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Dynamic response of a hinged-free beam subjected 
to impact at an arbitrary location along its span 

with shear effect
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Abstract. In case of considering the shear effect, the complete solutions are obtained for dynamic
plastic response of a rigid, perfectly plastic hinged-free beam, of which one end is hinged and the other
end free, subjected to a transverse strike by a travelling rigid mass at an arbitrary location along its span.
Special attention is paid to new deformation mechanisms due to shear sliding on both sides of the rigid
mass and the plastic energy dissipation. The dimensionless numerical results demonstrate that three
parameters, i.e., mass ratio, impact position of mass, as well as the non-dimensional fully plastic shear
force, have significant influence on the partitioning of dissipated energy and failure mode of the hinged-
free beam. The shear effect can never be negligible when the mass ratio is comparatively small and the
impact location of mass is close to the hinged end.

Keywords: hinged-free beam; impact; plastic dissipated energy; deformation mechanism; complete
solution.

1. Introduction

The rigid, perfectly plastic material idealization has been widely adopted to study the dynamic

behavior of structures subjected to intensive dynamic loading. In this case, according to bending

only theory the initial transverse shear forces are infinitely large at the boundaries of loading zones,

and exceed the fully plastic shear force of the beam cross-section. It appears that the transverse

shear forces may exercise a more important role in the response of dynamically loaded rigid,

perfectly plastic structures (Norman Jones 1989, Stronge and Yu 1993). Indeed, structures may fail

due to excessive transverse shear sliding. 
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Several authors have examined the influence of the transverse shear on the dynamic behavior of

rigid, perfectly plastic structures. Using the rigid, perfectly plastic idealization and approximate

square yield curve in shear force-bending moment plane, Jones and Song (1986) examined in detail

the dynamic plastic response of a rigid, perfectly plastic simply supported beam subjected to the

blast pressure loading uniformly distributed over a portion of the span. Various initial mechanisms

of deformation, for a wide range of parameters, are obtained. Yu (1993) examined the shear failure

of a cantilever beam with an attached mass at the tip. Liu and Jones (1988, 1987) presented the

theoretical analyses and experimental results to examine the deformation and failure of rigid,

perfectly plastic fully clamped beams struck transversely by a mass at any point on the span with

shear effect. Lellep and Torn (2005) discussed the shear and bending response of a rigid-plastic

beam clamped at the left and simply supported at the right-hand end. Li and Jones (1999) presented

an analytical model to study the shear and adiabatic shear failure in a clamped beam under

impulsive pressure loadings. Yu and Chen (2000) re-examined the plastic shear failure at the

supports of clamped beams loaded impulsively, and discuss the effect of the interaction between the

shear force and bending moment. Li and Jones (1994, 1995) have studied the dynamic plastic

response of fully clamped circular plates and cylindrical shells when transverse shear effects are

taken into account. 

In the investigations cited above the beam structures under considerations often are free-free

beam, cantilever beam, simply supported or fully clamped beam, respectively. However, between

the cases of simply supported beam and free-free beam, there is another kind of beam which is

simply supported or hinged at one end and free at the other end, and is called hinged-free beam as

same as in Zhang and Yang (2002). The hinged-free beam can often be seen in engineering

structures, for example in the research for pipe systems and rotors of helicopters. A bending only

theory of dynamic plastic analysis of hinged-free beams subjected to a transverse strike by a

travelling rigid mass at an arbitrary location along its span has been given in Zhang and Yang

(2002). By reviewing the previous studies, however, it seems that no attempt has so far been made

to study the influence of transverse shear force on the dynamic behavior of the hinged-free beam. In

this paper, the shear and bending response of the hinged-free beam subjected to transversely impact

by a mass at an arbitrary location along its span is examined, and shear sliding on both sides of the

mass and shear failure are investigated particularly. 

2. Theoretical analysis 

2.1 Theoretical model

Consider a rigid, perfectly plastic hinged-free beam subjected to strike by a mass G travelling

with an initial velocity v0, at an interior cross section, A, la from the simply support as shown in

Fig. 1. The beam has a length la + lb = l and mass per unit length m. It is assumed that after impact

the mass remains attached to the beam during the entire response process. The square yield curve

presented in Fig. 2 will be used to control the plastic yielding of the beam.

