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Stresses in FGM pressure tubes under non-uniform 
temperature distribution 
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Abstract. The effects of material nonhomogeneity and nonisothermal conditions on the stress response
of pressurized tubes are assessed by virtue of a computational model. The modulus of elasticity, the
Poisson’s ratio, the yield strength, and the coefficient of thermal expansion, are assumed to vary
nonlinearly in the tube. A logarithmic temperature distribution within the tube is proposed. Under these
conditions, it is shown that the stress states and the magnitudes of response variables are affected
significantly by both the material nonhomogeneity and the existence of the radial temperature gradient.
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1. Introduction

Deformation analysis of tubes subjected to either internal or external pressure is an important

topic in engineering because of rigorous applications in industry as well as in daily life. For this

reason, the classical problem of a long pressurized tube has been the topic of a variety of theoretical

investigations. It is treated in the purely elastic stress state by Timoshenko (1956), Timoshenko and

Goodier (1970), Ugural and Fenster (1987), and Boresi et al. (1993), in the fully plastic stress state

by Boresi et al. (1993), Mendelson (1986), and Nadai (1931) and in the partially plastic stress state

by Parker (2001) and by Perry and Aboudi (2003). Recent studies on the subject by Horgan and

Chan (1999), Tutuncu and Ozturk (2001), Jabbari et al. (2002), Ma et al. (2003), and Eraslan and

Akis (2005a, 2006) include tubes made of functionally graded materials (FGM) under pressure. The

results of stress and deformation analyses in two layer concentric pressure tubes in the elastic state

by Eraslan and Akis (2005b) and in the partially plastic stress state by the same authors (Eraslan

and Akis 2004) have also been reported. 

The objective of the present work is to study in detail the stress response of pressurized FGM

tubes subjected to a radial temperature gradient. FGM tubes under internal pressure as well as

external pressure are taken into consideration. Being different from earlier theoretical investigations

(Horgan and Chan 1999, Tutuncu and Ozturk 2001, Jabbari et al. 2002, Ma et al. 2003, Eraslan and

Akis 2005a, 2006) all material properties, i.e. the modulus of elasticity E, the Poisson’s ratio ν, the

yield strength σY, and the coefficient of thermal expansion α, are assumed to vary in the tube

according to the general nonlinear form
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(1)

in which f0 is the reference value of the property F, and G is any prescribed nonlinear function of

the radial coordinate r. Note that the choice G = 0 leads to a homogeneous material property. In

addition, the tube is subjected to a radial temperature gradient described by the temperature

distribution

(2)

where a, b are the inner and outer radii, and Ta = T(a), Tb = T(b) are the temperatures of the inner

and outer surfaces of the tube, respectively. Under these circumstances and in the framework of

small deformation theory accompanied by generalized plane strain, an elastic equation is formulated

in terms of formal nondimensional variables. A shooting algorithm using Newton iterations with

numerically approximated tangents is designed and used for the computer solution of the elastic

equation. Analytical stress and deformation expressions are also derived for a homogenous tube and

used for the validation of the computational model. The results reveal that the magnitudes of the

response variables as well as the stress states are affected significantly by both the material

nonhomogeneity and the existence of the radial temperature gradient.

2. The elastic equation

Cylindrical polar coordinates (r, θ, z) are considered. The notation of Timoshenko and Goodier

(1970) and the basic equations provided therein are employed. However, the derivation of the elastic

equation is performed in terms of formal nondimensional and normalized variables for computational

reasons. These variables are, radial coordinate: = r/b, bore radius: = a/b, normal stress:

, normal strain: , radial displacement: , pressure:

, the coefficient of thermal expansion: , modulus of elasticity:

, and the yield strength: . The equations given below are written in

terms of these variables, but to simplify the notation overbars are dropped. 

A sufficiently long axisymmetric tube, a state of generalized plane strain, i.e., εz = constant, and

small strains are presumed. The strain displacement relations: εr = u', εθ = u/r, the equation of

equilibrium in radial direction: σθ = (rσr)' and the equations of generalized Hooke’s law of the form

(3)

constitute the basis for the formulation (Timoshenko and Goodier 1970, Ugural and Fenster 1987,

Boley and Weiner  1960). In above, a prime indicates differentiation with respect to nondimensional

radial coordinate r. In a state of generalized plane strain the axial stress reads

(4)

