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Static and vibration analysis of thin plates by using finite 
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Abstract. A finite element method (FEM) of B-spline wavelet on the interval (BSWI) is used in this
paper to solve the static and vibration problems of thin plate. Instead of traditional polynomial
interpolation, the scaling functions of two-dimensional tensor product BSWI are employed to construct the
transverse displacements field. The method combines the accuracy of B-spline functions approximation
and various basis functions for structural analysis. Some numerical examples are studied to demonstrate
the proposed method and the numerical results presented are in good agreement with the solutions of
other methods.
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1. Introduction 

Wavelet analysis is a new method developed in recent years (Mallat 1999). The wavelet method

can be viewed as a method in which the approximating function is defined by use of a

multiresolution technique based on scaling or wavelet functions, similar to those used in signal and

image processing (Mallat 1999). Its desirable advantages are multi-resolution properties and various

basis functions for structural analysis. By means of “two-scale relations” of scaling functions, the

scale adopted can be changed freely according to requirements to improve analysis accuracy. So

wavelet method is well argued by many researchers not only in numerical analysis domains (Canuto

1999, 2000, Cohen 2003) but also in structural analysis fields (Chen 1995, 1996, Zhou, Ko 1997,

1998, Basu 2003, Ma 2003, Chen 2004, Xiang 2006). Basu indicated that the finite difference and

Ritz type methods of the pre-computer era had largely been replaced in the computer era by FEM,

boundary element method (BEM), Meshless method, and in the near future it may be the turn for
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wavelet method (Basu 2003). Recently, one-dimensional Daubechies wavelet Euler beam element

had been constructed (Ma 2003). And the two-dimensional Daubechies wavelet element for a thin

plate-bending problem had also been constructed (Chen 2004). However, for Daubechies wavelets

lacking of the explicit function expression, traditional numerical integrals such as Gauss integrals

cannot provide desirable precision, the key problem is to calculate connection coefficients (Ma

2003, Chen 2004) when the Daubechies scaling and wavelet functions are employed to construct

wavelet FEM solving equations. Since the connection coefficients derivation can only be obtained

for integration in global coordinates, it will fail when the integrand involves variant Jacobians (Chen

1995, 1996). Moreover, the connection coefficients calculation is a complex process, which will

increases the coding work and calculating costs.

In the construction of wavelet-based FEM solving equations, instead of traditional polynomial

interpolation, scaling and wavelet functions have been adopted, which embodied with the prominent

advantage that the B-spline wavelets on the interval have explicit expressions (Xiang 2006). So the

element stiffness or mass matrix can be calculated conveniently. Furthermore, B-spline wavelets

have the best approximation properties among all known wavelets of a given order L (Cohen 2003).

However, the originally spline wavelets are defined on the whole real space. Using the wavelets

defined on the whole real space as interpolating functions will bring the instability phenomenon

(Bertoluzza 1994). To overcome this limitation, Chui and Quak constructed BSWI functions, and

presented the corresponding fast decomposition and reconstruction algorithm (Chui 1992, Quak

1994). Goswami, Chan and Chui also used the BSWI solving the first-kind integral equations

(Goswami 1995). The wavelets on a bounded interval have limited dimension towards every scaling

and wavelet space. So any functions on the interval will be expanded as a sum of finite-dimensional

wavelet series, which plays a very important role in constructing element-interpolating functions

because it is easy to apply wavelets or scaling functions to FEM. Moreover, the application of the

B-spline wavelets basis to the versatile finite element method provides accurate analytical results

and a robust multi-level solving process (Canuto 1999, 2000). Since the cubic B-spline interpolated

functions have sufficient continuity and are piecewise polynomial, so the B-spline FEM gives

accurate results than traditional FEM (Shen 1991, 1995). 

The aim of this paper is three-fold. Firstly, instead of traditional polynomial, the tensor product

BSWI scaling functions are adopted to form FEM BSWI solving equations. Secondly, Based on the

generalized function of potential energy and variation principle, the FEM BSWI solving equations

are given for static and free vibration analysis of rectangle and skew plates. Finally, Some numerical

examples are given and the numerical results of presented method have been compared with the

published solutions.