For convenience in the derivations in the following sections, following dimensionless variables are

introduced
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(1’)

where Mp and Qp denote the fully plastic bending moment and the fully plastic shear force of the

beam. Eb, Es and Ek stand for the plastic bending dissipated energy, plastic shear sliding energy and

the kinetic energy of rigid-body motion, respectively. Parameter v, the ratio of shear strength to

bending strength, is called as non-dimensional fully plastic shear force. When the finite shear

strength of a beam is considered, it is known from (Jones 1989) that the transverse velocity profile

of a beam may change with the magnitude of v.

2.2 Deformation mechanisms during the initial response of the beam

The initial deformation mechanisms are controlled by parameters that relate to impact position η1

and non-dimensional parameter v. Six different initial deformation mechanisms as shown in Fig. 3

are found when the shear sliding on both sides of mass G are considered and that on the simply

support is neglected for . In Fig. 3, Ab, H1 and H2 are bending only hinges, respectively.

 is a generalized plastic hinge controlled by bending moment and shear force. As denotes

plastic hinge in which only transverse shear sliding occurs. The map of initial deformation

mechanisms in v − η1 plane is shown in Fig. 4. 

It is clear from Fig. 4 that, deformation mechanism  is the most general and

complicated one among them. It will be seen in the following sections that the evolution of the

mechanism  will experience most of the other deformation mechanisms during the

response process. Therefore, the derivations of the governing equations are focused on deformation

mechanism  only. The governing equations for the other five initial deformation

mechanisms are given briefly in Appendix A, and theoretical analysis for the dynamic behavior of a

hinged-free beam struck by a rigid mass at free end can be found in Appendix B.
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2.3 Analysis of the entire response for initial deformation mechanism  

2.3.1 Phase 1: 

The velocity diagram for initial deformation mechanism  is shown in Fig. 3(a), in

which there are a generalized plastic hinge , and plastic bending hinges H1 and H2 at each side

of the impact point, respectively. It is known from (Norman Jones 1989, Stronge and Yu 1993) that

after impact, transverse shear sliding occurs on both sides of mass G, and the plastic bending hinges

H1 and H2 are stationary because the shear forces at shear sliding section are assumed to keep

invariable until shear sliding ceases. In Fig. 3(a),  and  are the upward velocities on the left -

and right-hand sides adjacent to the impact point, respectively.  and  denote the

absolute angular velocities of segments H1A, BH1, AH2 and H2C, respectively. According to the

equilibrium conditions for these segments, the non-dimensional equations of motion for deformation

mechanism  can be expressed as 
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Fig. 3 Possible deformation mechanisms
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The equations can be recast as
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1

°°

ξ1θ 1

°°

–( ) 4v=

ξ1

2
3ũ
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(4)

 (5)

The transverse dimensionless acceleration of mass G is

 (6)

The initial conditions are as follows

(7)

Linear ordinary differential Eqs. (2), (3), (6) with initial conditions (7) and relations (4, 5) can be

solved numerically.

Phase 1 terminates when the shear sliding on the right-hand side or the left-hand of the impact

point ceases. Which case takes place actually depends on the magnitudes of parameters v and η1.

(a) When  at , the shear sliding on the left-hand

side of the impact point stops firstly, while shear sliding on the right-hand side of mass G continues.

At the end of Phase 1, the variables of the left-hand side of the beam are as follows 

(8)

The variables of the right-hand side of the beam are as follows

(9)

The displacement and velocity of mass G are as follows

(10)

The final sliding displacement at the left-hand side of mass G is 

(11)

(b) When  at , the shear sliding on the right-hand

side of the impact point stops firstly, while shear sliding on the left-hand side of the impact point
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ũ
1

ũ
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(10) but with . The final sliding displacement at the right-hand

side of the impact point is

 (12)

2.3.2 Phase 2 

Case (1): If the shear sliding on the left-hand side of mass G ceases firstly at the end of Phase 1,

then the subsequent deformation mechanism is shown in Fig. 5, in which hinge H1 is a travelling

plastic hinge and ξ1 is a function of dimensionless time τ. The governing equations of segments

H1A and BH1 are found to be

 (13)

 (14)

Eqs. (3) and (5) are still valid for the two segments AH2 and H2C in this case. Non-linear ordinary

differential Eqs. (3), (13), (14) with initial conditions (8-10) and relation (5) can be solved

numerically.