Introducing the stress function Y(r) in terms of radial stress as Y(r) = rσr, one obtains from the

equation of equilibrium σθ = Y'(r). Eliminating the axial stress σz from the equations of Hooke’s law,

and using the stress function Y(r) the total strains become

F r( ) f0 1 G r( )+[ ]=

T r( )
ln r/b( )Ta ln r/a( )Tb–

ln a/b( )
----------------------------------------------------=

r a

σ j σj/σY a( )= ε j εjE0/σY a( )= u uE0/ bσY a( )[ ]=

P P/σY a( )= α αE0/σY a( )=

E E/E0= σ Y σY/σY a( )=

εi
1

E
--- σi ν σj σk+( )–[ ] αT+=

σz Eεz ν σr σθ+( ) EαT–+=
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(5)

(6)

The elastic equation is obtained by the substitution of Eqs. (5) and (6) in the compatibility relation

(rεθ)' = εr. The result is

(7)

The solution of this equation provides elastic stresses in plane strain axisymmetric problems with

nonuniform temperature field and graded material properties. Although it is a linear ODE, the

coefficients of Y and Y' are so complicated that its closed form solution could not be found.

However, accurate numerical solutions can be obtained by the use of shooting method as described

in the next section. 

Note that for a homogeneous material E' = 0; E = 1, and ν' = 0; ν = ν0, and α = α0, Eq. (7) is

ultimately simplified to

(8)

which is nothing but the classical plane strain thermoelastic equation of Cauchy-Euler

nonhomogeneous type (Ugural and Fenster 1987).

2.1 The shooting method

First, Eq. (7) is cast into the form

(9)

Then, making use of the fact that σθ = Y', Eq. (9) is transformed into an initial value problem (IVP) 

(10)

(11)

in  subjected to the initial values

(12)

The initial value Ya is known. It is Ya = −a × P in case of internal pressure, and it is Ya = 0 in case

of external pressure. However, the gradient dY/dr |r=a is not known. This gradient can be computed

iteratively using Newton’s method accompanied by the boundary condition Y(1). Having Xk−1 and ∆
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denote the value of dY/dr |r=a at iteration number k−1, and a small increment of the order 10−3,

respectively, we perform 3 runs in every iteration to generate the gradient in Newton’s equation. In

case of internal pressure Ya = −a × P throughout, and at the k-th iteration we perform runs 

1. starting with Xk−1 to obtain f1 = Y(1),

2. starting with Xk−1 + ∆ to obtain f2 = Y(1),

3. starting with Xk−1 − ∆ to obtain f3 = Y(1).

A better approximation for dY/dr |r=a can now be obtained from

(13)

Iterations are repeated until |Xk − Xk−1| is less than a specified error tolerance. If the tube is

subjected to external pressure P, then Ya = 0 all the way through, and the runs 

1. starting with Xk−1 to obtain f1 = Y(1) + P,

2. starting with Xk−1 + ∆ to obtain f2 = Y(1) + P,

3. starting with Xk−1 − ∆ to obtain f3 = Y(1) + P,

are carried out to successively improve dY/dr |r=a by virtue of Eq. (13). 

On the other hand, an outer iteration loop is performed to estimate the value of εz. An iteration

scheme similar to those given above is constructed. At each main iteration, the problem is solved

three times using  and  respectively, and the corresponding net axial forces

 are calculated. Here, dA refers to an area element on the cross section. Aiming at = 0,

a better approximation  to the constant axial strain is then obtained from

(14)

Starting with a reasonable initial estimate , this iteration scheme converges to the result with a

sufficient accuracy only in a few iterations. The result of a homogeneous calculation, for example,

provides a good initial estimate . The advantages of this procedure are stability, rate of

convergence and availability of state-of-the-art ODE solvers (Brown and Hindmarsh 1989) for

accurate integrations.

3. Analytical stresses and limits

These stresses  are based on the general solution of Eq. (8). Substituting T(r) as given by Eq. (2),

and integrating Eq. (8) one arrives at

(15)

where C1 and C2 are arbitrary constants to be determined. The stresses and radial displacement then

become
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(16)

(17)

(18)

(19)

where the dummy variables have been defined as

(20)

(21)

3.1 Internal pressure

The use of the conditions

(22)

leads to

(23)

(24)

(25)

On the other hand, earlier studies (see, for example, Eraslan and Akis 2005a) indicate that the

inner surface of the tube is critical; consequently, the homogeneous pressure tube fails with respect

to plastic flow at this location as soon as the internal pressure reaches a limiting value PE called the

elastic limit pressure. This limit can be calculated by the use of the von Mises’ criterion. For plane

strain this criterion takes the form (Eraslan and Akis 2006)

(26)

The tube undergoes plastic deformation when φY(a) = 1. Evaluating the stresses explicitly from

Eqs. (16)-(18) at r = a with the aid of Eqs. (23)-(25) and substituting in Eq. (26), we obtain after

some algebraic manipulations
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(27)

where

(28)

(29)

(30)

(31)

3.2 External pressure

In case the tube is subjected to external pressure, the conditions to be used read

(32)

Application of these results in

(33)

(34)

(35)

Like in the internal pressure case, the tube plasticizes at the inner surface as soon as φY(a) = 1.

