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A robust identification of single crack location and size 
only based on pulsations of the cracked system
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Abstract. The purpose of the present work is to establish a method for predicting the location and
depth of a crack in a circular cross section beam by only considering the frequencies of the cracked
beam. An accurate knowledge of the material properties is not required. The crack location and size is
identified by finding the point of intersection of pulsation ratio contour lines of lower vertical and
horizontal modes. This process is presented and numerically validated in the case of a simply supported
beam with various crack locations and sizes. If the beam has structural symmetry, the identification of
crack location is performed by adding an off-center placed mass to the simply supported beam. In order
to avoid worse diagnostic, it was demonstrated that a robust identification of crack size and location is
possible if two tests are undertaken by adding the mass at the left and then right end of the simply
supported beam. Finally, the pulsation ratio contour lines method is generalized in order to be extended to
the case of rectangular cross section beams or more complex structures.
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1. Introduction

Cracks are main causes of structural failure and often occurs on structures. In order to avoid the

sudden failure of structural components, a crack must be detected in the early state. In recent years,

many research studies have been devoted to develop non-destructive techniques for damage

identification in structures. One of the most useful techniques is based on the changes in the modal

properties mainly natural frequencies and mode shapes. Even if this approach may be time

consuming, the change in modal properties of cracked structures can be useful for easily

identification of both crack size and location.

First of all, some researchers demonstrated that the location of a crack may be determined by only

using the ratios of the changes in the natural frequencies (Adams et al. 1978, Morassi 1993, Hearn

and Testa 1991, Liang et al. 1992). For example, Narkis (1994) demonstrated that the only variation

of the first two natural frequencies due to the crack is sufficient in order to identify the crack

location of a simply supported uniform beam if the crack size is very small. Then, the work of

Narkis was continued and developed by Morassi (2001) that studied the identification of a single

crack based on the knowledge of the damage-induced shifts in a pair of natural frequencies.
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Moreover, Morassi et al. (2002, 1999) proposed very elegant and original approaches to identify

localized damage by using the changes in the nodes of mode shapes or by considering not only the

measured changes in natural frequencies but also the antiresonant frequencies (Dilena and Morassi

2004). One of the most important results of this study was the uniqueness of the damage location

for symmetrical beams by considering an appropriate use of frequencies and antiresonances.

Furthermore, Liang et al. (1991) developed a method based on measurements of natural

frequencies of structures for the detection of crack size and location in a uniform beam under

simply supported or cantilever boundary conditions. Cerri and Vestroni (2000) proposed to identify

structural damage of a beam using measured frequencies by using two different procedures: the first

approach for damage identification is based on the modal equation procedure and the second is

based on the frequency comparison between analytical and experimental frequency values. Owolabi

et al. (2003) considered the damage-induced shifts in the first three natural frequencies and the

corresponding amplitudes in order to detect the presence of a crack in beams, and determine its

location and size, based on experimental modal analysis results. A similar analytical and

experimental approaches were undertaken by Nahvi and Jabbari (2005) by considering the

normalized frequency in terms of the non-dimensional crack depth and location. Li et al. (2005)

proposed to identify the crack location and size by finding the point of intersection of three

frequency contour lines of the cracked beam under the situation that measured natural frequencies

of crack beams are set as input. Hadjileontiadis et al. (2005) proposed a new technique based on

fractal dimension analysis. The size of the crack is related to the fractal dimension measure, while

the location of the crack is determined by the sudden changes in the spatial variation of the cracked

beam response. Khiem and Lien (2004) formulated a multi-crack detection for beam based on

natural frequencies and nonlinear optimization problem. Kim and Stubbs (2003) proposed a crack

detection model by relating fractional changes in modal energy to changes in natural frequencies

due to damage such as cracks or other geometrical changes.

The objective of this work is to extend the frequency contour lines method of crack detection for a

circular section beam without using the natural frequencies of uncracked beam (i.e., the change in

modal properties between the cracked and uncracked beam are not taken into account) and without

needing an accurate knowledge of the Young’s modulus and the density. First of all, the circular cross

section beam with an open crack is presented. Then, the variations of the first three frequency ratios

of the vertical and horizontal modes as a function of non-dimensional crack depth ratio, the crack

location and some changes of the material properties (Young modulus and density) are undertaken. 

In a second part, the identification of crack size and location is performed by considering only the

damage-induced shifts in the first three change ratios of the vertical and horizontal natural

frequencies of the cracked circular beam. Moreover, in order to avoid the non-uniqueness of the

damage location problem due to the structural symmetry of beams and worse diagnostic, the process

of adding an off-center mass to the simply supported beam is investigated. Finally, the pulsation

ratio contour lines method is generalized in order to be extended to the case of rectangular cross

section beams or more complex structures.

