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Response of dynamic interlaminar stresses in laminated 
plates under free vibration and thermal load
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Abstract. The response histories and distribution of dynamic interlaminar stresses in composite
laminated plates under free vibration and thermal load is studied based on a thermoelastodynamic
differential equations. The stacking sequence of the laminated plates may be arbitrary. The temperature
change is considered as a linear function of coordinates in planes of each layer. The dynamic mode of
displacements is considered as triangle series. The in-plane stresses are calculated by using geometric
equations and generalized Hooke’s law. The interlaminar stresses are evaluated by integrating the 3-D
equations of equilibrium, and utilizing given boundary conditions and continuity conditions of stresses
between layers. The response histories and distribution of interlaminar stress under thermal load are
presented for various vibration modes and stacking sequence. The theoretical analyses and results are of
certain significance in practical engineering application.
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1. Introduction 

Composite laminated structures are being increasingly used in aerospace and aeronautical area.

These structures are often subjected to combinations of dynamic mechanical loads and thermal

loading. One of the main causes to failure of composite laminated structures is delamination

damage, which is significantly derived from interlaminar stresses. Previous research was mainly

limited in the interlaminar stress distributions in laminated structure under static load, while

response histories and distribution of dynamic interlaminar stresses was seldom mentioned (Reddy

1996). Several scholars (Carvalho and Guedes Soares 1996, Ganapathy and Rao 1997, Babeshko

1996) presented theoretical and numerical methods to predict the interlaminar stresses in composite

laminated plates. A simple iterative method (Makeev and Armanios 1994) was applied to evaluate

interlaminar stresses in composite laminated subjected to axial tension and torsion loads. Some

other methods (Becker, Peng and Neuser 1999, Cho and Yoon 1999, Yong and Cho 1995, Di and

Ramm 1993) were presented to calculate interlaminar stresses at various positions in laminates. The

interlaminar stresses in laminated plates subjected to vibration were analyzed in reference (Jane and
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Hong 2000), but in the paper, the effect of thermal load was not taken into account. Thermal

stresses of composite laminated structures studied in papers (Verijenko and Tauchert 1999,

Savchenko 1995, Chandrashekhara and Bhimaraddi 1994, Ding and Tang 1999, Zhang and Liu

1992) are also limited in static problems. The papers (Jianqiao and Soldatos 1996, Messina and

Soldatos 2002) reported the results of an investigation into free vibration analysis and continuity

interlaminar stresses in laminated composite based on higher order theories.

In this paper, the response histories and distribution of interlaminar stresses in rectangular

laminated plates with simply supported edges, subjected to free vibration and in thermal

environment is studied in some depth. The temperature change is considered as a linear function of

coordinates in planes of each layer. A theoretical solution to predict the interlaminar stresses in

composite laminated plates subjected to free vibration and thermal load is presented for considering

various vibration modes and stacking sequence. Some numerical examples and results on the

problem are also presented and discussed.

 

2. Govering equation 

The structure of rectangular orthotropic laminated plates with simply supported edges is shown in

Fig. 1. The relationship between stresses and strains in plane is expressed as (Tsai and Hahn 1980)

 (1)

where  and  represent, respectively, the stress, the strain and the temperature

change of the kth layer.  and  represent, respectively, the bias axial stiffness

coefficient and the bias axial thermal expansion coefficient of a single layer in the geometrical

coordinate (x, y, z) system, and are, respectively, expressed as 
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Fig. 1 The structure of rectangular orthotropic laminated plates with simply supported edges
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(2a)

(2b)

where α1 and α2 are, respectively, the thermal expansion coefficient measured in the fiber and

transverse directions of a single player in the material main axis (1-2) 

(2c)

and 

(2d)

where θ is the lamination angle with respect to the plate x-axis.

Based on a micro-mechanical model of the laminate (Bowles and Tompkins 1989), the thermal

expansion coefficients in the longitudinal and transverse directions of fiber are expressed as 

(3a)

(3b)

where αf and αm are thermal expansion coefficients of the fiber and matrix, respectively.