Accordingly, the elastic limit pressure is determined as

(36)

where

(37)

(38)

(39)

(40)
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4. Results and discussion

In all of the following calculations ν0 = 0.3, and α = α0 = 5.85 × 10−3/oC. Furthermore, double

precision (16-digit) arithmetic is used in the numerical computations.

4.1 Verification of the computational model

The computational model can be verified in comparison to the analytical results. For this purpose,

the material properties E = 1, σY = 1, ν = ν0, and α = α0 accompany the numerical solutions. First, a

long tube of inner radius a = 0.7 subjected to internal pressure is considered. Assigning Ta = 5oC,

and Tb = 28oC, i.e., ∆T = Tb − Ta > 0, from Eq. (27) the elastic limit pressure is calculated as

PE = 0.261264. Furthermore, by virtue of Eqs. (23)-(25) we evaluate the corresponding analytical

constants as C1 = −0.343357, C2 = 0.343357, and εz = −4.61547 × 10−2. For the same tube under

PE = 0.261264 a run is performed starting with = −4.0 × 10−2, and X0 = 0.8. Iterations are

repeated until . When the iterations converge after 2 iterations, there results =

2.21 × 10−14, εz = −4.61547 × 10−2, and X = 0.870739. The corresponding distributions of response

variables are plotted in Fig. 1(a). In this figure, solid lines belong to numerical solution, and dots to

analytical solution by the use of Eqs. (16)-(19). The nondimensional stress variable Φ in Fig. 1(a) is

calculated from

εz
0

σz Ad 10
10–<∫ σz Ad∫

Fig. 1 The elastic response of a homogeneous tube of a = 0.7 subjected to internal pressure. (a) For Ta = 5oC,
Tb = 28oC, under elastic limit pressure P = PE = 0.261264, (b) for Ta = 28oC, Tb = 5oC, under elastic
limit pressure P = PE = 0.303711. Solid lines show numerical, dots analytical results
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(41)

Both solutions agree perfectly. In fact, in all calculated, analytical and numerical solutions agree

to at least 6 significant digits. Note also that, according to von Mises’ yield criterion, Eq. (26),

Φ = 1 at the plastic-elastic border, and Φ < 1 in the elastic region. Hence, Φ turns out a useful

global variable not only in monitoring the material failure with respect to yield, but also in

measuring the error in stress calculations. Following the variation of Φ in Fig. 1(a), we see that the

tube fails at the inner surface since Φ = 1 at this location. What is more, the stresses in the tube

satisfy σθ > σz >σr in the inner portion and σθ > σr >σz in a relatively narrower outer portion. For

a = 0.7, similar calculations are carried out by reversing the temperature gradient. This time we take

Ta = 28oC, and Tb = 5oC (∆T < 0) and determine PE = 0.303711, C1 = −0.199462, C2 = 0.199462, and

εz = −8.64867 × 10−2. Numerical solution for this problem converges in 3 iterations resulting in

= 3.29 × 10−15, εz = −8.64867 × 10−2, and X = 0.779874. The consequent analytical (dots) and

numerical (solid lines) stresses are compared in Fig. 1(b). Again, perfect agreement is obtained. The

stress state is σθ > σz >σr throughout. Comparison of Figs. 1(a) and (b) reveals how the stress states

are affected by the existence of a small temperature gradient, which is likely to occur in pressure

chambers. 

Φ 1

σY

-----
1

2
--- σr σθ–( )2 σr σz–( )2 σθ σz–( )2+ +[ ]=

σz Ad∫

Fig. 2 The elastic response of a homogeneous tube of a = 0.75 subjected to external pressure. (a) For
Ta = 8oC, Tb = 36oC, under elastic limit pressure P = PE = 0.231416, (b) for Ta = 36oC, Tb = 8oC, under
elastic limit pressure P = PE= 0.203381. Solid lines show numerical, dots analytical results
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Next the tubes under external pressure are studied. A tube of inner radius a = 0.75 subjected to

surface temperatures of Ta = 8oC, and Tb = 36oC (∆T > 0) is considered first. From Eqs. (36), and

(33)-(35), in turn, we calculate PE = 0.231416, C1 = 0.147106, C2 = −0.378522, and εz = 0.453881.