2. The model of the simply supported cracked beam

In this paper, a circular cross section beam, 1m in length with a diameter of 0.1 m, is modeled

using 31 Timoshenko beam finite elements (Nelson and Nataraj 1986, Lalanne and Ferraris 1990)
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with four degrees of freedoms in each node as shown in Fig. 1. The beam is assumed to be simply

supported at each end.

The presence of a transverse crack in beams introduces considerable local flexibility due to strain

energy concentration in the vicinity of the crack tip under load. This highly localized effect does not

influence the stiffness of the segment of the beam away from the crack cross section. To locally

represent the stiffness properties of the crack cross section in an otherwise uncracked beam, it is

necessary to incorporate flexibility due to the presence of the transverse crack. We refer the

interested reader to (Dimarogonas 1996, Wauer 1990) for comprehensive literature survey of various

crack modeling techniques. Mayes and Davies (1984a,b) proposed to theoretically model a

transverse crack by reducing the second moment of area of the element at the location of the crack

by ∆I. In Mayes and Davies (1976), they indicated that the change in the mth natural frequency of a

system containing a crack may be defined by

(1)

where g is a function of crack and beam geometry and um defines the mth mode shape of the beam.

sc corresponds to the location of the crack on the beam. Extending their study and using

dimensional analysis to describe the stress concentration factor at the crack front, they obtained the

following expression (Davies and Mayes 1984a)

(2)

where I, R, µ, E and ν are the second moment of area, the shaft radius, the non-dimensional crack

depth, the Young’s modulus and the Poisson’s ratio, respectively. F(µ) is the non-linear compliance

function varied with the non-dimensional crack depth µ and is independent of all the other

parameters. Mayes and Davies (1984a,b) proposed to obtain the evolution of F(µ) from a series of

experiments with chordal cracks. This compliance function was then used by Lees and Friswell

(2001) to study the dynamic behaviour of a shaft with a crack accounting opening and closing of

crack due to the shaft self weight for different orientations of the shaft.

ωm

2∆ g
d
2
um

x
2

d
------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

x s
c

=

–=

ωm

2∆ 4
EI

2

πR
3

--------- 1 ν
2

–( )F µ( )
d
2
um

x
2

d
------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

x s
c

=

–=

Fig. 1 Finite-element model of the beam with the crack cross-section
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Then using the second derivatives of the deflection curves, the bending moment M0 for the

original system is given by

(3)

where y and s define the shaft displacement of the beam and the axial position.

The bending moment M for the perturbed system due to the presence of a crack is given by

(4)

Moreover, assuming that the deflection curve is unchanged, the bending moment M0 of the original

system and the bending moment M of the cracked system are defined by

(5)

and

(6)

where m(z) corresponds to the mass/unit length at the location z on the beam.

Using Eqs. (3)-(6) and Rayleigh’s approach, Mayes and Davies (1984a) demonstrated the relation

(7)

Then, they proposed to compare Eqs. (2) and (7) and to only consider the first order changes in

∆ω2 and they obtained after calculation

(8)

For a circular beam, this relation becomes

(9)

where I0, R, l, and ν are the second moment of area, the shaft radius, the length of the section and

the Poisson’s ratio, respectively. µ is the non-dimensional crack depth and is given by

(10)

where h defines the crack depth of the shaft, as illustrated in Fig. 1. At the crack location, the stiffness
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(11)

The moments of inertia about the parallel centroidal axes, IX and IY, are given by Sinou and Lees

(2005)

(12)

(13)

where A and  define the uncracked area of the cross-section and the distance from the axis X to

the centroid of the cross section

(14)

(15)

and the asymmetric area moments of inertia  and  about the X and Y-axes are defined as

(16)

and

(17)

R is the shaft radius, µ is the non-dimensional crack depth, and  for convenience. α

is the crack angle (as shown in Fig. 1) and is defined as

(18)

Finally, the equations of the simply supported cracked beam motion can be written as

(19)
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stiffness matrices, respectively. K contains the stiffness reduction Kcrack at the crack location.

The frequencies can be found by solving generalized eigenvalues of

(20)det ω
2
M– K+( ) 0=

Fig. 2 Change in pulsations  (i = 1, ..., 6) for the simply supported beam with the variation of the non-
dimensional crack depth µ and the crack location Lcrack

ω i

cracked
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3. Numerical studies

3.1 Effects of crack

Generally, a crack induces changes in the structures’ stiffness, and also induces frequency

reductions of the structure (Adams et al. 1978, Morassi 1993, Hearn and Testa 1991, Liang et al.

