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1. Introduction

The form-finding analysis of membrane structures is to find the geometry shape and the

corresponding stress distribution on membrane surface. For cable nets the force-density method is

an efficient form-finding method (Zhang 2002, Li and Guan 2004). 

A simple method for form-finding analysis of membrane structures is to simulate the membrane

surface as a cable net and to adopt the force-density method to find its shape and corresponding cable

forces. But it will be encountered how to transform the cable forces to the membrane stresses that is

necessary in the further loading case computation by finite element method. To avoid such transform

and improve the form-finding efficiency, some approximate models and methods have been proposed.

But all these approximation will lead to the losing of accuracy as the improving of the efficiency.

In this paper the membrane surface is described by the triangular membrane elements. The mesh

lines can be also taken as the cable segments of a cable net with uniform force in all directions. The

boundary cable segments belong to one triangle element and the others joint two triangle elements.

The force-density method is adopted to carry out the form-finding analysis for the cable net. The

obtained shape of the cable-net is taken as the membrane surface, and the transform relationship is

derived from the forces of the cable net to the stresses of the triangular membrane elements. Such

stresses fulfill the equilibrium conditions on the membrane surface. 

This method makes it possible to use the force-density method to perform the form-finding

analysis, then to transfrom the cable forces to the stresses of triangular elements, and finally directly

to use the finite element method to carry out the loading case computation. With this transform the

form-finding of membrane structures will be very efficient.
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2. Equilibrium conditions for cables and triangle elements 

A single triangle element j is shown in Fig. 1. Taking the side lines of the element as the cable

segments, we can denote {T}j = [T1T2T3]
T as the force vector and  as the

corresponding force density vector of cables, where qi
j = Ti /li and li is the length of the cables. In

Fig. 1 {F} j = [Fx1Fy1Fx2Fy2Fx3Fy3]
T is the equivalent nodal force vector. 

Eq. (1) exists according to the equilibrium conditions at nodes show at Fig. 1. The relationship

between {F} and {q} can be expressed by the coefficient matrix [A].

(1)

According to the theory of finite element method (Zhang 2002), the nodal force vector of the

single triangle element can be also expressed as

 
(2)

where, v, ∆ and t are the volume, area and thickness of element j, respectively. 

From Eqs. (1) and (2) we have

 (3)

The relationship between the stress vector and the force-density vector of membrane structures

can be obtained and expressed as in Eq. (4) by assembling Eq. (3) for all elements (j = 1, ..., m),

where m is the amount of elements.

(4)

Here, [C] is a maxtrix with n × 3m order, where n is the amount of the mesh lines on the membrane

surface. [C] relates only to membrane thickness and the local coordinates of the nodes at the state

from form-finding analysis.  is the force density vector of the cable nets and

. Assuming the k’th cable segment is composed of the k1’th line of the

j1’th triangle element and the k2’th line of the j2’th triangle elements, we can have 

(5)

It should be noticed that the cable forces of the cable net from the force-density method fulfill the

equilibrium conditions at all nodes. The stresses obtained from Eq. (4) will lead to the same

equivalent nodal forces as the cable forces. Hence, the stresses of all triangle elements

corresponding the cable net can also fulfill the equilibrium conditions at nodes. 
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Fig. 1 Forces of cables and its equivalent nodal force in a single triangle element
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3. Transfrom from cable forces to element stresses 

At the common side of the two conjointed elements the strains along this side obtained from the

two elements should be compatible.  

According to the phycical equtaion (Xu 1990), the strain in the direction of α with x can be

expressed by σx, σy and τxy in the element.

Let , the strain equation along the common side can be expressed by σx, σy, τxy of every two

conjointed elements. There are 3m−n common sides in membrane surfaces described by m triangle

elements. For all the common sides we can establish and assemble Eq. (6). Finally we can obtain

(6)

where, [B] is the matrix with (3m−n) × (3m) order relating only to the material parameter and the

local coordinates from form-finding analysis.

Combining Eqs. (4) and (6) we can obtain the transform relationship between the force densities

of cable net and the stresses of membrane elements as follows

(7)

where, [G] = [C B]T is a matrix with 3m × 3m order, and relates only to the material parameter,

membrane thickness and the local coordinates from the form-finding analysis. {b} = {q 0}T  is a

vector with 3m order and relates only to the force-densities of cable nets.

Eq. (7) is linear independant, therefore the matrix [G] can be inversed. The stresses of membrane

elements can be solved from force densities and geometry shapes of cable nets. 

4. Numerical examples

4.1 A saddle membrane structure

A saddle membrane structure, with the length 3000 mm, the width 2000 mm and the height

1000 mm, is considered here. Fig. 2(a) shows its initially assumed shape. The inital force density in

the cable net is 1 and the initial force on the boundary cable is 10.

The meshes shown in Fig. 2 can be also thought of as a cable net. By the force-density method

the form-finding analysis can be very easily and efficiently performed for such cable net. The

obtained minimum surface is shown in Fig. 2(b) and the stress distribution on the membrane

structure corresponding to the surface is also shown in Fig. 2(b) from the transform Eq. (7). 
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Fig. 2 Saddle membrane structure



482 Qi-Lin Zhang, Li-Xin Chen, Xiao-Qun Luo and Zong-Lin Yang

4.2 A practical project of membrane structure: Shanghai Zabei Tennis Ball Gymnasium 

The form-finding of the membrane surface of Shanghai Zabei Tennis Ball Gymnasium is carried

out by the equivalent method presented in this paper. Fig. 3(a) shows the equilibrium shape of the

cable net obtained from the force-density method, which can be very efficiently solved. Fig. 3(b)

shows the stress distribution of membrane surface transformed from the force densities of cable net.

It would be very time-consuming due to many times of iterations to solve such stress distribution by

using finite membrane element method. The finished structure is shown as in Fig. 3(c), which has

been safely used for more than three years.
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Fig. 3 Shanghai Zabei Tennis Ball Gymnasium




