
Structural Engineering and Mechanics, Vol. 26, No. 1 (2007) 15-30 15

Duality in non-linear programming for limit analysis of 
not resisting tension bodies

A. Baratta
†
 and O. Corbi

‡

Department of Structural Engineering, University of Naples “Federico II”, via Claudio 21, 

80125 Naples, Italy

(Received January 28, 2005, Accepted November 1, 2006)

Abstract. In the paper, one focuses on the problem of duality in non-linear programming, applied to
the solution of no-tension problems by means of Limit Analysis (LA) theorems for Not Resisting Tension
(NRT) models. In details, one demonstrates that, starting from the application of the duality theory to the
non-linear program defined by the static theorem approach for a discrete NRT model, this procedure
results in the definition of a dual problem that has a significant physical meaning: the formulation of the
kinematic theorem.
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1. Introduction

Masonry behaviour is often modelled by the Not Resisting Tension (NRT) assumption. As well

known, basic NRT models exhibit a simple linear elastic behaviour under compression stress states

and no resistance in tension, thus resulting in an overall fragile non-linear behaviour. It has been

shown (see Heyman 1969) that the loading capacity of NRT structures can be investigated by means

of the tools of the Limit Analysis (LA) theory, according to some extensions to NRT solids of the

static and kinematic LA theorems (see e.g. Baratta 1996, Como and Grimaldi 1983, Del Piero 1998). 

On the basis of the static theorem, the collapse multiplier definitely limiting the loading capacity

of the structure is recognized as the upper bound of the class of statically admissible multipliers, i.e.

its maximum value, while, by means of the kinematical approach, it is recognized as the lower

bound of the class of kinematically sufficient multipliers, i.e. its minimum value. 

Anyway both approaches, particularized to some specific cases (such as the evaluation of the

loading capacity of a masonry wall loaded by in-plane forces and modelled by finite elements with

constant stress/constant strain), lead to constrained extremum problems, governed by linear

objective functions under linear and non-linear constraint conditions, thus resulting in non-linear

programming problems, whose solution can be numerically pursued by means of Operational

Research methods.
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On the other side, since one deals with non-linear programming problems (Bazaraa et al. 1993,

Jahn 1996), they may be approached by means of the tools of duality theory (see Mangasarian

1969); one should emphasize that application of duality to non-linear programming is related to the

reciprocal principles of the calculus of variations, which have been known since as far back as 1927

(see Mond and Hansons 1967); therefore it yields interesting results when applied to the solution of

problems, such as the evaluation of the loading capacity of masonry panels, which obey NRT LA

theorems (Baratta and Corbi 2003, 2004).

In the following, one demonstrates that, starting from the application of the duality theory to the

non-linear program defined by the static theorem approach for the above mentioned discrete

masonry model, this procedure results in the definition of a dual problem that has a significant

physical meaning: the expression of the kinematic theorem based on the associated flow law

statement, despite it is, by no way, included in the origin static approach.

2. Limit analysis for not resisting tension bodies

2.1 The no-tension material

The basic assumption of no-tension masonry model coincides with the hypotheses that the tensile

resistance is null, and that the behaviour in compression is indefinitely linear elastic; under these

hypotheses, no-tension stress fields are selected by the body through the activation of an additional

strain field, the fractures (see Heyman 1969). Solution stress and strain fields are proven to satisfy

classical energetic principles, like the minimum principles of Complementary and Total Energy

functionals (see e.g. Del Piero 1988, Di Pasquale 1982, Baratta and Toscano 1982, Baratta and

Corbi, I. 2004, Baratta et al. 2004, Baratta and Corbi, O. 2003).

In details, in a NRT solid the equilibrium against external loads is required to be satisfied by

admissible stress fields, which imply pure compression everywhere in the solid. Assuming stability

of the material in the Drucker’s sense, compatibility of the strain field can be ensured by

superposing to the elastic strain field an additional fracture field, that does not admit contraction in

any point and along any direction; that is to say that the stress tensor σ must be negative semi-

definite everywhere in the solid (i.e., σ must be an element of the set of negative semi-definite

Fig. 1 Admissibility domains for stress (Σ) and fracture strain (Φf)
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stress tensors Σ), while the fracture strain field εf is required to be positive semi-definite (i.e., εf

must be an element of the set of positive semi-definite fracture strain tensors Φf) (Fig. 1).

The material should, hence, satisfy the following conditions

(1)

where ra is the set of directions through the generic point in the solid, a is one of such directions, εf

is the fracture strain that is assumed to superpose to the elastic strain εe in order to anneal tensile

stresses if possible, and C denotes the tensor of elastic constants.

