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Numerical model for bolted T-stubs with two bolt rows
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Abstract. This article presents a numerical tool for dimensioning two-threaded fasteners connecting
prismatic parts subjected to fatigue tension loads that are coplanar with the screw axis. A simplified
numerical model is developed from unidirectional finite elements, modeling the connected parts and
screws with bent elements and the elastic contact layer between the parts with springs. An algorithm
updating the contact stiffness matrix, calculating forces and displacements at each node of the structure
and thus normal stresses in the screws in both static and fatigue is further developed using C language.
An experimental study is also conducted in parallel with the numerical approach to validate the developed
model assumptions, the numerical model and the 3D finite element results. Since stiffness values for the
compressive zones in the parts are analytically difficult to determine, a statistical software method is used,
from which a tuning factor is derived for identifying these stiffness values. The method is also applied to
set out the influence of each parameter on the fatigue behaviour of each screw. Finally, the developed
model will be used to establish a new, sophisticated, fast and accurate tool for dimensioning bolted
mechanical structures.
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1. Introduction

Bolted joints, easy and quick to manufacture and implement, are used for assembling the majority

of mechanical subassemblies in mechanical, civil, and aeronautical constructions. Hence they are

often subjected to static or cyclic dynamic loads that may lead to fatigue failure. This is why

manufacturers always seek new sophisticated and quick dimensioning tools and softwares that can
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replace the conventional calculation methods.

Within this framework, several researchers working on preloaded T-stub connections use non

linear finite elements modeling like in Bursi and Jaspart (1997a), Sherbourne and Bahaari (1997),

Kishi et al. (2001), Komuro et al. (2004). These studies specifically deal with steel structures and

are interested in the behaviour of the structure in displacement. Bursi and Japart (1997b) showed a

good correlation between numerical 3D simulations and experimental tests, while Girao et al.

(2004) replaced the bolt with a set of parallel uniaxial spring elements. In the context of a load-

displacement analysis, these models accurately retrieve the behaviour of the structure without

studying the fatigue strength, the local behaviour of the bolts and their resistance when subjected to

dynamic solicitations.

The bent beam model is a base point for many developments while the most frequently used

model is the one proposed by the VDI 2230 (2003) recommendation. It is, unfortunately limited to

bolted joints with axial or weakly eccentric loading since for high eccentric loading and thus high

bending, the hypothesis of non detachment between connected parts at contact interface is no longer

accurate. Agatonovic (1985) established a model that takes into account the two main parameters:

bending stiffness of the connected parts and preloading value.

From these recent studies, a model for heavy eccentric loaded connections is developed at the

Toulouse Mechanical Engineering Laboratory. Guillot (1987) improved the Agatonovic model by

introducing a parameter that depends on load application position. Bakhiet (1994) established an

analytical formulation that takes into account the largeness of the contact zones, while Bulatovic

and Jovanovic (2000) developed an analytical model for an eccentrically loaded bolted joint and

outlined the deformation of the contact zone under loading. Note that all the previously described

models are related to a single-bolted fastener subjected to a load parallel to the bolt axis and use

linear springs for modeling the compressed zone and the bolt’s traction stiffness. They can be

applied in the framework of dimensioning a symmetrical bolted T-joint frequently used in metallic

structures studied by Broughton et al. (2004).

Throughout the modeling process, difficulties are basically encountered in formulating joints

compression and bending stiffness of the parts. The VDI 2230 (2003) recommendation, which

considers a cone deformation zone having the same stiffness as the real zone (Lehnhoff et al. 1994),

entails a purely geometrical approach to cover the stacking of parts with different heights. Allen

(2003) and Alkatan (2005) applied the energy method to set out the stiffness of the bolts under

traction and the parts under compression, Tsai and Kelly (2005) formulated the lateral stiffness of a

short beam loaded at its edge, while Zaharia and Dubina (2006) developed the rotational stiffness of

four or six-bolted connections.

Many research studies have been devoted to dimensioning multi-bolted connections. In this area,

Al-Jabri et al. (2006) modeled a beam-column connection assembled by three or six bolts subjected

to an external moment and at high temperature.