2. Two-dimensional tensor product BSWI

B-spline functions for a given simple knot sequence can be constructed by taking piecewise

polynomials between the knots and joining them together at the knots in such a way as to obtain a

certain order of overall smoothness. B-splines of mth order are in . Since the function f (x) on

the interval [a, b] can be mapped to the standard interval [0, 1] by the transformation formula

, it only needs to construct mth order B-spline function space on the interval

[0, 1]. Generally, the interval [0, 1] can be divided into 2j, (  is the scale) segments, and then

increasing  knots outside each endpoint and looking the two lateral  knots as virtual

Cm 2–

ξ x a–( )/ b a–( )=

j Z
+∈

m 1– m 1–
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multi-knots of the endpoint 0 and 1. Let  be a knot sequence with m-tuple knots at 0

and 1, then the whole knot numbers are , and the knot sequence form B-spline functions,

which can be further constructed to the mth order nested B-spline subspace Vj. Its basis functions

are given below

(1)

where  is cardinal spline function. Let  be the scaling functions of BSWI,

we can obtain the multi-resolution analysis (MRA) on the bounded interval [0, 1] (Chui 1992, Quak

1994) and the order of scaling functions  is .

The support of the inner (without multiple knots) B-spline occupies m segments and that of the

corresponding semi-orthogonal wavelet occupies  segments. At any scale j, the discretization

step is 1/2 j which, for j > 0, gives 2 j number of segments on [0, 1]. Therefore, to have at least one

inner wavelet on the interval [0, 1], the following condition must be satisfied.

(2)

While 0 scale mth order B-spline functions and the corresponding wavelets (Goswami 1995) are

given, j scale mth order B-spline scaling functions  and the corresponding wavelets

 can be evaluated by the following formula

(3)

(4)

The wavelets compactly supported intervals are

(5)

Let j0 be the scale for which the condition Eq. (2) is satisfied. Then for each j > j0, let , we

can get the scaling and wavelet functions easily through Eq. (3) and Eq. (4). There are 

boundary scaling functions and wavelets at 0 and 1, and  inner scaling functions, and

 inner wavelets. Fig. 1 shows all the scaling functions and wavelets for m = 4 at the

scale j = 3. 
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Tensor product of one-dimensional wavelets (Mallat 1999) is the easy and direct way to construct

two-dimensional BSWI. A wavelet semi- orthonormal basis at scale j of  is constructed with

tensor product of the one-dimensional multiresolution approximation space  and . So the

tensor product subspace , and the scaling functions are 

(6)

where  is the one row vector combined by the scaling

functions for m at the scale j and  is the other row

vector combined by the scaling functions for m at the scale j.  is the kronecker symbol.

The wavelet functions are  and . Fig. 2 shows all

the tensor product BSWI scaling functions, which are generated by the one-dimensional BSWI for

 at the scale .
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Fig. 1 Scaling functions and wavelets on the interval [0, 1]

Fig. 2 Tensor product BSWI scaling functions ϕ ϕ1 ϕ2⊗=
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3. Thin plate bending and vibration problems

3.1 rectangle thin plate FEM BSWI formulation 

Fig. 3 shows the solving domain Ω of the thin plate bending problems.

Based on the classical Kirchoff plate theory assumptions, the generalized function of potential

energy for a thin plate is (Zienkiewicz 1988) 

(7)

where Ω denote solving domain of thin plate, q is uniform load, w is displacement field function, κ

is the generalized strain as follow

(8)

and the elastic matrix D is given by

 (9)

in which µ denotes Poisson’s ratio, and the bending stiffness D0 defined by 

(10)

where E denotes Young’s modulus, and t is the thickness of the thin plate.

If the tensor product BSWI scaling functions are applied to solve the thin plate bending problems,

the displacement field function w is interpolated by 

(11)

where ϕ is given by Eq. (6) and the unknown wavelet coefficients column vector are 
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Fig. 3 The solving domain Ω of the rectangle thin plate bending problem
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(12)

Substituting Eq. (11) into Eq. (8), we obtain

(13)

Substituting Eqs. (9), (11) and (13) into Eq. (7), we have

(14)

where , , 

   , 

 are similar to  if lx and dξ are replaced by ly and dη

respectively.

According to variation principle, let , we can obtain FEM BSWI solving equations

Ka = P (15)

where 

(16)

and the uniform load column vector is

(17)

The thin plate displacement can be calculated by Eq. (11) as long as the wavelet coefficients are

solved by Eq. (15). According to elastic theory, the moments can be calculated by

M = Dκ (18)

where .
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Substituting Eqs. (9) and (13) into Eq. (18), we have

(19)

3.2 skew plate FEM BSWI formulation

Fig. 4 shows the solving domain Ω of the skew plate bending problems.