1992, Narkis 1994, Morassi 2001, Dilena and Morassi 2002, Gladwell and Morassi 1999, Dilena

and Morassi 2004, Liang et al. 1991, Cerri and Vestroni 2000, Owolabi et al. 2003, Li et al. 2005,

Kim and Stubbs 2003). These well-known effects of cracks on the natural frequencies are illustrated

in Fig. 2 that show the change in pulsations  for the simply supported beam

with the variations of the nondimensional crack depth µ and the crack location Lcrack. For the sake

of clarity, it may be noted that the odd-order modes and even-order modes of the cracked beam

correspond to bending modes in the vertical and horizontal planes. The largest crack considered in

this study corresponds to the case of half the area of the cross-section is missing due to the

transverse crack (i.e., µ = 1). It clearly appears that both crack location and depth have influences

on the pulsations of the supported cracked beam. Then, the highest changes occur in the vertical

modes (  and ) due to the orientation of the crack and the beam self-weight.

Basically, the pulsations are unchanged when the crack is situated at one node of the associated

mode (i.e., at the middle of the beam for second vertical and horizontal modes, and at one-third and

two-third of the beam for third vertical and horizontal modes). Moreover, the change in pulsations

increases when the non-dimensional crack depth increases.

Then, Tables 1 and 2 indicate the variation of  for the simply supported

beam with the variation of the Young’s modulus E and the density ρ. It appears that the material

properties (i.e., Young’s modulus E and the density ρ) clearly affect the natural frequencies of the

ω i

cracked
i 1 … 6, ,=( )

ω1

cracked
ω3

cracked, ω5

cracked

ω i

cracked
i 1 … 6, ,=( )

Table 1 Variation of  (in rad·s−1) with the variation of the Young’s modulus E and non-dimensional
crack depth µ (with ρ = 7800 kg·m−3 and Lcrack = 0.4833 m)

E (GPa) µ

190 

0 1217.8  1217.8 4871.1  4871.1  10960  10960

0.5 1173.6  1182.2 4868.5  4869.0  10596  10663

1 974.6  1166 4856  4868.1  9385.6  10537

195

 0 1233.7  1233.7 4934.8  4934.8  11103  11103

0.5 1189  1197.7 4932.2  4932.7  10734  10803

1 987.4  1181.2 4919.4  4931.7  9508.3  10675

200

 0 1249.4  1249.4 4997.7  4997.7  11245  11245

0.5 1204.1  1212.9 4995  4995.5  10871  10940

1 1000  1196.3 4982.1  4994.5  9629.4  10811

205

0 1264.9  1264.9 5059.7  5059.7  11384  11384

0.5 1219.1  1228 5057.1  5057.6  11006  11076

1 1012.4  1211.2 5044  5056.6  9749.1  10945

210 

0 1280.3  1280.3 5121.1  5121.1  11522  11522

0.5 1233.8  1242.9 5118.4  5118.9  11139  11211

1 1024.7  1225.8 5105.2  5117.9  9867.2  11078

ω i

cracked

ω1

cracked
ω2

cracked
ω3

cracked
ω4

cracked
ω5

cracked
ω6

cracked
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cracked beam. These results are in perfect coherence with the analytical solution of a simply

supported beam given in Appendix A. The third and fourth natural pulsations  and 

are almost unaffected. This is due to the fact that the crack is located at the center of the beam, near

the node of those two modes of vibration.

Therefore, an accurate knowledge and estimation of the material properties is needed.

This work was investigated by Li et al. (2005). They proposed to identify the crack size and

position based on the calculated first three natural cracked frequencies. Due to the fact that the

changes in the natural frequencies of a cracked beam are affected by the crack location and the

crack size, a particular frequency can correspond to different crack locations and crack sizes. The

intersection of the three contour lines of the first three natural cracked frequencies indicates the

possible crack position and crack size. In this case, the evaluation of the cracked natural frequencies

need to be carefully undertaken and require the knowledge of the material properties (the Young’s

modulus E and the density ρ). So, Li et al. decided to determine a corrected value of Young’s

modulus due to the fact that quoted values of Young’s modulus are not sufficiently accurate for a

correct detection of crack size and location. This correction of the Young’s modulus was overcome

by an iterative approach, which uses the uncracked natural frequencies of the beams. It may be

noted that a bad estimation of the corrected Young’s modulus may induced a worse identification of

the crack size and position. This last observation may explain the fact when the three curves do not

meet exactly, the centroid of the three pairs of intersections is taken as the crack position and crack

size (Li et al. 2005, Lele and Maiti 2002).

Some investigators (Owolabi et al. 2003, Nahvi and Jabbari 2005, Swamidas et al. 2004) have

given a method similar to the above, but they consider the normalized natural frequencies that are

defined as the ratio of cracked beam natural frequency to the uncracked beam natural frequency. 