A non-linear model or bent beam model has been developed at the mechanical engineering

laboratory of Toulouse (LGMT), Guillot (1987), that can be applied to rectangular and circular

joints. Marty (1994) modeled a circular flanged connection as a bent plate laying on its lower

compressed part, subdivided into the same stiffness linear springs elements. A finite element

program is also established upon a model based on axis-symmetrical plate elements for forces and

bending moment calculation.

Kowalske (1973) represented the beam resting on its lower half by a limited number of springs. A

subsequent development of this model can be found in Oden and Pires (1983) studies in which a



Numerical model for bolted T-stubs with two bolt rows 345

model based on bent beams fixed by one or more bolts is developed. In this approach, loads are

introduced as single forces, moments and distributed forces and the beam’s displacement is

analytically calculated through an iterative process. Throughout every iteration, the node penetration

displacement in the elastic layer is calculated. The vertical displacement sign of each contact node

is verified in the next iteration.

Unfortunately, all the available models are limited to only well-defined and simple geometrical

connections. since they are not always able to specify the various contact areas (adherence, contact

separation, slippage, etc.). Even models that include elastic contact layers do not pinpoint the

determination of the contact evolution and the elements stiffness under external loading.

This article presents a model for dimensioning two-threaded fasteners connecting prismatic parts

subjected to fatigue tension loads that are coplanar with the screw axis. Its application is not limited

only to the field of general mechanics and structures with thick parts, but also to structures with thin

parts as in the field of constructional steelwork.

A sophisticated model which can be described as a “simplified numerical model” is developed : it

simulates contact by a series of springs whose number changes with loading. Experimental studies

are required to verify the results of this model and the adopted hypothesis (Fig. 1). This

experimental work analysed the real behaviour of the studied connection and allowed the simplified

numerical model to be well tuned. Three comparative studies validated the general behaviour of the

model. Moreover, it is not limited to standard problems as shown in Fig. 1, and it can be extended

to dimensioning multi-threaded connections submitted to eccentric loading.

2. Simplified numerical model

2.1 Model presentation

A prismatic connection with two identical screws is considered. The subassemblies are fixed to a

rigid support (Fig. 2a) and have a rectangular cross-section (2a × hp). Bending stiffness and

compression stiffness are considered constant with loading and the load axis is coplanar with the

screw axis. Since the bending stiffness of the parts is more significant than the stiffness of the

Fig. 1 Experimental study of a symmetrical four bolted connection subjected to tensile loading



346 Alain Daidié, Jamel Chakhari and Ali Zghal

screws, the bending moment applied at the screw heads on the connected parts can be discarded and

the screws are respectively preloaded by nodal forces Q1 and Q2.

The one-dimensional finite elements model shown in Fig. 2(b) represents the structure subjected

to a vertical positive load FE, a moment ME. A null rotation θE around the z axis is applied at

extremity A to accurately represent the symmetry of the experimental connection (Fig. 1).

The numerical model consists of the following elements:

Beam elements (part CA) : The bending stiffness of these bi-nodal elements is equal to the real

stiffness of the prismatic part. The hole is modeled by a succession of beam elements whose width

varies progressively with scale form (Fig. 3) to simulate the stress concentration that occurs in the

holes of the real bolt. The real part and the model are equivalent in bending stiffness and strain.

Note that in the numerical simplified model, half of the part is considered. The numerical model is

developed to predict bolts stresses. It should also be noted that a traction and bending stress

concentration factors must be taken into account when calculating the stresses in the subassemblies

to take into consideration the holes effects.

Beam elements B1L1 and B2L2: B1L1 and B2L2 represent the portion of the subassemblies located

between the load application level and the screw heads considered as two beam elements with

equivalent cross-sections AP calculated using one of the following existing models: VDI 2230

(2003), Rasmussen model (Rasmussen et al. 1978) and the LGMT model (Alkatan et al. 2003). The

two nodes of each beam are kinematically coupled in rotation around the z axis since it is

considered that the screw heads follow the part deformation.

