

the analyses (Fig. 20). The ANSYS results are given in Table 10 for comparison with Table 5. 

In the finite element analysis of elliptical hole case (Fig. 21) for material I, the same way

Fig. 20 Finite element mesh of problem 1(b) for materials IV and V

Table 10 Stress concentration factors for problem 1(b) with FEM, 
r = 0.5 cm and l = 100 cm

FEM

Material IV 3.1993

Material V 3.0815
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explained above is followed. But, the curve that defines the elliptical hole was divided into 200

divisions, so mesh has not been modified. 30339 nodes and 9706 element were used. For

comparison, the results are given in Table 11 for comparison with Table 9.

Fig. 21 Finite element mesh of problem 2 for material I

Table 11 Variation of dimensionless stress component, T22/po
, along

AE line for problem 2 and material I with FEM, a = 5 cm, 
b = 1.25 cm and l = 100 cm

x2/a T22/po 
(FEM)

0.01 9.5013

0.02 6.9591

0.03 5.6513

0.04 4.8515

0.05 4.3142

0.06 4.0322

0.07 3.7895

0.08 3.5703

0.09 3.3706

0.1 3.2238

0.11 3.0397

0.12 2.8796

0.13 2.7849

0.14 2.6933

0.15 2.6143

0.16 2.5448

0.17 2.4745

0.18 2.4

0.19 2.3388

0.20 2.2783
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6. Conclusions 

 

A few improvements are introduced to the solutions of plane problems of linear orthotropic

elasticity by reciprocal theorem. This theorem gives an integral equation for a first boundary-value

problem. Unknowns of this integral equation are the boundary values of the displacement

components. This integral equation can be solved using boundary elements. The aim of this study is

to eliminate all of the singularities which occur during the reduction of this integral equation to a

system of linear algebraic equations. To eliminate the singularities, at first, an artificial boundary for

each nodal point is defined. This boundary involves boundary elements and a small arc centered at

a nodal point, but, the location of this nodal point must remain outside of the artificial boundary

during this process. This artificial boundary eliminates C matrix in classical boundary element

formulation. Here, the integrals, over boundary elements and the added small arc, have been

determined analytically. This small arc was shrunk to the nodal point after the calculation of the

required integrals over it. It is assumed that the displacement components are constant, but no stress

on this small arc. The singularities arising during calculation of the integrals over adjacent elements

at the nodal point are mutually eliminated. In this study, the number of nodal points has been

selected to keep the element length constant for different examples. This constant length is

determined by trying a different number of boundary elements for each problem. The required

element length is achieved if the results remain nearly constant for a further increment in the

number of boundary elements. Kernels of the integral equation mentioned above are complex. An

algorithm is introduced for the calculation of the multi-valued complex integrals over the boundary

elements and the small arc mentioned above. After finding the displacement components on the

boundary, the unknown stress or any displacement component can be calculated on any point inside

or on the boundary without any singularity problem. But, in this case, the term corresponding C

matrix will be taken to be equal to unity instead of zero. There is a difficulty to calculate the

unknown stress component on the boundary in classical formulation, which is named as boundary

layer effect (Avila et al. 1997). There is no boundary layer effect in this study. There are two

restrictions in this method. Stresses cannot be calculated at a nodal point and also, if the surface

traction vector has a discontinuity on a point of the boundary, stress components cannot be

calculated on that point. If a singular load exists at any point on the boundary, this point must not

be selected as a nodal point either because of second assumption on circular arc about a nodal

point. 

Two different problems are selected to check the accuracy of the presented formulation and for

comparison with other studies. Analytical solutions of these problems have been given by

Lekhnitskii for an infinite plate. Results are compatible with those of Lekhnitskii. Moreover, the

present results seem better than those of the others cited. Their results were also indicated for

comparison. 

The case when  is named as mathematically degenerate materials.

Isotropic materials are a special case of those. And for this kind of materials given formulation fails.

To handle this a limiting process is necessary. It was planned to consider this group of material in

another work. 

Moreover, to check the accuracy of the presented method, problem 1(a) and problem 2 have been

solved for an infinite plate and the results have been compared with Lekhnitskii. But, in the

elements on which the stress concentration factor will be calculated, a surface traction discontinuity

arises just on the necessary point of these elements. Because of the first restriction of the presented

2β11 β66+ 2 β11 β22+=
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method, the calculation of stress concentration factor fails. Because of this restriction the approach

by increasing dimensions of the plate gives better results. Specially for stress concentration factor.

However, values of the unknown stress component on the circular or elliptical boundary are the

same with theoretical results for other boundary points. 

Besides, for another comparison, the finite plate problem for a circular and elliptical hole are also

solved by finite element method. In the presented method, number of the elements on the boundary

is maximum 128. For small holes, 32 elements are used. To determine the stress distribution on a

certain line or on the boundary it can be considered that additional 128 points are more than

enough. But, minimum element number is 9706 in FEM. 
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