This deformation mechanism is valid until either  or  at , i.e.,

when the transverse shear sliding on the right-hand side of mass G stops or plastic hinge H1

vanishes.

(a) When  at , the shear sliding on the right-hand side of the impact point

ceases. The plastic hinge H2 will be a travelling hinge during the subsequent motion. Analysis for

the subsequent motion is the same as that given in section 2.1 in Zhang and Yang (2002) and not

repeated in this paper. The final sliding displacement at the right-hand side of the impact point is 

(15)

The non-dimensional plastic shear sliding energy is 

 (16)

where Sl and SR are defined by Eqs. (11) and (15), respectively.

The dimensionless plastic bending dissipated energy can be calculated from 
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0
τ2( ) ũ

2
τ2( )–=
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Fig. 5 Possible velocity diagram in phase 2 for H1− Ab− s− H2
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 (17)

(b) When  at , the plastic hinge H1 vanishes, while the shear sliding on the

right-hand side of the impact point continues.

Case (2): If the shear sliding on the right-hand side of the impact point ceases first at the end of

Phase1, then the subsequent deformation mechanism is shown in Fig. 6, in which hinge H2 is a

travelling plastic hinge and ξ2 varies with time τ. The governing equations of segments H2A and

H2C are

 (18)

 (19)

Eqs. (2) and (4) are still valid for the two segments AH1 and H1B in this case. With initial

conditions obtained from the instant state when Phase 1 terminates and relation (4), non-linear

ordinary differential Eqs. (2), (18), (19) can be solved numerically.

This Phase ends when either  or  at , i.e., when the transverse

shear sliding on the left-hand side of the impact point stops or when the plastic hinge H1 vanishes.

(a) When  at , the plastic hinge H1 will be a travelling hinge during the

subsequent motion. Analysis for the subsequent motion is the same as that described in section 2.1 in

Zhang and Yang (2002). The final sliding displacement at the left-hand side of the impact point is

 (20)

The non-dimensional plastic dissipated shear sliding energy is found to be

 (21)

where Sl and SR are given by Eqs. (20) and (12), respectively. 

The dimensionless plastic dissipated bending energy can be still calculated from Eq. (17) but with

 defined by Eq. (21).

(b) When  at , the plastic hinge H2 vanishes, while the shear sliding on the

left-hand side of the impact point continues.
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2.3.3 Phase 3 

(1) If phase 2 terminates when  at  for Case (1), the subsequent deformation

mechanism is shown in Fig. 7. Eq. (3) and relation (5) are still valid at the moment. The governing

equations of segment BA can be expressed as 

(22)

The initial conditions for Phase 3 are derived from the instant state when Phase 2 terminates. This

phase ends when  at , i.e., when the transverse shear sliding on the right-hand

side of the impact point stops. Plastic hinge H2 will be a travelling hinge during the subsequent

motion. Analysis for the subsequent motion is same as section 2.2 (1) in (Zhang and Yang 2002)

and not repeated in this paper. The final sliding displacement at the right-hand side of mass G is

 (23)

The non-dimensional plastic dissipated shear sliding energy is

 (24)

where Sl and SR are given by Eqs. (11) and (23). 

The dimensionless plastic bending dissipated energy can be still calculated from Eq. (17) but with

 defined by Eq. (24).

(2) If phase 2 terminates as a result of  at  for Case (2), the subsequent

deformation mechanism is shown in Fig. 8. Eqs. (2) and (4) are still valid in this case, and the

governing equations of segment CA are given by

τ2 τ< τ3≤

θ 1

°

φ 1

°

– 0= τ τ2=

ũ
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Fig. 8 Possible velocity diagram in phase 3 for H1− Ab− s− H2



492  Y. Zhang and J. L. Yang

(25)

(26)

The initial conditions for this case are derived from the instant state when Phase 2 terminates.