Beam elements (bolts B1E1 and B2E2): Each bolt is modeled with a bi-nodal super-beam element

that has a special stiffness matrix with three degrees of freedom at each node: u, v and θ (axial

displacement, transverse displacement and rotation). Partitioning is unnecessary since displacements

at the extremities (boundaries) are used to calculate axial load FB and bending moment MFB for

each section and thus, normal stresses along the screws. The stiffness matrix includes the real axial

stiffness of the screw taking into account an equivalent section Abi whereas the bending stiffness is

Fig. 2 Two bolted symmetrical connections subjected to tensile loading. Screw axis and load are on the same
plane

Fig. 3 Holes are modeled in successive elements



Numerical model for bolted T-stubs with two bolt rows 347

calculated using an equivalent inertia moment Ibi that includes the screw shape (Fig. 4).

Thus, the problem consists of establishing the stiffness matrix of an equivalent beam with the

following properties: length hb equal to grip, circular section Abi, bolt modulus of elasticity Eb and

the same stiffness characteristics as the real bolt. The compression stiffness calculation procedure

includes the tapping (aGM = 0.8) or bolt head and screw influence (aGM = 1) (VDI 2230 2003,

Fukuoka 1994, Alkatan 2005). The Equivalent section Abi is calculated using the following

expression

(1)

Note that Eq. (1) is derived from the relation below

(2)

The equivalent quadratic moment, given by Ibi Eq. (4) is calculated from the equivalent bending

stiffness Eq. (3), which can be obtained by summing the bending stiffness of cylindrical portions

(3)

(4)

(5)

It should be noted that only a rotation movement is imposed at the bolt extreme sections, whereas

radial displacements are negligible and displacement is free inside the hole. Screws are subjected to

pure bending and displacement is set free along the x axis at points E1 and E2 (Fig. 2b) to minimize

error due to the position of the section where results are extracted and for model tuning up. The

moment applied on bolt i (Fig. 2), is given by the following equation
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348 Alain Daidié, Jamel Chakhari and Ali Zghal

(6)

where θBi represents the rotation of head Bi of bolt i (i = 1 or 2). Since the sub assemblies are fixed

with screws to a rigid part, nodes E1 and E2 are blocked. The bending moment is not constant along

the screw and can be expressed using the beam deformation equation

(7)

The initial stresses are respectively σ01 and σ02, whereas Q1 and Q2 are the respective preloads

applied to screws 1 and 2. Therefore, displacements u01 and u02 are respectively applied to the lower

bottoms E1 and E2 of the screws for preload modeling. Subsequently, axial loads FB1 and FB2,

bending moments MFB1 and MFB2, necessary for fatigue dimensioning can be calculated. Load

variation (∆FBi) and bending moment variation (∆MFBi) between the preloaded state and the loading

state can be calculated for bolt i, using the following two equations

(8)

(9)

As a result, alternate stress (σai) on each bolt can be calculated by Junker (1986)

(10)

where dsi is the diameter of the screw cross-section Asi having a quadratic moment Ibi, and σD is the

European standard (E25-030 1988) material alternating stress limit of the screws.

At loading phase each bolt is subjected to normal and tangential stresses given by the following

relations

(11)

(12)

Thus, Von Mises criteria are applied for static dimensioning, using the 2 expressions below

 

(13)

(14)

where Sy is the yield strength of the bolt class quality and Cb the tightening torque.

The dynamic behaviour of a standard bolt (thread rolling screw with final heat treatment) is

practically independent from the class quality. Moreover, the dynamic resistance is a little

influenced by the static loading generated by to the mean stress state (σm = 0.5 to 0.8Sy of the class

quality) (Martinez-Martinez 2002, VDI 2230 2003, E25-030 1988, Fares et al. 2006a). Experimental
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fatigue tests on a bolted joints must be comply with the norm NF E27-009 (1979). Fares (2006b)

and VDI 2230 (2003) noted that 85% of failures take place at the first engaged thread. This may be

due to high local stress concentrations combined with load distribution between screw and bolt. The

screw resistance under alternating solicitations is low compared to a static loading case. Norm E25-

030 (1979) and VDI 2230 (2003) take into account stress concentration at the thread bottom, and

thus recommend values for the fatigue limit of high-strength bolts at the stress cross-section As

proceeding from Wöhler curves, following an uniaxial fatigue approach. The fatigue solicitation is

the normal stress variation between preloading and loading phases at the screw cross section,

resulting from traction loading and bending moment variation. The T-Stub flanges field is

considered a high cycle fatigue sector, since ND ≥ 2.106 cycles. For a mounting using M10 8.8

screws, the endurance limit should not exceed σD = 50 MPa.