The material admissibility conditions for strain and stress reported in Eq. (1) can be synthetically

referred to by the set of inequalities  and  respectively.

Moreover, one assumes that the classical Drucker’s postulate holds for the fracture strain (Fig. 2).

With reference to the admissible domain reported in Fig. 2, the normality Drucker’s law for no-

tension material can thus be written as

(2)

where σ' is any admissible stress state other than the effective one σ, and the principal tensors’

components relevant to the principal directions are denoted by (·)1 and (·)2 respectively. From Eq. (2)

one can infer that the internal fracture work σ · εf is always equal to zero.

2.2 Identification of the collapse multiplier for no-tension bodies

Let consider the body and surface forces, F acting on the volume V and p acting on the free

surface Sp, the displacement field u, the imposed displacement field uo characterizing the

constrained part of the solid surface Su, the above mentioned strain field ε = εe + εf = Cσ + εf , the

stress field σ.

As clear from the above, fracture strains εf can be developed at the considered point only if the

stress situation can be represented by a stress tensor σ laying on the surface of the material

plasticity domain, which is defined for NRT bodies by ; obviously if some fracture does

exist, it is developed according to the NRT material inequalities . 

SEMI-DEFINITE
εf  POSITIVE

σ  NEGATIVE⎩
⎨
⎧ εfa 0≥

σa 0≤
a∀ ra,  ε∈

⎩
⎨
⎧

→ εe εf+ Cσ εf+= =

hε εf( ) 0≥ hσ σ( ) 0≤

σ′ σ–( ) εf⋅ 0 σ′∀ Σ∈≤

σ1εf 1 0=  σ2εf 2 0=,{ } σ εf⋅⇒ 0=

hσ σ( ) 0≤
hε εf( ) 0≥

Fig. 2 Admissibility principal plane for stress (Ko) and normality Drucker’s law
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After assuming the applied loads as given by the sum of a fixed component (Fo, po) and a

variable component (sFv, spv) depending on the value assumed by the multiplier s (actually one thus

assumes that only the portion Fv, pv, may be destabilizing and should be controlled) 

(3)

one can define two fundamental classes of load multipliers s for NRT bodies: the class of statically

admissible multipliers β and the class of kinematically sufficient multipliers γ.

Denoted by αn the unit outgoing vector normal to the surface Sp, load multipliers β are defined to

be statically admissible if the following relations hold

(4)

(5)

that is to say, if it does exist a stress field σ
β equilibrating the applied loads with s = β and

satisfying the NRT material admissibility conditions. Any of such stress fields is qualified as

statically admissible. 

On the other side, load multipliers γ are defined to be kinematically sufficient if the following

relations hold

(6)

(7)

(8)

that is to say, if it does exist a displacement field  (a collapse mechanism) directly compatible

with a NRT admissible fracture strain  apart from any elastic strain field, and such that the

condition stated by Eq. (8) is also satisfied. It is understood that the body is stable under the basic

load pattern (Fo, po), and that inequality Eq. (8) cannot be satisfied by any fracture strain field for

γ = 0. In other terms it is assumed that the basic loads are suitably chosen in way that they cannot

produce collapse. 

Extensions to NRT continua of the fundamental static and kinematic theorems of Limit Analysis

allow individuating the value  of the load multipliers s, limiting the loading capacity of the body.

On the basis of the static theorem, one can state that “the collapse multiplier  represents the

maximum of the statically admissible multipliers β ”

(9)

where Bo is the class of statically admissible multipliers.

F Fo sFv+ 0  in  V= =

p po spv+           on  Sp=⎩
⎨
⎧

divσ
β

Fo βFv+ + 0  in  V=

σ
β
αn po βpv          on Sp+=⎩

⎨
⎧

hσ σ
β( ) 0≤

εf

γ
Grad uf

γ( )  in  V=

uf

γ
0              on Sp=⎩

⎨
⎧

hε εf( ) 0≥

Fo uf

γ
Vd⋅

V
∫ po uf

γ
Sd⋅

Sp

∫ γ Fv uf

γ
Vd⋅

V
∫ γ pv uf

γ
Sd⋅

Sp

∫+ + + 0>

uf

γ

εf

γ

s

s

s max β Bo∈{ }=
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On the basis of the kinematic theorem, one can state that “the collapse multiplier  represents the

minimum of the kinematically sufficient multipliers γ ”

(10)

where Γo is the class of kinematically sufficient multipliers.