In the above formula, Vf and Vm are the fiber and matrix volume fractions and are related by 

(4)

and Ef, Gf and vf are, respectively, the Young’s modulus, shear modulus and Poisson’s ratio of the

fiber and Em, Gm and vm are the corresponding properties for the matrix. Thus, the material

properties of lamina are expressed as 
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The study is based on 1/4 of the plane area according to symmetry of laminated plates. Suppose

the variation of the temperature at the center of  plane shown in Fig. 2 is , and

(the temperature variation at any position) is linear function of  related to x and y as

follows

 (6)

The geometric equation is given by

(7a)

Form Eq. (7a), the displacement expressions is represented as

(7b)

Substituting Eq. (7) into Eq. (1), the plane stresses in the k layer of laminated plates in thermal

environment can be rewritten as
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Fig. 2 The plane structure of the laminated plates with simply supported edges. I represents 1/4 symmetry
region of the laminated plates
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3. Response of dynamic interlaminar stresses

For the kth layer of laminated plates, the differential equations of dynamic equilibrium without

considering inertial forces fi is represented as 

(9)

Integrating for Eq. (9) over z, dynamic interlaminar stresses are represented as

 (10a)

  (10b)

 (10c)

The boundary conditions of laminated plates with simply supported boundary are expressed as 

 (11)

The mode function of free vibration of the laminated plates with simply supported boundary (11)

may be expressed as 

(12)

and the corresponding displacement mode is written as

(13)

where ωmn expresses the nature frequency of free vibration of laminated plates, which is easily

obtained based on the corresponding stacking sequence of laminated plates, m and n are,

respectively, wave numbers of vibration along x and y directions. 

Substituting Eq. (13) into Eq. (7b), yields
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 (15a)

    (15b)

   (15c)

where  are the known functions,  are undetermined

functions related to x and y, which is determined by utilizing the upper and bottom surfaces

conditions of laminated plates and the continuity conditions of interlaminar stresses between layers

as follows stresses in the upper and bottom of the laminated plate
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Substituting Eq. (15) into Eq. (16a), gives 

 (17)

Substituting Eq. (17) into Eq. (15), the stress out-plane of the lth layer can be determined as 

 (18)
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(21)

4. Numerical results and discussions

To study the effects of temperature, humidity and electric fields on the response histories of

dynamic interlaminar stresses in laminated plates, several numerical examples were solved for

different stacking sequence laminated plates. Graphite/epoxy composite material was selected for

the plates in the present examples. The material properties adopted are (Adams and Miller 1977)

τyz

k~k 1– zk

2

2
---- ρ

k
ωmn

2 nπ

b
------ Q22

k n
3
π
3

b
3

----------– Q12

k
2Q66

k
+( )m

2
nπ

3

a
2
b

---------------–  ×
⎩
⎨
⎧

=

sin
mπx

a
----------- cos

nπy

b
--------- Q16

k m
3
π
3

a
3

------------ 3Q26

k mn
2
π
3

ab
2

---------------+⎝ ⎠
⎛ ⎞ cos

mπx

a
-----------sin

nπy

b
---------–

⎭
⎬
⎫
sinωmnt

 z T0∆ Q12

k
Q16

k
+( )αx

k
Q22

k
Q26

k
+( )αy

k
Q26

k
Q66

k
+( )αxy

k
+ +[ ] g

k
x y,( )+ +

σz

k~k 1–
zkρ

k
ωmn

2
–

z
3

6
---- ρ

k
ωmn

2 m
2
π
2

a
2

------------
n
2
π
2

b
2

----------+⎝ ⎠
⎛ ⎞ 2 Q12

k
2Q66

k
+( )–+

⎩
⎨
⎧

 ×=

m
2
n
2
π
4

a
2
b
2

----------------- Q11

k m
4
π
4

a
4

------------– Q22

k n
4
π
4

b
4

----------–

⎭
⎬
⎫

sin
mπx

a
-----------sin

nπy

b
---------sinωmnt

 
2zk

3

3
------- Q16

k m
3
nπ

4

a
3
b

--------------- Q26

k mn
3
π
4

ab
3

---------------+⎝ ⎠
⎛ ⎞ cos

mπx

a
-----------cos

nπy

b
---------sinωmnt+

zk
∂f

k
x y,( )

∂ x
---------------------

∂ g
k

x y,( )
∂ y

----------------------+– h
k

x y,( )+

Fig. 3 (a,b) The response histories and distribution of interlaminar stress in laminated plates with the stacking
sequence [0o/90o]s, under vibration mode of ϖ11 = 138 rad/s. The curves A, B, C and D represent,
respectively, the interlaminar stresses at times t = 0.5ϖ11π, t = 0.75ϖ11π, t = 1.25ϖ11π  and t = 1.5ϖ11π 
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Ef = 230 (GPa), Gf = 9 (GPa), vf = 0.203, , ρf = 1750 kg/m3, vm = 0.34,

, ρm = 1200 kg/m3 and Em = 3.51 (GPa). Here, the analysis is equally applicable

to other types of composite materials. For these examples, the thickness hs of single fibre reinforced

layer is taken as 2.5 mm. The lengths of both sides on laminated plates are, respectively,

. h = lhs express the thickness of the laminated plates. ∆T(oC) represents

temperature change. The interlaminar stresses in the interface z = hs and at positions y = 20 h are

calculated as follows. 