Blocked nodes (part C’D’) : Segment C’D’ made up of rigid elements, represents the part’s base

support.

Spring elements : These linear elastic elements are inserted along the contact zone to simulate

contact between subassemblies. Their number is function of the interface detachment, depending on

external tensile loading, and stiffness distribution is proportional to the theoretical area. These

springs are associated with friction elements to take into account the adherence zone. Normal stress

at the contact interface is calculated from the relative vertical displacement between the interface

contact nodes and the neutral line nodes of part (CA), using the following relation

(15)

Hence, the tangential stress is set out using Coulomb’s friction law given by

(16)

where un is the relative normal displacement of spring nodes, σn and σt respectively the normal and

tangential stresses at the contact interface depending on the spring position. f is the friction

coefficient at the contact interface.

The spring i stiffness ki is calculated using the following expressions

(17)

where N is the total number of spring elements, S the total contact area surface, Si the contact area

surface modeled by spring i and located at abscissa Xi, and KT the total stiffness of elastic layer

modeling the parts contact.

Equivalent diameter DP of the compressed zone located between the screw-heads and the rigid

part, calculated by the Rasmussen method, is used to determine compression stiffness Kpi of the

zone located between screw i head and the rigid part. Kp eq defined as the equivalent compression

stiffness of zones located between screw heads and the rigid part is calculated using the following

expression

(18)

REP is the stiffness distribution factor defined in the equation below
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(19)

This factor is equal to the stiffness ratio between the elastic layer located between the middle line

of the connected part and the rigid body, and the equivalent stiffness of the two compressed zones

under the screw heads. A value of 0.75 for this factor is found in experimental tests similar to the

ones conducted by Vadean (2006).

2.2 Numerical resolution

The numerical resolution is supported by an iterative numerical method. At each iteration, the

contact zone is re-defined and a finite dimensional system of linear equations resolved. Nodal

displacements are calculated using the numerical contact identification presented in Algorithm 1 into

which a tightening condition is injected at the lower base of each screw.

In this algorithm,  represents the Euclidean norm of the generalised displacement vector

{δ
n}, composed of nodes displacements of the meshed structure at iteration n. Stiffness matrix [Rg]

is assembled from the elementary stiffness matrices of all beam elements of the model. Contact

stiffness matrix  of the elastic layer is established by assembling the elementary stiffness

matrices of active springs at iteration (n − 1). A spring i can be considered active or not after

verification of the sign of its relative displacement . Stiffness matrices of model elements

are expressed in the Appendix (Razavi 2004, Rockey et al. 1983).

2.3 Calculation steps

A program which defines nodes coordinates and elements properties was developed in C

language. Subsequently, it calculates stiffness matrices of various elements. The overall stiffness

matrix of the structure is calculated by bringing [Rg] and [Rc] matrices. Force variation ∆FBi(Qi) and

bending moment variation ∆MFBi(Qi), in threaded fasteners are calculated in two steps as shown in

Algorithm 2.

At preload phase, displacements at the lower ends of each screw, force variations (∆FBi(Qi)) and

bending moment variations (∆MFBi(Qi)) on each screw, are calculated.

At loading phase, displacements at the two lower ends of the screws (nodes E1 and E2), found in

the previous step are applied. After iterative calculation, force variations and moment variations,

stresses and alternating stresses on bolts are deduced and safety is verified under static and fatigue

conditions.
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3. Experimental tests

The experimental set-up is a symmetrical connection sample of four identical H M10-60 8.8

quality screws, subjected to a monotonic tensile loading generated by a 100 kN capacity hydraulic

machine. Each screw is equipped, along its reduced length, with three deformation gauges set at 90o

to verify the load symmetry of the experimental connection. These gauges are linked to an

electronic box and data acquisition software.