Therefore, by means of the static theorem, one can search for the collapse multiplier by

implementing the problem

(11)

Or otherwise, by means of the kinematic theorem, by solving the problem

(12)

3. Finite element model of a NRT plane structure

3.1 Definitions of the variables governing the problem

Let consider a plane structure modelled by means of the NRT assumption, loaded by in-plane

forces. As well known, the structure can be easily reduced to a model characterized by a finite

number of elements, occupying small regions of the original surface, after making some suitable

assumptions. Therefore, the structure can be viewed as given by the union of a number M of plane

adjacent elements, jointed to each other at a number N of defined points, the nodes, which coincide

with the edges of the considered elements. For simplicity’s sake, reference is made to a mesh

assembled by constant stress/strain elements.

After reducing the loads acting on the structure to simple nodal loads collected in the overall

nodal load vector q, in order to evaluate the loading capacity of the structure, q is assumed as the

sum of a fixed component qo and a variable component sqv depending on the value assumed by the

load multiplier s.

When the load multiplier s reaches the collapse value , a failure mechanism is activated

(characterized by fracture displacements) and the structure collapses.

One then introduces the other quantities governing the problem, presented in vector form, in

details, the nodal fracture (or mechanism) displacement uf directly compatible with the fracture

strain εf  and the stress σ.

All of these quantities relevant to the original structure, i.e. loads q, displacements uf, strains εf

and stresses σ, can be built up by suitably collecting the analogous quantities qe, ufe, εfe and σe

s

s min γ Γo∈{ }=

Find   β{ }
β σ

β
,

lim Sub

divσ
β

Fo βFv+ + 0  in  V=

σ
β
αn po βpv          on Sp+=⎩

⎨
⎧

  hσ σ
β( ) 0≤⎩

⎪
⎨
⎪
⎧

=max

Find   γ{ }
γ εf

β
uf

β
, ,

lim Sub

εf

γ
Grad uf

γ( )  in  V=

uf

γ
0              on Sp=⎩

⎨
⎧

  hε εf

γ( ) 0≥

  Fo uf

γ
Vd⋅

V
∫ po uf

γ
Sd⋅

Sp

∫ γ Fv uf

γ
Vd⋅

V
∫ γ pv uf

γ
Sd⋅

Sp

∫+ + + 0>
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=min

s



20 A. Baratta and O. Corbi

relevant to the single elements e.

Under the constant stress/strain assumption, one assumes that both the strain vector εfe and stress

vector σe are kept constant in the generic element.

One can, thus, write with reference to the overall structure

(13)

and, with reference to the single element  

 
(14)

where Ne is the number of nodes characterizing the element e; , with r = 1…2Ne, denote

respectively the in-plane components (along the two plane co-ordinate directions x, y) of the element

displacement and load vectors; finally  with � = 1…3 represent respectively the in-plane

strain and stress element components in the co-ordinate reference axes, i.e., the normal εf ke, σke

(k = x, y) and tangential components τf e, γf e of stress and strain.

One should notice that the components  of the element strain and stress vectors

correspond to the components εft, σt of the overall vectors, according to the relation between

indexes t = 3(e − 1) + �.

Under these assumptions, one can write general equalities and inequalities governing the whole

problem, i.e., all of those equations that should be satisfied by the solution  associated

to the collapse value .

3.2 Compatibility, equilibrium and admissibility conditions

For the discrete model, one should consider compatibility equations between elements’ fracture

strains and nodal displacements on one side, and equilibrium conditions between elements’ stresses

and nodal loads on the other side. Therefore, compatibility conditions may be expressed in the

following matrix and scalar forms

(15)

where B is the compatibility matrix with elements bij and dimension [3M × 2N], while, analogously,

equilibrium is given by

(16)

where A is the equilibrium matrix with elements aij, whose dimension is [2N×3M]. The two

matrices are related by the transpose operation B = AT.

q 2N 1×[ ]

q1

q2N

= , uf 2N 1×[ ]

uf1

uf2N

= , εf 3M 1×[ ]

εf1

εf3M

= σ 3 1×[ ]

σ1

σ3M

=,… … … …

qe 2Ne 1×[ ]

q1

e( )

q2Ne

e( )

= , ufe 2Ne 1×[ ]

uf1

e( )

uf2Ne

e( )

= , εfe 3 1×[ ]

εf1

e( )

εf 2

e( )

εf3

e( )

εf xe

εf ye

γfe

= = σe 3 1×[ ]

σ1

e( )

σ2

e( )

σ3

e( )

σxe

σye

τe

= =,… …

ufr

e( )
qr

e( ),

ε f�
e( )