ω3

cracked
ω4

cracked

Table 2 Variation of  (in rad·s−1) with the variation of the density ρ and non-dimensional crack depth µ
(with E = 200 GPa and Lcrack = 0.4833 m)

ρ (kg·m−3) µ

7600 

0 1265.7  1265.7  5063  5063  11392  11392

0.5 1219.8  1228.8  5060.3  5060.8  11013  11083

1 1013  1211.9  5047.2  5059.8  9755.3  10952

7700

0 1257.5  1257.5  5030  5030  11318  11318

0.5 1211.9  1220.8  5027.3  5027.9  10941  11011

1 1006.4  1204.0  5014.4  5026.9  9691.8  10881

7800

0 1249.4  1249.4  4997.7  4997.7  11245  11245

0.5 1204.1  1212.9  4995  4995.5  10871  10940

1 1000  1196.3  4982.1  4994.5  9629.4  10811

7900 

0 1241.5  1241.5  4965.9  4965.9  11173  11173

0.5 1196.5  1205.2  4963.3  4963.8  10802  10871

1 993.6  1188.7  4950.5  4962.8   9568.3  10742

8000

0 1233.7  1233.7  4934.8  4934.8  11103  11103

0.5 1189  1197.7  4932.2  4932.7  10734  10803

1 987.4  1181.2  4919.4  4931.7  9508.3  10675

ω i

cracked

ω1

cracked
ω2

cracked
ω3

cracked
ω4

cracked
ω5

cracked
ω6

cracked
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This process has the advantage to avoid the determination of an accurate Young’s modulus.

However, the natural frequencies of the uncracked beam are needed. Another equivalent approach

may be to compare the pulsations of the cracked and uncracked systems by defining the percentage

change in natural frequencies %Ci (Sinou and Lees 2005)

(21)

where  and  define the ith-pulsation of the uncracked and cracked beam. In these

cases, the material properties (i.e., the Young’s modulus E and the density ρ) do not affect these

normalized frequencies or the percentage change in natural frequencies %Ci. Table 3 illustrates the

evolution of %Ci  with the variation of the crack position Lcrack and the non-

dimensional crack depth µ. In order to identify the crack depth and location, the frequency contour

method (Swamidas et al. 2004) that has been previously explained can be achieved by using the

lower order normalized frequencies. One of the most important advantages is that the material

properties have not to be corrected. However, the uncracked frequencies of the beam need to be

known.

Therefore, in order to avoid the knowledge of the uncracked frequencies of the beam and the

determination of an accurate corrected value of Young’s modulus, an alternative approach will be

presented. It may be noted that the correct estimation of the Young modulus and linear mass

density does not represent a very strong difficulty. However, it may be observed that avoiding the

determination of these two physical parameters for the identification of the crack size and location

may be interesting in order to obtain a robust damage identification and to save experimental

time.

%Ci 100
ω i

uncracked
ω i

cracked
–

ω i

uncracked
------------------------------------------×=

ω i

uncracked
ω i

cracked

i 1 … 6, ,=( )

Table 3 Variation of %Ci with the variation of the crack position Lcrack and non-dimensional crack depth µ

µ  Lcrack (m)   %C1  %C2  %C3  %C4  %C5  %C6

0.2

0.15   −0.184  −0.18  −0.58  −0.57   −0.84  −0.83

0.3167  −0.62  −0.61  −0.72  −0.71  −0.03  −0.03

0.483  −0.88  −0.86  −0.01  −0.01  −0.84  −0.83

0.4

0.15  −0.53  −0.47  −1.66  −1.49  −2.36  −2.12

0.3167  −1.78  −1.60  −2.02  −1.82  −0.08  −0.07

0.483  −2.50  −2.24  −0.04  −0.03  −2.33  −2.10

0.6

0.15  −1.13  −0.76  −3.45  −2.35  −4.67  −3.27

0.3167  −3.69  −2.51  −4.02  −2.81  −0.16  −0.11

0.483  −5.10  −3.50  −0.07  −0.05  −4.57  −3.21

0.8 

0.15  −2.35  −0.91  −6.89  −2.79  −8.54  −3.85

0.3167  −7.37  −2.99  −7.42  −3.31  −0.31  −0.13

0.483  −9.92  −4.15  −0.15  −0.06  −8.25  −3.77

1

0.15  −5.48  −0.93  −14.41  −2.87  −14.87  −3.94

0.3167  −15.58  −3.07  −13.41  −3.39  −0.6  −0.13

0.483  −19.97  −4.25  −0.31  −0.06  −14.37  −3.86
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3.2 Robust identification technique only based on the pulsation ratios of the cracked beam

The proposed process is based on the fact that the pulsations associated with the vertical (first,

third and fifth pulsations) and horizontal (second, fourth and sixth pulsations) modes are equal in

the case of an uncracked beam, but are different for the cracked beam due to the presence of the

crack (as illustrated in Fig. 2). Due to the beam self-height, the most important changes in the

pulsations occur in the vertical mode if the orientation of the crack front is to the principal axes, as

shown in Fig. 1. So, the difference between the pulsations of the vertical and horizontal modes is

only due to the size and location of the crack.