The experimental design method guides the number of tests and tube dimensions choice. Even so,

this technique could not be considered as a more recent Fischer technique (1926), nor could it be

systematically used in the industrial, agronomic, medical and mechanical sectors (Kuehl 1999,

Montgomery 2000, Daidié et al. 2002, Gitlow et al. 2006) before the publication of Taguchi’s

works (1978, 1987, 2001). Its main contribution lies in minimizing the number of tests, while

allowing better results interpretation. In an experimental design method, several factors are modified

from one experiment to another according to precise rules. Consequently, parameters sensitivity can

Algorithm 2 Calculation steps for T-stub model resolution
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be investigated with the objective of seeking better result accuracy.

Finally, a study was conducted on 18 experimental mounting cases (Tables 1, 2 and 3), where the

geometrical parameters are varied along 3 levels (hp, a, L, u and v) and 2 levels according to the

material: steel and aluminium, whereas the base thickness hs remained constant (hs = 10 mm). Note

that a complete plan requires 35 × 22 = 972 tests and a statistical software that includes pre-

formulated tables. JMP (2005) commercial software was used in this study and a mixed factorial

plan is chosen to reduce the number of experiments to 18 and to draw conclusions about the

influence of several parameters on screw’s behaviour under fatigue.

4. Experimental validation of numerical models

The previously presented model is developed using the REP coefficient. This coefficient is

important to reproduce the real joint behaviour and to show good correlation between the

experimental results, 3D Finite Elements calculations and the developed model.

3D Finite elements calculations are carried out with I-DEAS 11 NX (2004) software. Note that

the 3D model represents 1/8 of the experimental assembly (Fig. 5) and the displacement boundary

conditions are defined at the three symmetry planes. The subassemblies are meshed with solid linear

brick elements. Preloads are introduced as imposed uniaxial displacements δ0i at the bottoms of the

screws. Thus, a two steps simulation procedure is necessary to respectively install the preloads and

vary the external loading. The friction coefficient at the contact interfaces is equal to 0.14. The FE

equivalent load is applied on the vertical common edge of the symmetry planes.

Fig. 5 3D finite elements model for a T-stub study

Table 1 Numerical data for three connection examples

Data Connection 1 Connection 2 Connection 3

hp (mm) 13 20 20

2a (mm) 30 40 40

L (mm) 290 250 250

u (mm) 45 25 25

v (mm) 25 25 25

Part material C 35 E C 35 E Al Cu 4 Mg Si (A)

Measured preloads on screw 1 : σ01 (MPa) 206.379 207.878 MPa 203.786

Measured preloads on screw 2 : σ02 (MPa) 210.116 207.204 MPa 204.627

REP 0.75 0.75 0.75
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The results of three examples of experimental connections are presented. Numerical data for the

different connections are given in Table 1 and results are compared (Figs. 6, 7 and 8) for an

objective pre-stress of 200 MPa. For each loading increment, alternating stress is calculated using

Eq. (10). By numerical simulations, screw stresses can be computed above their real capacities to

predict screw behaviour under heavy loads. Note that the screws maximum fatigue capacities are

experimentally reached and evaluated as an effective alternating stress limit of 60 MPa (Fares

2006a).

Conformability between the simplified numerical model, 3D finite element simulations and

experimental results is necessary to identify the REP factor.

Fig. 6 Comparison of results, 0 ≤ FE ≤ FEmax for connection 1

Fig. 7 Comparison of results, 0 ≤ FE ≤ FEmax for connection 2
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For connection 1 (Fig. 6), the experimental and numerical curves match. However, Screw 2 is

subjected to negative light alternating stresses, thus contributing to connection stability. Fatigue

dimensioning must be relative to screw 1 since the admissible conventional fatigue stress of 50 MPa

(E25-030 1988) for H M10-60, 8.8 quality screws is reached under an external loading of 4500 N.

The experimental curves and numerical models also match for connection 2, (Fig. 7). However,

screw 2, loaded to 10000 N stabilises the connection. Note that the considerable alternating stresses

along this screw are due to the dimensions of the subassemblies cross-section (hp = 20 and

2a = 40 mm).

Fig. 8 shows the results relative to an aluminium connection similar to connection 2. Investigating

connection 3 shows that experimental tests, 3D calculation and simplified numerical model results

match, thus showing similar behaviour.