Fig. 3 shows the distribution of interlaminar stresses τxz and σz in the laminar plates with stacking

sequence [0o/90o]s along the x-axis, under the vibration mode for ϖ11 = 138 rad/s. The results

αf 0.54– 10
6–
/ C
o×=

αm 45 10
6–
/ C
o×=

a b 40 h 400 mm= = =

Fig. 4 (a,b) The response histories and distribution of interlaminar stress in laminated plates with the stacking
sequence [0o/90o]s, under vibration mode of ϖ21 = 469 rad/s. The curves A, B, C and D represent,
respectively, the interlaminar stresses at times t = 0.5ϖ21π, t = 0.75ϖ21π, t = 1.25ϖ21π  and t = 1.5ϖ21π

Fig. 5 (a,b) The response histories and distribution of interlaminar stress in laminated plates with the stacking
sequence [90o/0o]s, under vibration mode of ϖ11 = 138 rad/s. The curves A, B, C and D represent,
respectively, the interlaminar stresses at times t = 0.5ϖ11π, t = 0.75ϖ11π, t = 1.25ϖ11π  and t = 1.5ϖ11π
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indicate that τxz is decreasing along with the x-axis, while σz is on the contrary. Fig. 4 shows the

distribution of interlaminar stresses τxz and σz in the laminar plates with stacking sequence [0o/90o]s
along x-axis, under the vibration mode for ϖ21 = 469 rad/s. The results indicate that τxz arrives at the

minimum at x/h = 10, where σz reached the maximum.

Fig. 5 shows the distribution of interlaminar stresses τxz and σz in the laminar plates with stacking

sequence [90o/0o]s  along x-axis, under the vibration mode for ϖ11 = 138 rad/s. The results indicate

that τxz is decreasing along the x-axis, while σz is on the contrary. Fig. 6 shows the distribution of

interlaminar stresses τxz and σz in the laminar plates with stacking sequence [90o/0o]s along x-axis,

under the vibration mode for ϖ21 = 274 rad/s. The results indicate that τxz arrives at minimum at x/h

= 10, where σz reached the maximum.

Fig. 7 shows the distribution of interlaminar stresses τxz and τyz in the laminar plates with stacking

Fig. 6 (a,b) The response histories and distribution of interlaminar stress in laminated plates with the stacking
sequence [90o/0o]s, under vibration mode of ϖ21 = 274 rad/s. The curves A, B, C and D represent,
respectively, the interlaminar stresses at times t = 0.5ϖ21π, t = 0.75ϖ21π, t = 1.25ϖ21π  and t = 1.5ϖ21π

Fig. 7 (a,b) The response histories and distribution of interlaminar stress in laminated plates with the stacking
sequence [45o/−45o]s, under vibration mode of ϖ11 = 178 rad/s. The curves A, B, C and D represent,
respectively, the interlaminar stresses at times t = 0.5ϖ11π, t = 0.75ϖ11π, t = 1.25ϖ11π  and t = 1.5ϖ11π
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sequence [45o/−45o]s along x-axis, under the vibration mode for ϖ11 = 178 rad/s. The results indicate

that both τxz and τyz are decreasing along the x-axis. Fig. 8 shows the distribution of interlaminar

stresses τxz and τyz in the laminar plates with stacking sequence [45o/−45o]s along x-axis, under the

vibration mode for ϖ21 = 412 rad/s. The results indicate that both τxz and τyz arrive at minimum at

x/h = 10.

Fig. 9 shows the distribution of interlaminar stresses τxz and τyz at the special position of x = 20 h,

y = 20 h, z = h in laminated plates with various layer angles, along x-axis, under the vibration mode

for ϖ11 = 138 rad/s. The results indicate that both τxz and τyz are nearly of the same changing

tendency along the x-axis. Thermal load affects the interlaminar stresses most significantly in the

laminated plates with stacking sequence [15o/−15o]s and [45o/−45o]s.

Fig. 8 (a,b) The response histories and distribution of interlaminar stress in laminated plates with the stacking
sequence [45o/−45o]s, under vibration mode of ϖ21 = 412 rad/s. The curves A, B, C and D represent,
respectively, the interlaminar stresses at times t = 0.5ϖ21π, t = 0.75ϖ21π, t = 1.25ϖ21π  and t = 1.5ϖ21π

Fig.  9 (a,b) The distributions of interlaminar stresses at x = 20 h, y = 20 h, and z = h
s
, with the change of the

stacking angle [±θ ], under the vibration mode of ϖ11
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5. Conclusions

In this paper, an analytical method is applied to calculate the response and distribution of dynamic

interlaminar stresses in composite laminated plates subjected to free vibration and thermal load. The

new features and meaningful numerical results in the present work are given by 

1. The maximum interlaminar stresses occur at t = 0.5ϖmnπ or t = 1.5ϖmnπ. The vibration mode

also significantly affects the response histories and distribution of interlaminar stresses.