Moreover, the expression of the stiffness matrix Kcrack due to the transversal crack (Eq. (11))

indicates that the material properties (i.e., the Young modulus E and the density ρ) do not influence

the changes in the pulsation ratios of the vertical and horizontal modes.

Therefore, in order to detect the crack size and location, the ratio change  in the

pulsations with the vertical and horizontal modes of the cracked beam is defined as follows

(22)

%∆i

cracked

%∆i

cracked
100

ω2i 1–

cracked
ω2 i

cracked
–

ω2i 1–

cracked
--------------------------------------×=

Fig. 3 Evolution of  with the variation of the non-dimensional crack depth µ and the crack location
Lcrack

%∆i

cracked
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This percentage change is totally independent of the material properties and needs only the

knowledge of the pulsations of the cracked beam.

Fig. 3 illustrate the fourth lower terms of the percentage ratio changes  .

It may be observed that these changes are significant and indicate the influences of both the non-

dimensional crack depth µ and the crack location Lcrack. Even if the Young’s modulus is uncertain,

each surface of Fig. 3 is unchanged due to the fact that the  can be represented by a

function that is dependent on the non-dimensional crack depth, the crack location and the two

corresponding modes 2i − 1 and 2i. These process is very interesting due to the fact that only the

cracked pulsations are considered for the determination of . The pulsations of the simply

supported uncracked beam are not used.

Thereby, the identification of crack size and location for a circular section beam can be

undertaken by extending the frequency contour lines method proposed by Swamidas et al. (2003,

2004). However, the process proposed in this study does not require the knowledge of the natural

frequencies of the uncracked beam. This approach is based on the fact that a contour line which has

the same ratio changes  resulting in a combination of different crack location and crack

depths can be plotted as a curve with crack location and crack depth as its axes. Then, the

intersection of the contour lines  for the three lower modes  indicates the

position and size of the crack. It may be noted that a minimum of three contour lines  is

required in order to identify the crack location and size. Effectively, if the crack is situated at the

node of the ith vertical and horizontal modes,  and  remain almost unchanged (see for

example Owolabi et al. 2003, Swamidas et al. 2004 and Morassi 1993). Thereby, the associated

ratio change  is equal to zero and the identification is not possible. So, measuring the first

six cracked natural pulsations is sufficient to determine the crack location, and the crack depth for a

circular cross section beam. For illustrative purposes, Fig. 4 show the intersection of the three

contour lines of  (with ) for six particular crack cases. Table 4 indicates the

values of  of the pulsation ratio changes contour lines. For each case, it clearly appears

that the three contour lines give two intersections that correspond to one crack size but two possible

crack locations. Effectively, due to the structural symmetry of the beam, the identification of the

crack location is not unique.

In order to avoid the non-uniqueness of the damage location problem, the identification of crack

location is performed by adding an off-center placed mass to the simply supported beam at

Lmass = 0.167 m from the left end, as illustrated in Fig. 5. This added off-center mass changes the

values of . Moreover, the previous symmetry of  (for the simply supported

beam) with the crack location does not exist, as shown in Fig. 6. Therefore, the identification of

the crack size and location can be undertaken by considering the simply supported beam with the
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Table 4 Values of  for each case with the simply supported beam

Case µ Lcrack 

(a) 
(b)
(c)
(d)
(e)
(f)

0.1
0.8
0.5
0.4

 0.65
0.4

 0.283
 0.783
 0.517
 0.183
 0.817
 0.183

 −3e-4
 −2.77
 −0.73 
 −0.01
 −0.78
 −0.08

 −5e-4
 −5.69
 −0.01
 −1e-3
 −2.02
 −0.22

 −1e-4
 −3.47
 −0.64
 −9e-3
 −1.91
 −0.23
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off-center mass. As previously done, measuring the first six cracked natural pulsations of the

cracked beam with the off-center mass is sufficient to determine the crack location and the crack

depth.

Fig. 4 Identification results with the criterion  by using the contour lines of the first three frequency
ratios for a simply supported beam (__ , _ _ , _._ )
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Results are given in Fig. 7 for the six previous crack cases. Table 5 indicates the values of

 of the pulsation ratio changes contour lines for the simply supported beam with the added

mass at Lmass = 0.167 m. It may be observed that the intersection of the three contour lines 

is unique for the six cases. So, adding an off-center mass enables us to identify the crack size and

location. However, it appears that the effect of the off-center mass is not sufficient in all cases.