σ �

e( ),

ε f�

e( )
σ �

e( ),

uf εf σ, ,{ }
s

Buf εf, bijufj

j 1=

2N

∑ εf i, i 1…3M= = =

Aσ q qo sqv, aijσj

j 1=

3M

∑ qoi sqvi+ , i 1…2N= =+= =
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Therefore, since bij = aji, compatibility and equilibrium conditions can be rewritten in the form

(17)

(18)

Since, for the NRT material, compatibility requires that the additional fracture field does not admit

contraction in any point and along any direction, as mentioned in the above, this would imply that

the fracture strain field εf is positive semi-definite and, therefore, with reference to the finite element

(FE) model, that the element strain components satisfy the inequalities

(19)

synthetically expressed by the set of inequalities .

Moreover since the basic assumption of no-tension models is that purely compressive stresses are

activated at any point of the body, which implies the negative definition of the stress tensor all over

the body, admissibility for the discrete model imposes that the single element stress vector satisfies

the relations

(20)

synthetically expressed by the set of inequalities .

Finally the problem is governed by compatibility equalities Eq. (17), equilibrium equalities

Eq. (18), and admissibility inequalities Eqs. (19), (20).

Moreover two further conditions should characterize the mechanism

(21)

The first representing the condition that qo is the stabilizing part of the load, the second ensuring

that the work produced by the load during the mechanism is balanced by the internal fracture work

(i.e., the energy dissipated in correspondence of the fractures, which is equal to zero). 

3.3 The static theorem approach

On the basis of the relations governing the problem introduced in the previous section, one can

search for the value  (and, thus, the related mechanism  and stress ) of the load multiplier

fε uf εf,( ) Buf εf– 0, bi juf j

j 1=

2N

∑ εfi– uf jaj i εf i– 0, i=

j 1=

2N

∑= 1…3M= = =

fσ s σ,( ) qo– sqv– Aσ+ 0, qoi sqvi aijσj

j 1=

3M

∑–+ 0, i= 1…2N= = =

Rε εf( )

εxe 0≥

εye 0≥

εf xeεf ye
1

4
---γfe

2
0≥–

,  e

⎩
⎪
⎪
⎨
⎪
⎪
⎧

1…M= =

hε εf( ) 0≥

hσ σ( )

σxe 0≤

σye 0≤

τe

2
σxeσye– 0≤

,  e

⎩
⎪
⎨
⎪
⎧

1…M= =

hσ σ( ) 0≤

qo uf⋅ 0≤

qo sqv+( ) uf⋅ σ εf⋅=⎩
⎨
⎧

s uf ε f, σ
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s, limiting the loading capacity of the structure, by applying respectively the LA static and

kinematic theorems.

In details, the NRT static problem can be set up for the discrete plane model, by defining the class

of statically admissible multipliers.

As mentioned in the above, a load multiplier, in order to be statically admissible should comply

with Eqs. (18) and (20).

Therefore the problem of searching for the collapse multiplier of the applied loads , i.e. the

maximum value of the parameter s equilibrated by NRT admissible stress fields, can be set as a

constrained extremum problem, in the form

(22)

where θ represents the objective function, zT = [s σ] is the unknown vector, Z is the statically

admissible z field, made by all vectors z satisfying the constraints g.

Eq. (22) represent a non-linear programming problem (the objective function is linear but one of

the constraints is non-linear) that can be numerically solved by means of the operational research

tools. In Sect.5, after introducing some elements of duality theory (Sect.4), a physical interpretation

of the dual problem of Eq. (22) is demonstrated.

3.4 The kinematic theorem approach

Analogously to what developed in the previous section, one can search for the collapse multiplier

, by applying the LA kinematical theorem to the considered NRT problem.

After defining the class of kinematically sufficient multipliers, the collapse value  is identified

as its minimum.

A load multiplier, in order to be kinematically sufficient should comply with Eqs. (17) and (19),

which represent compatibility between associated fracture strain and displacement and NRT

compatibility conditions relevant to the fracture strain. Conditions Eq. (21), accounting for balancing

between internal and external energy dissipated during the mechanism, should also be satisfied.

Therefore the problem of searching for  can be set as a constrained minimum problem, which

again represents a non-linear programming problem, since some of the described constraints are

non-linear.

4. Duality in non-linear programming

4.1 A short introduction 

Duality plays a crucial role in the theory and computational algorithms of linear programming.

Duality in non-linear programming is of a somewhat later development of duality theory in linear

programming, beginning with the duality results of quadratic programming (see Mangasarian 1969).