2. Interlaminar stresses vary with the change of plying angle, which are mainly determined by the

vibration modes.

3. Thermal load has obviously effect on the dynamic interlaminar stresses at particular position

such as the center point of the plane, while has little on other positions. Thermal load affects

the response histories and distribution of interlaminar stresses most significantly in the

laminated plates with stacking sequence [15o/−15o]s and [45o/−45o]s, so we can design a

reasonable stacking sequences to decrease the effect of thermal loading on dynamic interlaminar

stresses.

Acknowledgements

The authors thank the referees for their valuable comments. 

References

Adams, D.F. and Miller, A.K. (1977), “Hygrothermal microstresses in a unidirectional composite exhibiting
inelastic materials behavior”, J. Comput. Mater., 11, 285-299.

Babeshko, M.E. (1996), “Numerical investigation of the plastic stresses-strain state of laminated shells in
axisymmetric deformation processes with small-curvature trajectories and allowance for geometric
nonlinearity”, Int. Appl. Mech., 32, 646-655. 

Bowles, D.E. and Tompkins, S.S. (1989), “Prediction of coefficients of thermal expansion for unidirectional
composites”, J. Comput. Mater., 23, 370-381.

Carvalho, A. and Guedes, S.C. (1996), “Dynamic response of rectangular plates of composite materials subjected
to impact loads”, Comput. Struct., 34, 55-63.

Cho, M. and Yoon, J.Y. (1999), “Free-edge interlaminar stress analysis of composite laminates by extended
Kantorovich method”, AIAA J., 37, 656-660.

Chandrashekhara, K. and Bhimaraddi, A. (1994), Pergamon Press Inc. “Thermal stress analysis of laminated
doubly curved shells using a shear flexible finite element”, Comput. Struct., 52, 1023-1030.

Di, S. and Ramm, E.H. (1993), “Hybrid stress formulation for higher-order theory of laminated shell analysis”,
Comput. Meth. Appl. Mech. Eng., 109, 359-376.

Ding, K.W. and Tang, L.M. (1999), “Analytical solution of thermal stresses for closed laminated cylindrical shell
of arbitrary thickness”, Eng. Mech., 16, 1-5. 

Ganapathy, S. and Rao, K.P. (1997), “Interlaminar stresses in laminated composite plates”, Comput. Struct., 38,
157-168.

Jane, K.C. and Hong, C.C. (2000), “Interlaminar stresses of a rectangular laminated plate with simply supported
edges subject to free vibration”, Mech. Sci., 42, 2031-2039.

Makeev, A. and Armanios, E.A. (1994), “Simple elasticity solution for predicting interlaminar stresses in
laminated composites”, J. Am. Helicopter Soc., 44, 94-100. 

Messina, A. and Soldatos, K.P. (2002), “A general vibration model of angle-ply laminated plates that accounts



Response of dynamic interlaminar stresses in laminated plates under free vibration and thermal load 765

for the continuity of interlaminar stresses”, Inte. J. Solids Struct., 39, 617-635.
Reddy, J.N. (1996), Mechanics of Laminated Composite Plates, London.
Savchenko, V.G. (1995), “Thermal stress state of laminated shells of revolution made of isotropic and linearly

orthotropic materials”, Int. Appl. Mech., 31, 249-258.
Tsai, S.W. and Hahn, H.T. (1980), “Introduction to composite materials”, Westport, CT: Technomic publishing

CO.
Verijenko, V.E. and Tauchert, T.R. (1999), “Refined theory laminated anisotropic shells for thermal stress

problems”, J. Therm. Stresses, 22, 75-100.
Wilfried, B., Peng, J.P. and Ptra, N. (1999), “Interlaminar stresses at the free corners of a laminate”, Comput.

Struct., 45, 155-162.
Yong, Y.K. and Cho, Y. (1995), “Pergamon Press Inc. Higher-order, partial hybrid stress, finite element

formulation for laminated plate and shell analyses”, Comput. Struct., 57, 817-827.
Yuan, F.G. (1993), “Thermal stresses in thick laminated composite shells”, Comput. Struct., 26, 63-75.
Ye, J.Q. and Soldatos, K.P. (1996), “Three-dimensional vibration of laminated composite plates and cylindrical

panels with arbitrarily located lateral surfaces point supports”, Int. J. Mech. Sci., 38, 271-281.
Zhang, S.Y. and Liu, J.Q. (1992), “Mechanics properties of composite material structures”, Beijing Technology

University Press.