This phase ends when  at , i.e., when the transverse shear sliding on the left-

hand side of the impact point stops. The plastic hinge H1 will be a travelling hinge during the

subsequent motion. Analysis for the subsequent motion is same as section 2.2 (2) in (Zhang and

Yang 2002) and not repeated in this paper. The final sliding deformation at the left-hand side of the

impact point is

 (27)

The non-dimensional plastic dissipated shear sliding energy is given by

 (28)

where Sl and SR are given by Eqs. (27) and (12). 

The dimensionless plastic bending dissipated energy can be still calculated from Eq. (17) but with

 defined by Eq. (28).

2.4 Shear failure at impact point 

In case of considering the shear effect, there are transverse shear sliding Sl and SR on the both

sides of the impact point. If the shear sliding exceeds some critical value, which can be

approximately estimated as the ratio of the thickness of the beam to the length, shear failure is most

likely to happen. 

3. Numerical calculation and discussion

Special attention is paid to the effect of shear on the final deflection at impact point and energy

dissipation and its partitioning. The numerical results for different combinations of mass ratio,

impact position and parameter v are shown in Figs. 9-11 graphically. For η1 = 0.5 and Λ = 3, the

final deflections at impact point are shown in Fig. 9. In order to make comparison with bending

only theory, the results of Zhang and Yang (2002) are also shown in the figure. It indicates in

Fig. 9 that the plastic shear sliding hardly has an influence on the final deflection at impact point

for g ≥ 2.5, and the influence becomes increasingly important for g < 2.5, especially for small

mass ratio. If the plastic shear sliding is not considered, the error of the final deflection at impact

point is 94.1% for v = 5 and g = 0.05, 19.8% for v = 15 and g = 0.05, and 1.6% for v = 60 and

g = 0.05. 
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Figs. 10-11 show that the effect of shear on the energy dissipation. It is known that the values

of parameter v have no influence on the kinetic energy of rigid-body motion, and have some

influence on the partitioning of plastic energy dissipation. The plastic dissipated shear sliding

energy increases with the decrease of the mass ratio, so that the shear failure at impact point is

more likely to happen for small mass ratio. For g = 0.3 and η1 = 1.0, i.e., the beam is subjected to

impact at the free end, 14.33% of the input energy is dissipated by shear sliding when v = 15, but

only 4% when v = 60. Furthermore, when the impact point is closer to the support, the more of

input energy is consumed by shear sliding.

If shear effect on the plastic deformation at simply support of the beam is considered, more initial

deformation mechanisms will appear, and can be analyzed in the same way as described above and

will not be discussed in this paper. 

Fig. 9 The final deflection at impact point under given parameters 

Fig. 10 Curves of energy partitioning versus mass ratio g 
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4. Conclusions

By using a series of dynamically admissible deformation mechanisms of the structure, the

dynamic behavior of a hinged-free beam, of which one end is simply supported or hinged and the

other end free, subjected to a transverse strike by a travelling mass at an arbitrary location along its

span, is studied in case of considering the shear effect. When η1 ≤ 1/3, various mechanisms of

deformation for combination of shear sliding and plastic bending are obtained for a wide range of

parameters. Attention is focused on the influence of the shear effect on the deformation mechanism,

final deflection at impact point and energy dissipation. It is concluded that the dynamic behavior of

a hinged-free beam with shear effect under consideration, is much more complicated than that of the

beam bending only. The present theoretical results expressed in terms of non-dimensional

parameters demonstrate that the mass ratio, impact position and parameter v have significant

influence on the final deflection at impact point and the partitioning of plastic energy dissipation.

When the mass ratio is comparatively large, the effect of shear on the final deflection and

partitioning of plastic energy dissipation could be neglected, but not when the mass ratio is

comparatively small, nor the impact position of mass is closer to the hinged end of the hinged-free

beam. 