%∆i

cracked

%∆i

cracked

Fig. 6 Evolution of  of the beam with an added mass at Lmass = 0.167 m as a function of the
nondimensional crack depth µ and the crack location Lcrack (

__ , _ _ , _._ )
%∆i

cracked

%∆1

cracked
%∆2

cracked
%∆3

cracked

Fig. 5 Finite-element model of the beam with the added mass
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Effectively, it is not very clear and evident that the three contour lines have only one intersection for

each case. There may exist a little zone defined by the three intersections for two contour lines and

the associated centroid of the three pairs of intersections may be taken as the crack position and

Fig. 7 Identification results with the criterion  by using the contour lines of the first three frequency
ratios for a simply supported beam with added mass at the left end Lmass = 0.167 m (__ ,
_ _ , _._ )
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crack size (see for examples Fig. 7(a) at µ = 0.12 and Lcrack = 0.55 m, Fig. 7(b) at µ = 0.69 and

Lcrack = 0.19 m, and Fig. 7(c) at µ = 0.5 and Lcrack = 0.3 m). This may induced misunderstanding in

the case of experimental crack identification where the values of  can be altered.

In order to avoid this problem, we propose to realize two tests for the crack size and location

identification by adding an off-center mass at each end of the simply supported beam for each case

(Lmass = 0.167 m for the first case, and Lmass = 0.833 m for the second case).

Fig. 8 illustrate this process. Table 6 indicates the values of  of the pulsation ratio

changes contour lines for the simply supported beam with the added mass at Lmass = 0.833 m.

As indicated in Fig. 7(a), the added mass on the left of the simply supported beam indicates only

one intersection of the three contour lines (for µ = 0.1 and Lcrack = 0.283 m). However, a centroid

located at µ = 0.12 and Lcrack = 0.55 m may induced worse diagnostic. Now, the added mass on the

right of the simply supported beam indicates only one intersection of the three contour lines and a

centroid is now located at µ = 0.1 and Lcrack = 0.78 m (see Fig. 8(a)).

Thereby, no confusion may be done: we have two centroids for each case but they are not at the

same crack size and location and an unique intersection of the three contour lines is obtained at

µ = 0.1 and Lcrack = 0.283 m.

Moreover, this process appears to be very effective and robust. For example, Fig. 7(b) may

induced worse diagnostic due to the fact that two intersections (in fact one perfect intersection and

one centroid) are detected (at µ = 0.8 and Lcrack = 0.783 m and µ = 0.69 and Lcrack = 0.19 m).

Therefore, not only the crack location but also the crack size can be badly identified. Then,

considering Fig. 8(b), only one intersection is detected at µ = 0.8 and Lcrack = 0.783 m,

corresponding to the crack size and location.

Finally, it may be mentioned that the simply supported beam (without added off-center mass)

indicates a first estimation of the crack size and location (in fact two intersection due to the

structural symmetry). So, the first detection done by using the simply supported beam can be used

to check the robust identification process. For this case, the crack size is unique.

In conclusion, a robust identification of the crack size and location can be done by considering

only the cracked pulsations with the associated factor  and the three cases: the simply

supported beam, the simply supported beam with an added mass at the left end, and the simply

supported beam with an added mass at the right end. The location where the three curves intersect

for each case is unique and gives the crack size and location.

It may be remained that this damage detection is based on the fact that the system has double

frequencies in the undamaged configuration and that the pulsation changes of the bending modes

due to the crack are more important in the vertical planes than in the horizontal planes. Moreover,
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cracked

%∆i
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Table 5 Values of  for each case with the simply supported beam and the 
  left added mass

Case 

(a)
(b)
(c)
(d)
(e)
(f)

−4e-4 
−2.42 
−0.69
−0.01
−0.67
−0.12

−4e-4 
−4.80
−0.07
−3e-3
−1.62
−0.36

−5e-6
−4.12
−0.47
−5e-3
−2.02
−0.20
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%∆1

cracked
%∆2
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%∆3

cracked



706 Jean-Jacques Sinou

this damage index has been chosen due to the fact that the difference between the pulsation changes

in the vertical and horizontal planes only depends on the crack size.

Fig. 8 Identification results with the criterion  by using the contour lines of the first three frequency
ratios for a simply supported beam with added mass at the right end Lmass = 0.833 m (__ ,
_ _ , _._ )
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3.3 Adapted robust identification technique

Many studies have been devoted to detect crack in rectangular cross section beams or structures

where the pulsations are only measured in one direction. In these cases, the robust identification of

crack location and size using the pulsation ratio contour lines method that has been previously

presented can be extended.

We propose to consider the factor

(23)

where  and  correspond to the ith pulsations of the uncracked and cracked simply

supported beams, respectively.