However, duality theory in non-linear programming is related to the reciprocal principles of the

calculus of variations, which have been known since as far back as 1927 (see Mond and Hansons

1967).

s

Find  
z Z∈
lim θ z( ) s–=min Sub  g z( )

f z( ) fσ s σ,( ) 0= =

h z( ) hσ σ( ) 0≤=⎩
⎨
⎧

=

s

s

s
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This feature, makes its application to specific structural problems (Baratta and Corbi 2004)

particularly interesting as regards the possibility of demonstrating the physical and theoretical

meaning of the related dual problems, deduced by applying duality theory.

In the following, one introduces the minimization problem and its dual and shortly presents some

basic duality results of non-linear programming, selected according to the specific subsequent

application to NRT panels. 

4.2 Primal minimization problem and related dual maximization problem

Let Zo be an open set in Rn, θ  be a numerical function on Zo, and let f and h be respectively a λ-

dimensional and a µ-dimensional vector function, both defined on Zo.

Let consider the (primal) minimization problem (MP) that consists of searching for , if it exists,

such that

(23)

The dual (maximization) problem (DP) of Eq. (23) is given as follows. Let θ, f and h be

differentiable on Zo. Find a  and , if they exist, such that

(24)

or equivalently

(25)

The vectors v and w obviously represent additional unknown vectors respectively collecting the

multipliers of the equality and inequality constraint functions, f (z) and h(z), in the dual problem, as

shown in the expression of the dual objective function ψ(z, v, w). One should emphasize that only

multipliers associated to constraints represented by inequalities (the components of w) are required

to be non-negative (w ≥ 0), while no condition applies to those (i.e., v) associated to equality

constraints.

The duality results relate solutions  of the primary problem MP and  of the dual

problem DP to each other. The objective functions θ and ψ are also related by means of duality (see

Mangasarian 1969).

5. Duality theory in non-linear programming and NRT discrete problems

5.1 Problem set up

After shortly introducing some elements of duality theory in non-linear programming, one can get

z

θ z( )  
z Z∈
lim θ z( )= min z Z∈ z Z

o∈ f z( ) 0= h z( ) 0≤, ,{ }=

ẑ v̂ R
λ∈ ŵ R

µ∈,

ψ ẑ v̂ ŵ, ,( ) ψ z v w, ,( )
z v w, ,( ) Z*∈

lim=

ẑ v̂ ŵ, ,( ) Z*∈ z v w, ,( ) z Z
o∈ v R

λ∈ w R
µ∈ ψ z v w, ,( )z∇ 0 w 0≥,=, , ,{ }=

ψ z v w, ,( ) θ z( ) v f z( )⋅ w h z( )⋅+ +=

max

θ ẑ( ) v̂ f ẑ( )⋅ ŵ h ẑ( )⋅+ + θ z( ) v f z( )⋅ w h z( )⋅+ +[ ]
z v w, ,( ) Z*∈

lim=

ẑ v̂ ŵ, ,( ) Z*∈ z v w, ,( ) z Z
o∈ v R

λ∈ w R
µ∈ θ z( )∇ f z( )v∇ h z( )w∇+ + 0 w 0≥,=, , ,{ }=

max

z ẑ v̂ ŵ, ,( )
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back to the non-linear problem given in Eq. (22), which represents the explicit expression of the

static problem of limit analysis for plane structures loaded by in-plane forces and made by NRT

material.

The problem can be rewritten in a form analogous to the one given for generally expressing the

primal problem Eq. (23), i.e.

(26)

with

(27)

and

(28)

the dimension of f is, for the specific case, λ = 2N, while the dimension of h is µ = 3M, being the

number of equilibrium equations equal to 2N and the number of admissibility conditions equal to

3M.

Eqs. (26)-(28) thus define the primal static problem, whose dual can be given, according to Eq. (24),

as

(29)

Since

(30)

the final expression of the objective function is

(31)

θ z( )  
z Z∈
lim θ z( )= min z Z∈ z Z

o∈ f z( ) 0= h z( ) 0≤, ,{ }=

θ z( ) s, z
T

– s  σ
T[ ]

T
= =

  g z( )
f z( ) fσ s σ,( ) 0= =

h z( ) hσ σ( ) 0≤=⎩
⎨
⎧

=

  qoi sqvi ai jσj

j 1=

3M

∑–+ 0,  i= 1…2N=

σxe 0≤

σye 0≤

τe

2
σxeσye– 0≤

,                 e

⎩
⎪
⎨
⎪
⎧

1…M=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

ψ ẑ v̂ ŵ, ,( ) ψ z v w, ,( )
z v w, ,( ) Z*∈

lim=

ẑ v̂ ŵ, ,( ) Z*∈ z v,( ) z Z
o∈ v R

2N∈ w R
3M∈ ψ z v w, ,( )z∇ 0 w 0≥,=, , ,{ }=

ψ z v w, ,( ) θ z( ) v f z( )⋅ w h z( )⋅+ +=

max

z 1 1 3M+( )×[ ]