Fig. 11 Curves of energy partitioning versus g 

Fig. 13 Initial deformation mechanism H1 (η1 = 1)Fig. 12 Pure shear (η1 = 1) 
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Appendix A

The first phases of dynamic responses for the initial deformation mechanisms other than mechanism
 are briefly described in this appendix because the evolution of response process is similar to

that of mechanism . The equation of motion and solutions of travelling mass in Phase 1 are the
same as Eqs. (6) and (10) with initial condition given by Eq. (7).

A.1 Initial deformation mechanism: Pure shear
As shown in Fig. 3(f), the dimensionless equation of motion of the beam for pure shear mechanism is

 (A.1)

The initial condition is  at . The non-dimensional shear force at the simply support is

(A.2)

where QB is the shear force at the simply support. When the shear sliding on the simply support does not

H1 Ab s–– H2–

H1 Ab s–– H2–
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°
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-------- 2ν 2 3η1–( )= =
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occur, it requires . This leads to 

 (A.3)

As the yield criterion at any point in the beam should not be violated, it follows that the deformation
mechanism is valid only when

(A.4)

A.2 Initial deformation mechanism: H1 − As

When  and , a bending plastic hinge may be formed on certain cross section
between the simply support and impact point as shown in Fig. 3(e), the dimensionless equations of motion of
the beam can be expressed as 

(A.5)

(A.6)

where ξ1 is given by

(A.7)

To satisfy the yield condition, parameter v should satisfy inequality , where vc2 is given by 

(A.8)

Where ξ1c satisfies 

(A.9)

A.3 Initial deformation mechanism: 
When  and , the bending moment at the impact point will reach the fully plastic

bending moment and the deformation mechanism of pure shear may develop into deformation mechanism Ab−s

as shown in Fig. 3(d). The dimensionless equations of motion of segment BA can be expressed as

(A.10)

The dimensionless equations of motion of segment AC are 

(A.11)

(A.12)
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As the yield criterion at any point in the beam should not be violated, the deformation mechanism is valid
only when

(A.13)

A.4 Initial deformation mechanism: 
When  and , a bending plastic hinge may be formed on certain

cross section between impact point and free end for deformation mechanism Ab−s as shown in Fig. 3(c). The
dimensionless equations of motion of segment BA is the same as Eq. (A.10). The Eqs. (3) and (5) are still
valid for the two segments AH2 and H2C. 

As the yield criterion at any point in the beam should not be violated, the deformation mechanism is valid
only when

 (A.14)

When vc3 < v and , mechanism , which has been discussed in section 2.3
in this paper, is found as shown in Fig. 3(a).

A.5 Initial deformation mechanism: 
When  and , a bending plastic hinge may be formed on certain cross sec-

tion between the simply support and impact point for initial deformation mechanism , and a new initial
deformation mechanism is found, i.e.,  as shown in Fig. 3(b). Furthermore, when  for

, the bending moment at the impact point will reach the fully plastic bending moment for
initial deformation mechanism , and the new initial deformation mechanism  will appear too.
The dimensionless equations of motion of segment AC are the same as Eqs. (A.11), (A.12). Eqs. (2) and (4)
are still valid for segments BH1 and H1A.

As the yield criterion at any point in the beam should not be violated, the deformation mechanism is valid
only when

 (A.15)

When vc3 < v and , the new initial deformation mechanism is .

Appendix B Theoretical analysis for the dynamic behavior of a hinged-free beam

struck by a rigid mass at free end

(1)  Pure shear
When value of parameter v is small, the initial deformation mechanism is shown in Fig. 12. The equations

of motion of the beam are 
 

(A.16)

 (A.17)

where . The transverse dimensionless acceleration of travelling mass is

 (A.18)
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The dimensional bending moment distribution is found to be

(A.19)

When , the moment at  will reach the fully plastic bending moment and the defor-
mation mechanism with pure shear is valid only for .

(2)  Shear-bending response
When v1 < v, the deformation mechanism H1 of the beam is shown in Fig. 13. The equation of motion can

be recast as in terms of  

 (A.20)

According to the acceleration condition of continuity at plastic hinge H1, we have

 (A.21)

The equation of motion of travelling mass is the same as Eqs. (A.18). 
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