Finally, stiffness distribution factor REP has the same 0.75 value in the three examples. An

experimental design method is then used to validate this value and set out the effect of each joint

parameter on the screws behaviour.

5. Effect of the various parameters on screw stresses

Bolts stresses at a given external loading, depend on different joint parameters (preload, material

elasticity, joint dimensions).

5.1 Preload effect

Two different preload values are applied to joint 2: σ01 = σ02 = 200 MPa and 300 MPa. From the

results presented in Fig. 9, one can conclude that fatigue stresses decrease with increasing preloads

on screws.

Fig. 8 Comparison of results, 0 ≤ FE ≤ FEmax for connection 3
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5.2 Material and geometrical effects

A statistical method is applied to analyse the effects of various parameters (Ep, u, v, b, hP) on the

screws alternating stresses. Hence a combined experimental design with five factors and various

levels is established and the statistical method is underpinned by a mixed 18 values factorial pattern

covering 5 factors (Table 2) with 2 outputs:

Output 1 : Alternating stress on screw 1 : σa1

Output 2 : Alternating stress on screw 2 : σa2

The parameters with the most influence are chosen, and load eccentricity distance w (Fig. 2a) is

not taken into account since it mostly influences the connected part in bending. Thus varying v is

sufficient.

Table 2 Factors and levels with mixed experimental plan

Factors Description Level 1 Level 2 Level 3

 A (MPa) Ep 74000 21000 --------

B (mm) u 25 35 45

C (mm) v 10 20 25

D (mm) b (= 2a) 20 30 40

E (mm) hP 13 16 20

Table 3 Alternating stresses on screws 1 and 2 for 18 cases of the combined experimental plan, where σ01 =
σ02 = 200 MPa and FE = 4500 N

Case No Ep

(MPa)
u

(mm)
v

(mm)
b

(mm)
hp

(mm)
Screw 1
σa1 (MPa)

Screw 2
σa2 (MPa)

1 74000 25 10 20 13 142.63 −8.66

2 74000 25 20 30 16 71.78 −8.58

3 74000 25 25 40 20 31.87 −6.55

4 74000 35 10 30 20 46.53 −4.88

5 74000 35 20 40 13 78.88 −3.51

6 74000 35 25 20 16 92.67 −3.42

7 74000 45 10 40 16 53.73 −0.18

8 74000 45 20 20 20 57.27 −2.29

9 74000 45 25 30 13 94.63 0.20

10 210000 25 10 20 13 94.69 −6.44

11 210000 25 20 30 16 35.89 −4.76

12 210000 25 25 40 20 14.49 −2.00

13 210000 35 10 30 20 22.01 −2.77

14 210000 35 20 40 13 40.34 −1.72

15 210000 35 25 20 16 48.53 −3.14

16 210000 45 10 40 16 27.21 −1.20

17 210000 45 20 20 20 29.44 −2.18

18 210000 45 25 30 13 50.64 −0.42
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Alternating stress values are extracted from the simplified numerical model with a stiffness

distribution factor REP equal to 0.75. The results presented in Table 3 are compared to 3D

numerical simulations and experimental results and the coherence between results is verified.

For each factor, a variance analysis of 5% risk in the ultimate case is conducted to identify the

most determining factors. Moreover, the residual normality test is performed for each output to

verify the normal distribution of estimator coefficients and the effect each factor has on screw

alternating stresses is set out using JMP (2005) statistical software.

Fig. 9 Comparison of results for two different preloading tests on connection 2

Fig. 11 Effects of Young modulus and geometrical parameters on alternating stresses on screw 2

Fig. 10 Effects of Young modulus and geometrical parameters on alternating stresses of screw 1
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5.2.1 Subassemblies Young modulus effect

The subassemblies are made of steel (C 35 E) or aluminium (Al Cu 4 Mg Si (A)), whereas the

bolts are of steel only. The effect of EP on screw alternating stresses is shown in Figs. 10 and 11.

One can conclude that the absolute values of alternating stresses decrease with the Young modulus

increase. This can be explained physically by bending in the subassemblies, and the screws bending

decreases when its material is more rigid.