T
z
T

s σxe σye τe, , ,( ) s,  σx1  σy1  τ1 … σxM  σyM  τM[ ]T= =

v 1 2N×[ ]

T
v
T

υi( ) υ1…υ2N[ ]T= =

w 1 3M×[ ]

T
w

T
ρxe ρye ξe, ,( ) ρx1  ρy1  ξ1 … ρxM  ρyM  ξM[ ]T= =

ψ z v w, ,( ) ψ s σxe σye τe υi ρxe ρye ξe, , , , , , ,( ) θ z( ) v f z( )⋅ w h z( )⋅+ += =

L1

e
z( )– L2

e
z( )– L

i
z( )+=
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with 

(32)

Furthermore, as previously emphasized, the unknown components of w are required to be non-

negative (w ≥ 0) since they are associated to constraints represented by inequalities, while no

condition applies for multiplier v, which are associated to equality constraints.

Thus, additional conditions on the unknown multipliers can be expressly given as 

(33)

while no constraint should be applied on υi, i = 1…2N.

By developing,  one gets

(34)

(35)

(36)

(37)

Eq. (29) with the associated Eqs. (30)-(37) give a complete representation of the dual problem.

5.2 Solution of the primal and dual problem

 

By means of duality, one can assert that the solution  of the dual problem Eq. (29) coincides

with the solution  of the primal problem Eq. (26).

5.3 A physical interpretation of the expression of the dual problem

Once set up the primal and dual problems as shown in the previous section, where the primal

problem represents the expression of the static theorem of Limit Analysis for NRT discrete plane

models loaded by in-plane forces, one can figure out some interesting considerations on the

associated dual problem.

L1

e
z( ) s=

L2

e
z( ) υi qoi sqvi ai jσj

j 1=

3M

∑–+

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

2N

∑–=

L
i

z( ) ρxeσxe ρyeσye ξe τe

2
σxeσye–( )+ +[ ]

e 1=

M

∑=

ρxe 0≥   ρye 0≥   ξe 0≥   e, , , 1…M=

ψ z v w, ,( )z∇ 0=

∂ ψ

∂ s
------- 1– qviυi

i 1=

2N

∑+ 0= =

∂ ψ

∂ σxe

----------- ρxe ξeσye–( ) υiait
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Looking at the expression of the dual objective function  in Eqs. (31), (32) as a primal

problem, it can be shown that the dual problem Eqs. (29)-(37) represents the expression of the

kinematic problem of Limit Analysis for the considered NRT model.

Thus, in the following, one starts from the problem Eqs. (29)-(37), trying to understand, by means

of algebraic operations and overall demonstrations, the physical meaning of each term.

5.3.1 Stress admissibility and equilibrium

First of all, since the dual function is maximum in solution, any variation δψ associated to any

admissible δ w should be negative, i.e., δψ ≤ 0 ∀ δ w such that (w + δ w) ≥ 0.

Thus, let consider the third term Li(z) on the right hand side of Eq. (31), given in Eq. (32).

Let analyse the contribution of the first term ρxeσxe. On the multiplier ρxe constraints Eq. (33)

apply, so that ρxe ≥ 0; thus, for any variation δρxe one should have a negative variation of the dual

function, i.e., δψ ≤ 0. Two cases should be considered depending on the initial value of ρxe: i)

ρxe > 0; ii) ρxe = 0.

In the first case i) in order to have δψ ≤ 0 for any δρxe ≠ 0 such that (ρxe + δρxe) ≥ 0, one should

have that σxe = 0; in the second case ii), since one can have only δρxe > 0, in order to have δψ ≤ 0

one should have σxe < 0. After combining the two conditions one gets that σxe ≤ 0.

By applying the same reasoning to the other two terms in the expression of Li(z), i.e., ρyeσye and

, one can make analogous considerations, finally getting

(38)

which represent NRT stress admissibility conditions in the single element. 

On the other side, by considering the second expression in Eq. (31), (z), given in the second of

Eq. (32), since the coefficients υi are not constrained in sign, the quantity in parenthesis is forced to

be zero, otherwise positive variations of the objective function could be produced. The result is that

the stresses σi are admissible and in equilibrium with the applied load, and the term (z) is null in

solution.