It may be observed that the factor  is a generalisation of . Effectively, we have

(24)

where i defines the ith mode for the simply supported beam. In this case, = 1 (in

comparison with Eq. (23)) due to the symmetry of the uncracked cross section for the factor

.

By considering the classical pulsation for a simply supported uncracked beam (see Appendix A),

Eq. (23) can be rewritten

(25)

with a and b are equal to 0 or 1, and and . The associated analytical expressions of

 and  are given in Appendix A.

Considering Eq. (25), it is clear that the factors  need only the knowledge of the

pulsations of the simply supported cracked beam and do not change with the variations of the

material properties like the Young modulus and the density.

Fig. 9 show the variations of these expressions with the non-dimensional crack depth and the

crack location.
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Table 6 Values of  for each case with the simply supported beam 
  and the right added mass

Case 

(a)
(b)
(c)
(d)
(e)
(f)

−3e-4 
−3.72
−0.70
−0.01
−1.17
−0.07

−4e-4
−6.77
−0.01
−8e-5
−3.13
−0.18

−2e-4
−1.89
−0.59
−0.01
−1.62
−0.24
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First of all, if  is higher than 0, it may be concluded that the the mode of ith pulsation is

more affected by the crack than the mode of jth pulsation. From the results obtained in Fig. 9(a), it

is observed, for example, that when the crack location is between [0 0.3] or [0.7 1] (for the non-

dimensional crack depth µ = 1), the first pulsation (associated with the first vertical mode) is

comparatively much less affected than the third pulsation (associated with the second vertical

mode). For a crack situated between [0.3 0.7], the scenario is reversed. From the analysis of Fig. 9(d),

%ψ i j,

cracked

Fig. 9 Evolution of  of the beam as a function of the non-dimensional crack depth µ and the crack
location Lcrack

%ψ i j,

cracked
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the fifth pulsation (associated to the third vertical mode) is more affected than the the third pulsation

(associated to the second vertical mode) if the crack location is situated between [0 0.15], [0.4 0.6]

and [0.85 1] (for µ = 1).

Fig. 10 Identification of crack size and location with  for a simply supported beam (__ ,
_ _ ,  _._ )
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Moreover, if  is lower than 0, the more affected mode corresponds to the jth pulsation.

For example, Fig. 9(f) illustrates the fact that the fifth pulsation (associated with the third vertical

mode) is more affected that the seventh pulsation (associated with the fourth vertical mode) for a

crack located approximately at [0.12 0.3], [0.45 0.6], and [0.72 0.9] (for µ = 1).

Secondly, it is noted that the minimum of  results from the fact that the mode of jth

pulsation is almost unaffected for a crack whereas the mode of ith pulsation is greatly affected. For

example, Fig. 9(a) shows that the second vertical mode that is associated with the third pulsation is

unaffected for a crack located at the center of the simply supported beam that corresponds to the

nodal point of the second mode shape. From the results of Figs. 9(c) and (f), it can be seen that the

fourth vertical mode that corresponds to the seventh pulsation is unaffected for a crack at the center

of the beam.

With reference to Fig. 9, it can be seen that the factor  and the local associated minima

and maxima indicate the trends of changes of the bending moment and its effect on both the mode

of jth pulsation and the mode of ith pulsation. It reflects one of the well-known effects of cracks on

the modal properties of cracked beams (see for example Morassi 1993).

All the  decrease or increase rapidly with increasing of the non-dimensional crack depth

µ. Therefore, the detection of lower crack detph appears to be easily done. 

Considering Fig. 9, it can be concluded that both the crack location and the non-dimensional

crack depth have influence on the more affected pulsation of the cracked beam. It appears therefore

that the change in the factor  is not only a function of crack depth, and crack location, but

also of the pulsation number and the associated mode shape. Then, the damage detection technique

that depends on the measured changes in the three factors  and 

(corresponding to the first, second and third vertical modes of the simply supported beam) is used.

Fig. 10 shows the contour lines of these factors for the six cases that have been previously

examined. Table 7 gives the associated values of  and  for each case.

Even if the crack location coincides with a vibration node, the contour line of the associated

factor do not tend to disappear, and an intersection is obtained. However, the non-uniqueness of the

intersection may always induced worse detection of the crack location due to the symmetry of the

simply supported beam.

To avoid the the non-uniqueness of the crack identification, the technique using the off-center

added mass is applied. The variations of the three factors  and 

(defined in Eq. (25)) with a mass that is placed at Lmass = 0.187 m from the left end of the beam,

are shown on Figs. 11(a), (c) and (e).