5.2.2 Effects of geometrical parameters on screw 1 alternating stresses

Fig. 10 shows the effect of each geometrical parameter on screw 1 alternating stresses. For fixed

preload and external loading, alternating stress (σa1) on screw 1 decreases as u, b and hp increase

whereas it is slightly influenced by parameters u and v. σa1 highly depends on the subassemblies

section dimensions b and hp. These parameters are directly related to the quadratic moment and part

bending.

5.2.3 Effect of geometrical parameters on screw 2 alternating stresses

Fig. 11 shows the effect of each geometrical parameter on screw 2. For fixed preload and external

loading, alternating stress (σa2) slightly varies with v, b and hp. The main influencing parameter is

screw axis distance u, since the absolute value of σa2 decreases when u increases. In conclusion,

alternating stresses decrease when the preload increases. Furthermore, fatigue stresses decrease

when subassembly cross-section dimensions and material rigidity increase. Finally, alternating

stresses on screw 2 are more significant when two screws are closer to each other.

6. Conclusions

In this paper, a developed numerical model for dimensioning two-threaded fasteners connections,

and computing the displacements and forces at each node of the structure is presented. The model

locates the contact zone, identifies the limit of interface separation for any compressive loading and

calculates screws stresses for static or dynamic dimensioning.

Experimental and numerical results showed that the second screw, the least subjected to bending,

increases loaded connection adherence, contributes in the assembly stiffness and decreases the

alternating stress on screw one. In various configurations alternating stress limit (σD) is first reached

on screw one.

Coherence between the experimental and numerical results validated the performance of the

model. A large number of different configurations are investigated using an experimental method

and a statistical software to show the effects of various factors on the screws alternating stresses. 

The coded model has the advantage of rapidly computing these connections compared to 3D finite

elements calculations. A similar model for dimensioning connections subjected to compressive

loading is actually being developed. In this case an additional problem is encountered in the

modeling of the contact between subassemblies and the angle corner of a rigid part, and calculating

the stiffness of that contact zone. Additional experimental results will be conducted to study the

influence of geometrical and materials parameters. This work will be the subject of a future

publication.
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Appendix: Stiffness matrices of T-stub model elements and the force-displacement

relationship

The developed model consists of bi-nodal beam and axial spring elements. Each node has three degree of
freedom (u, v, θ).

Beam elements:
For a beam element (i − j), (Fig. 11), the force-displacement relationship is

(A.1)

where {Fij} and {Uij} are force and displacement vectors and [Kij] is the stiffness matrix of the beam element

Fij{ } Kij[ ] Uij{ }=
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in the local coordinates system (u, v, z). The expressions used are

(A.2)

(A.3)

To change from the local to the global coordinates system, the transformation matrix [T] is given by

(A.4)

where  and 
Stiffness matrix  of a beam element (i − j) in the global coordinates system (x, y, z) is determined by

(A.5)

Properties of the beam elements modeling the bolted T-stub are resumed in Table 4.
For beam elements (part CA), dimensions bij and lij are mesh dependant. Stiffness matrix [Rg] of the free

structure is obtained by assembling the stiffness matrices of all the beam elements.

Fij{ } Xi  Yi  Mi  Xj  Yj  Mj{ }
T

=   and  Uij{ } ui  vi  θi  uj  vj  θj{ }
T

=
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T
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Table 4 Properties of beam elements of the model 

Beam elements Figs. E I S l ϕ

Beam elements (part CA) 2 and 3 EP bijhp lij 0

Beam elements B1L1 and B2L2 2 EP AP

Beam elements (bolts B1E1 and B2E2) 2 and 4 Eb Ibi Abi

bijhp
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Spring elements:
Stiffness matrix of the spring element, formulated in its local coordinate system, is given by

(A.6)

Axial stiffness kij depends on the spring (i − j) position. it is considered equal to zero at the detachment
location in the contact zone. Overall contact stiffness matrix [Rc] of the structure is obtained by assembling
the spring elements stiffness matrices.

Finally, global stiffness matrix [RT] is obtained by assembling matrices [Rg] and [Rc]. The force-displace-
ment relationship of the whole structure is expressed as in Algorithm 1, with the necessary boundary condi-
tions.

Kij[ ]
kij kij–

kij– kij

=