5.3.2 Strain admissibility and compatibility

Under the above deduced stress admissibility, strain compatibility can be individuated.

Let introduce the element and overall vectors,  and ,

such that the component η�e of ηe (with � = 1, 2, 3) is related to the component η� of η according

to the relation t = 3(e − 1) + �. Then, in Eqs. (34)-(37) let assume that

(39)

Again with reference to the term Li(z), one can make additional considerations.

Let first consider the third term of Li(z), that is  for the single element e. Because

of NRT stress admissibility, one has two basic cases with reference to the element e: i) ;

ii) .
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In the first case i) one has ; since also  and  one deduces that 

and , which in turn, involves (for what stated in the previous paragraph) that  and

. On the other side, the same condition i) imposes that ξe = 0 (again as stated in the

previous paragraph). Therefore, when σ(e) is strictly negatively defined, then ηe = 0, and the relevant

contribution to Li(z) is null.

In the second case ii) one has  for the element e; the contribution to Li(z) can be

written as

(40)

On the other hand, one can check that

(41)

For what stated in the above, the considered case implies that ξe > 0 and, thus, because of Eq. (41),

η3e > 0; the term  η3eσ3e, gives again a null contribution to Li(z).

Moreover, for the other two terms in Eq. (41), i.e., ρxe σxe and ρye σye, one can make

considerations that are analogous to the previous ones (now one can have both σxe ≤ 0 and σye ≤ 0,

with ρxe ≥ 0 and ρye ≥ 0), thus demonstrating that both contributions are equal to zero.

Finally, for the considered case ii), from Eq. (41), one has that the contribution of the element e to

Li(z) can be written as σ
(e) · ηe for ηe ≠ 0 (which means that some of the elements of ηe may be

equal to zero), which is null since it is given by the sum of null quantities.

Hence, one can combine the considered cases i) and ii), synthesizing that 

(42)

Eq. (42) makes clear that in solution Li(z) represents the internal fracture work for NRT material σ ·

εf, that is to say that η = εf

 (43)

and in the reference of principal axes 1, 2

(44)

which exactly represents the condition for the development of fractures in NRT materials, as shown

in the general section devoted to the introduction of the NRT model.

Therefore, after substituting Eq. (44) in Eqs. (34)-(36), one gets
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(45)

which express compatibility between displacements and fractures, under the assumption that υi = ufi,

i = 1…2N. Thus the multipliers υi physically represent compatible displacements.

Compatibility for NRT materials also requires that the fracture strain tensor is positive semi-

definite, that is to say that Eq. (19) hε (εf) ≥ 0 are satisfied.

This can be demonstrated, simply looking at the expressions of the components of εf, which are

shown to be given by a sum of non-negative elements. Therefore, it can be easily checked, because

of Eq. (33) and of the NRT stress admissibility Eq. (38), that

(46)

5.3.3 Discussion on the objective function
As shown in the previous section, the dual objective function Eq. (31) is made of three main

components; the third one Li(z) has been shown to have a precise physical meaning in solution: it

represents the internal fracture work σ · εf between the NRT admissible stress σ and the NRT

compatible fracture strain εf.

Consequently, as shown in the above, Eqs. (35)-(37) assume the meaning of compatibility

equations between fractures and displacements, thus identifying the multipliers υi as compatible

displacements ufi, i = 2…2N. 

In any case, in solution both (z) and Li(z) are zero. The objective function turns out, in solution

and hence at its maximum admissible value, to be equal to -s, i.e., after changing the sign, to the

minimum value of the load factor compatible with the constraints. 

5.3.4 Physical interpretation of the dual problem

The developments in the above prove that the dual problem in solution obeys some basic

conditions. First of all, the σ-variables can be interpreted as admissible compressive stresses in

equilibrium with the applied loads (Sec. 5.3.1); secondly, the ρ- and ξ-variables, suitably combined

to form the η-variables, are correlated to the ε-variables that can be interpreted as a set of fracture

strain components (Sec. 5.3.2); the latter are admissible fracture strains compatible with the υ-

variables that can therefore be interpreted as a set of displacements uf. The result is that uf is a

collapse mechanism. Moreover the internal work σ · εf is null in solution (Eq. (44)), as prescribed
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for NRT solids. 

Since  = Li = 0, the optimal value of the objective function in solution yields the minimum

value of the load factor, reversed in sign, allowing for the existence of a collapse mechanism

associated to a positive work performance by the variable load components, conventionally

normalized to unity (Eq. (34)).