On the other hand, the numerical solution gives = −4.37 × 10−15, εz = 0.453881, and X =

−0.929743 after 2 main iterations. Fig. 2(a) shows the corresponding analytical (dots) and

numerical (solid lines) distributions of response variables. Both solutions agree perfectly. Also, the

stresses satisfy σz > σr > σθ all the way through. If the surface temperatures are assigned as

Ta = 36oC, and Tb = 8oC (∆T < 0) there results PE = 0.203381, C1 = 0.411919, C2 = −0.615300, and

εz = 0.399812 analytically, and = −1.29 × 10−14, εz = 0.399812, and X = −1.05790 numerically.

The corresponding distributions of stress and displacement are plotted in Fig. 2(b). Again, dots

show analytical profiles. The stress state is different from that of ∆T > 0, and it is σr > σz > σθ in

the inner, and σz > σr > σθ in the outer portions of the tube, respectively. These calculations

indicate that the numerical solution algorithm converges very rapidly, leads to solutions possessing

high order accuracy, and also that the computer program which implements this algorithm

functions properly.

4.2 Analysis of FGM tubes

4.2.1 Internal pressure

First, a parametric analysis is carried out to ascertain the effect of each of the variable material

properties on the elastic limit pressure PE. For this purpose, a tube of inner radius a = 0.7, and small

temperature gradients, on the order of 25oC, are considered. Material properties E, ν, and α are

allowed to vary nonlinearly within the tube one at a time while the others are kept constant. The

results of these calculations are summarized in Table 1. The yield strength σY is not included in this

table, because, as will be shown later in this section, its effect on the performance of the pressure

tube is somewhat different, yet important, and thus cannot be evaluated by simply weighing PE. As

seen in Table 1, the elastic limit increases for both positive and negative temperature gradients if the

modulus of elasticity E is an increasing function of the radial coordinate r. The increase in either ν

or α from r = a to r = 1, however, causes the elastic limit to decrease as shown. Although all affect

the elastic response of the tube to some extent, the effect of E is observed to be highly pronounced

as expected.

As seen in Fig. 1, a homogeneous tube subjected to internal pressure always yields at the inner

surface. However, in case the tube material is nonhomogeneous, it may undergo plasticization at the

outer, or simultaneously at both of the surfaces. To illustrate these different modes of incipient

yielding, we consider a tube of inner radius a = 0.7 and assign Ta = 5oC and Tb = 30oC. The material

composition shown in Fig. 3(a) is taken into account. The nonlinear functions that describe the

variations of the properties are noted at the bottom of Fig. 3(a). This material composition gives rise

σz Ad∫

σz Ad∫

Table 1 Effect of variable E, ν, and α, respectively, on the elastic limit pressure PE

Property ∆T > 0 ∆T < 0

E(a) < E(1) PE ↑ PE ↑

ν (a) < ν (1) PE ↓ PE ↓

α (a) < α (1) PE ↓ PE ↓
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Fig. 3 (a) Variation of E, ν, α and σY in an FGM tube of inner radius a = 0.7, (b) the corresponding elastic
response for Ta = 5oC, Tb = 30oC under elastic limit internal pressure

Fig. 4 (a) Variation of E, ν, α and σY in an FGM tube of inner radius a = 0.7, (b) the corresponding elastic
response for Ta = 5oC, Tb = 30oC under elastic limit internal pressure
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Fig. 5 (a) Variation of E, ν, α and σY in an FGM tube of inner radius a = 0.7, (b) the corresponding elastic
response for Ta = 5oC, Tb = 30oC under elastic limit internal pressure

Fig. 6 (a) Variation of E, ν, α and σY in an FGM tube of inner radius a = 0.7, (b) the corresponding elastic
response for Ta = 30oC, Tb = 5oC under elastic limit internal pressure
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to the distributions of the response variables shown in Fig. 3(b). The variation of the stress variable

Φ defined by Eq. (41) makes apparent that under these circumstances the FGM tube yields at the

inner surface. If the material composition is changed with that shown in Fig. 4(a), the same tube

responds as the one plotted in Fig. 4(b). The tube fails with respect to plastic deformation

concurrently at both ends. It is seen by comparing Figs. 3(a) and 4(a) that the only difference

between them is in the variation of the yield limit σY. While σY is an increasing function of the

radial coordinate r in Fig. 3(a), it decreases with r in Fig. 4(a). The effect of σY on the elastic

response of the tube is apparent. As a final example for this tube, we consider the variations of

graded properties plotted in Fig. 5(a) and then compute the consequent distributions of the response

variables which are plotted in Fig. 5(b). This time yielding commences at the outer surface of the

pressurized tube. 