It is observed that the factors are not equal to 0 if the beam is uncracked. This is only due to the

fact that the location of the added mass influences the pulsations of the simply supported beam.
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Table 7 Values of  for each case with the simply supported beam

Case 

(a)
(b)
(c)
(d)
(e) 
(f) 

0.44
19.66 

−14.83
−3.11
12.74 
5.35 

−1.15
17.30 
−2.82 
−1.56
29.78
13.96

−2.24
−50.56
−56.94
−9.00
12.08
7.84
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Therefore, the previous ratio  between the ith and jth modes of the uncracked

beam is not equal to i2/j 2 any more. Strictly speaking, this last comment is not a problem for the

crack identification technique using the factors . For the readers’ understanding, these

factors may be corrected in order to be equal to 0 for the uncracked beam by considering the

following correction  of the factor 
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uncracked
/ω j

uncracked

%ψ i j,

cracked

%ψ i j,
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Fig. 11 Evolution of  and the  of the beam with an added mass at Lmass = 0.167 m as a
function of the non-dimensional crack depth µ and the crack location Lcrack
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(26)

where  defines the ith uncracked pulsation that is a function of the added mass

location. Figs. 11(b), (c) and (f) show the corrected factor  and ,
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Fig. 12 Identification of crack size and location with  for a simply supported beam with added mass
at the left end Lmass = 0.167 m  (__ , _ _ , _._ )
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respectively. It is clear that the curves of corrected factor  are only translatory movements

of the curves of . It is significant to note that the ratio /  is

independent of the Young modulus and the density and can be easily obtained numerically without

experimental tests. From the curves given in Fig. 11, it is seen that the variations of  and

 are similar.
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Fig. 13 Identification of crack size and location with  for a simply supported beam with added mass
at the right end Lmass = 0.833 m (__ , _ _ , _ ._ )
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Finally, the identification technique of adding an off-center mass at the left side initially, and then

at the right side, is used in order to uniquely detect the crack size and location. Figs. 12 and 13

show the ratio pulsation contour lines of the factors  and  with left

and right added masses for the six previous cases. Tables 8 and 9 indicate the corresponding values

of  for the three pulsation ratio contour lines. For each case, it appears that only one

intersection of the three contour lines is obtained and no confusion may be done. Thereby, it is clear

that a robust detection of both the crack size and crack location can be done by considering the

three tests: the simply supported beam (see Fig. 10), the simply supported beam with a left added

mass (see Fig. 12), and the simply supported beam with a right added mass (see Fig. 10).

It is seen, from the results given in Tables 8 and 9 that the factors  are only a

translation of the factors . Moreover, it appears that the variations of  are

important and can be utilized to detect crack of small size.

4. Conclusions

In this paper we have proposed a new criterion for damage detection and assessment. This

criterion considers the ratio pulsation changes of the cracked beam. One of the advantages of the

criterion presented here is that the sensitivity of each criterion parameter  and 

do not require an accurate knowledge of the material properties (i.e., the Young modulus and the

density). Moreover, the pulsations of the uncracked beam are not used for the identification

technique. The damage detection approach was applied to the problem of identifying a crack in a

circular cross section beam. To do that, an cracked beam model was formulated based on finite

element formulation, and the local stiffness reduction into a crack section.

The predictor of crack size and location is based on the intersection of pulsation ratios contour
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Table 8 Values of  and  for each case with the simply supported beam and the left added
mass

Case

(a)
(b) 
(c) 
(d)
(e) 
(f) 

39.53 
53.75
27.94 
37.23 
48.10 
47.61 
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66.50 
71.32 
105.42 
82.23 
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−2.17 
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−8.15 
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−27.12
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Table 9 Values of  and  for each case with the simply supported beam and the right added
mass

Case

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 

 39.77 
 59.03 
 26.69 
 36.38 
 58.04 
 43.00 

 74.28 
 53.99 
 71.00 
 74.31 
 88.64 
 88.54 

 174.44 
 127.93 
 130.89 
 164.90 
 143.67 
 184.18 

 0.37 
 19.63 

 −12.71 
 −3.02 
 18.64 
 3.60 
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 −3.65 
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lines. If the beam has structural symmetry, the identification of crack location is performed by

adding an off-center mass in order to avoid worse diagnostic. Based on the results of the analysis

and numerical simulations performed, it is concluded that the proposed approach is able to

determine the size and location of the crack for beams. The identification method can adapt to a

variety of beams without requiring a reformulation. It is believed that this identification technique

can be easily applied for experimental detection of crack size as well as crack location.
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 Appendix A. Analytical solution of a simply supported uncracked beam and

expression of 

The classical nth pulsation for a simply supported continuous Euler-Bernouilli uncracked beam is defined as

(27)

where n are the modes numbers . L is the length of the beam. E and ρ defines the Young
modulus and density, and so correspond to the material properties. I and S are the moment of inertia and area
of the beam section.

For a circular cross section beam, we have

(28)

The expressions of  and  are given by
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