This result coincides with the definition of the safety factor as the smallest kinematically sufficient

factor; the coincidence of the optimal values in both the primal and the dual problem (Eq. (27)),

proves moreover that the largest statically admissible factor coincides with the smallest

kinematically sufficient factor, their common value uniquely yielding the actual safety factor.

6. Conclusions

In the paper the problem of duality in non-linear programming applied to NRT structures is

approached. Actually, in dealing with no-tension structures, a big variety of applications lead to the

set up of constrained extremum problems, mainly characterized by linear objective functions and

linear and non-linear constraint. All of these problems, as non-linear programming problems, can,

thus, be numerically solved by means of Operational Research tools.

On the other side, application of duality principles to the treated cases may be of particular

interest. In the paper, duality theory is applied for the evaluation of the loading capacity of NRT

structures, by means of Limit Analysis theorems explicitly formulated for NRT models.

In details, one demonstrates that, starting from the application of the duality theory to the non-

linear program defined by the static LA theorem approach for a discrete NRT model, this procedure

results in the definition of a dual problem that represents the application of the kinematic LA

theorem and yields the basic contiguity theorem of the two classes, the statically admissible and

kinematically sufficient load factors.

By the way, the duality analysis proves that the assumption of an associated flow law (i.e., the

Drucker’s postulate is assumed to hold) is a necessary condition for the kinematic approach to yield

separate results, contiguous to the static method. In other words, the static criterion for collapse has

its own validity independently of the flow law, whilst the kinematic criterion needs some more

detailed specification concerning the development of inelastic strain.

References

Baratta, A. (1996), “Structural analysis of masonry buildings”, In: Seismic Risk of Historic Centers. A
Preliminary Approach to the Naples Case, A. Baratta and T. Colletta Eds., La Città del Sole B.C., Napoli, 76-
122.

Baratta, A. and Corbi, I. (2004), “Plane of elastic non-resisting tension material under foundation structures”, Int.
J. Numer. Anal. Meth. Geom., 28, 531-542.

Baratta, A. and Corbi, O. (2003), “Limit analysis of no tension bodies and non-linear programming”, Proc. 9th
Int. Conf. Civil and Structural Engineering Computing. Egmond Aan Zee, Netherlands. 

Baratta, A. and Corbi, O. (2003), “The no tension model for the analysis of masonry-like structures strengthened
by fiber reinforced polymers”, Int. J. Masonry Int., British Masonry Society, 16(3), 89-98.

Baratta, A. and Corbi, O. (2004), “Applicability of duality theory to L.A. problems with undefined flow law”,
Proc. 1st Int. Conf. RRTEA on Restoration, Recycling, Rejuvenation Technology for Engineering and

L2

e



30 A. Baratta and O. Corbi

Architecture Application. Cesena, Italy.
Baratta, A. and Toscano, R. (1982), “Stati tensionali in pannelli di materiale non reagente a trazione”, Proc. 6th

Nat. Conf. AIMETA, Genova, 2, 291-301.
Baratta, A., Zuccaro, G. and Binetti, A. (2004), “Strength capacity of a no-tension portal arch-frame under

combined seismic and ash loads”, J. Volcanol. Geoth. Res., 133, 369-376.
Bazaraa, M.S., Shetty, C.M. and Sherali, H.D. (1993), “Non-linear programming: theory and algorithms”, (Wiley

Series in Discrete Mathematics & Optimization), John Wiley and Sons Eds., March 1993. ISBN: 0471557935.
Como, M. and Grimaldi, A. (1983), “A unilateral model for limit analysis of masonry walls”, In: Unilateral

Problems in Structural Analysis, Ravello, 25-46.
Del Piero, G. (1988), “Constitutive equations and compatibility of the external loads for linearly elastic masonry-

like materials”, J. Meccanica, 24(3), 150-162.
Del Piero, G. (1998), “Limit analysis and no-tension materials”, Int. J. Plasticity, 14, 259-271.
Di Pasquale, S. (1982) “Questioni di meccanica dei solidi”, Proc. 6th Nat. Conf. AIMETA, Genova, 2, 251-263.
Heyman, J. (1969), “The safety of masonry arches”, J. Mech. Sci., 2, 363-384.
Jahn, J. (1996), “Introduction to the theory of nonlinear optimization”, Springer-Verlag Berlin and Heidelberg

GmbH & Co. K, September 1996.
Mangasarian, O.L. (1969), Nonlinear Programming, McGraw-Hill, USA.
Mond, B. and Hansons, M.A. (1967), “Duality for variational problems”, J. Math. Anal. Appl., 18, 355-364.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