Runs are performed for a tube of a = 0.7 considering a negative temperature gradient in which

Ta = 30oC and Tb = 5oC. First, the material composition depicted in Fig. 6(a) is taken into account.

The corresponding distributions of the response variables at the elastic limit pressure are shown in

Fig. 6(b). As seen in this figure, both surfaces are critical and accordingly the tube undergoes

plasticization simultaneously at both surfaces as the internal pressure is further increased. The

material composition shown in Fig. 7(a), on the other hand, causes the tube to yield at the outer

surface as shown in Fig. 7(b).

4.2.2 External pressure

A parametric analysis similar to the one in the preceding section is carried out to find out the

Fig. 7 (a) Variation of E, ν, α and σY in an FGM tube of inner radius a = 0.7, (b) the corresponding elastic
response for Ta = 30oC, Tb = 5oC under elastic limit internal pressure
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effect of each of the variable material properties on the elastic limit pressure PE. A tube of inner

radius a = 0.7 and temperature gradients of ±25oC, are considered. The results of these calculations

can be examined in Table 2. The strength of the tube to resist external pressure elastically increases

if E or α is an increasing but the Poisson’s ratio ν is a decreasing function of r irrespective of the

sign of ∆T.

Like in the internal pressure case, different FGM compositions leading to different modes of

incipient yielding are possible. For example, the composition shown in Fig. 8(a) for the tube of

a = 0.7, Ta = 5oC and Tb = 30oC gives rise to the elastic response shown in Fig. 8(b). Plasticization

initiates at both of the surfaces at the same time, whilst a homogeneous one always yields at the

inner surface as shown in Fig. 2. If the tube material is changed with that shown in Fig. 9(a),

plasticization initiates at the outer surface of the tube as depicted in Fig. 9(b).

Table 2 Effect of variable E, ν, and α, respectively, on the elastic limit pressure PE

Property ∆T > 0 ∆T < 0

E(a) < E(1) PE ↑ PE ↑

ν (a) < ν (1) PE ↓ PE ↓

α (a) < α (1) PE ↑ PE ↑

Fig. 8 (a) Variation of E, ν, α and σY in an FGM tube of inner radius a = 0.7, (b) the corresponding elastic
response for Ta = 6oC, Tb = 29oC under elastic limit external pressure
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5. Conclusions

 Functionally graded materials (FGM) have been widely used for the last two decades particularly

in high temperature and industrial applications, in microelectronics, and in power transmission

equipment. Among various advantages of using FGM, increasing strength, toughness, endurance

limit, and resistance to corrosion, and retardation of the development of surface cracks can be cited.

In spite of these advantages, the stresses in FGM pressurized tubes have not been well studied

theoretically. 

In this study, an efficient, yet simple, computational model is developed to perform stress analysis

concerning the elastic response of a plane strain thick walled FGM tube subjected to both pressure

and a small temperature gradient. The modulus of elasticity, the Poisson’s ratio, the yield strength,

and the coefficient of thermal expansion, are assumed to vary nonlinearly in the tube. Moreover, the

deformation in the axial direction is allowed. Under these conditions, the preheated FGM tubes

subjected to either internal or external pressure are studied in detail. It is observed that, although

small temperature gradients (of the order of ±25oC) and reasonable variations of material properties

are considered, the states of stress are affected significantly by both the material nonhomogeneity

and the existence of a small temperature gradient. Material compositions leading to different modes

of incipient yielding are shown to be possible. A preheated FGM pressure tube may yield at the

outer surface or simultaneously at both surfaces, whilst a homogeneous one always yields at the

Fig. 9 (a) Variation of E, ν, α and σY in an FGM tube of inner radius a = 0.7, (b) the corresponding elastic
response for Ta = 6oC, Tb = 29oC under elastic limit external pressure
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inner surface. All graded properties affect the elastic response of the tube to some extent, though,

the effects of the modulus of elasticity and the yield strength are observed to be highly pronounced.

In this sense, for example, the elastic performance of the tube is substantially increased if the

modulus of elasticity is chosen to be an increasing function of the radial coordinate. However, since

the material compositions are chosen rather arbitrarily in this work, further study may be carried out

to optimize the performance by treating the material parameters as design variables in the optimum

design problem. 
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