When the FEM BSWI is applied to solve the skew plate bending problems, the skew coordinate

system is need. The relationship between skew and global coordinate system is

(20)

In global coordinate system, the generalized function of potential energy for a skew plate is (Shen

1991)

(21)

The displacement field functions w is interpolated by 

w = ϕas (22)

where ϕ is given by Eq. (6) and the unknown wavelet coefficients column vector is 

(23)

Substituting Eqs. (20) and (22) into Eq. (21) and according to variation principle, let ,

we can obtain FEM BSWI solving equations
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Fig. 4 The solving domain Ω of the skew plate bending problem
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(24)

where 

(25)

and the uniform load vector is

(26)

in which 

, , , 

and the other integrations are similar to Eq. (14).

The moments can be calculated by

(27)

(28)

and

(29)

3.3 FEM BSWI for thin plate free vibration problems

The generalized function of potential energy for the rectangle thin plate free vibration problem is

(Zienkiewicz 1988) 

(30)

where ρ is the density and ω is the circular frequency.

Similarly to the procedures of section 3.1, we have the free vibration frequency equations for

rectangle thin plate vibration problem
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where K is stiffness matrix as shown in Eq. (16) and M is the consistent mass matrix that can be

obtained from 

(32)

The free vibration frequency equations for skew plate vibration problem are given by

(33)

where Ks is stiffness matrix, as shown in Eq. (25). Ms is the consistent mass matrix that can be

obtained by 

(34)

4. Numerical examples 

A number of examples are taken to examine the performance of the FEM BSWI, which include

the rectangle and skew thin plate bending problems for various boundary conditions subjected to

uniform or concentrated load and the rectangle and skew thin plate free vibration problems. The

numerical results are compared with those obtained by other analytical or numerical method. In this

section, the tensor product BSWI scaling functions for  at the scale  are adopted to

build FEM BSWI solving equations. Supposing Poisson’s ratio  for all examples. The

order of stiffness matrix, which is given by Eq. (16), Eq. (25), Eq. (30) or Eq. (33) is 121 × 121

when the tensor product BSWI scaling functions for  at the scale  are adopted to build

FEM BSWI equations.

4.1 Example 1: Square plate

A square plate, which is subjected to a uniformly distributed load or a concentrated load is

modeled with four different boundary conditions, i.e. case 1: clamped boundary conditions on all

four sides (CCCC), case2: simply supported boundary conditions on all four sides (SSSS), case3:

simply supported boundary conditions on two opposite sides and the other two opposite sides are

clamped (SCSC) and case4: clamped boundary conditions on one side and the other three sides are

simply supported (CSSS).

Table 1 shows the results of the central displacement and moments, obtained by FEM BSWI, for

uniform and concentrated loads, where q is the uniformly distributed load, P is the concentrated

load and L is the length of the square plate. The displacement results obtained by the presented

formulation are in good agreement with closed-form solutions. However, for the sake of differential

operations, the relative errors of moments are much poor than those of displacement.

Fig. 5(a) shows deformation of square plate for simply supported boundary conditions on all four

sides. The contour plots of the deformed plate along x direction are shown in Fig. 5(b), the bottom line

is the deformation of middle line along x direction and the upper line is the simply supported side.

Table 2 shows the FEM BSWI results of the central displacement , central moment

 and torque moment  of the corner points obtained by FEM BSWI, for
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distributed load , where q0 is the uniformly distributed load. The results

obtained by the presented method have good accuracy compared with the closed-form solutions.

q q0sin
πx

L
------ sin

πy

L
------×=

Fig. 5 The deformation of square plate for simply supported boundary conditions on all four sides

Table 2 Central displacements and moments of square plate for simply supported boundary
 condition on all four sides subjected to distributed load (Timoshenko 1970)

Method

BSWI 0.25666 0.33357 0.17732

Exact 0.25665 0.32930 0.18041

Error (%) 0.00390 1.29669 1.71277

w100D0/q0L
4

Mx10/q0L
2

Mxy10/q0L
2

Table 1 Central displacements and moments of square plate for various boundary conditions subjected to
uniform and concentrated loads (Timoshenko 1970)

Case Method
Uniform load Concentrated load

1

BSWI 0.12652 0.23288 0.23288 0.55698 2.76529 2.76529

Exact 0.12652 0.2310 0.2310 0.56120 − −

Error (%) 0 1.67255 1.67255 0.75196 − −

2

BSWI 0.40625 0.48136 0.48136 1.15591 3.30127 3.30127

Exact 0.4062 0.4789 0.4789 1.1600 − −

Error (%) 0.01231 0.51368 0.51368 0.35259 − −

3

BSWI 0.1917 0.24530 0.33899 0.6998 2.79264 3.00078

Exact 0.192 0.244 0.332 − − −

Error (%) 0.15625 0.53279 2.10542 − − −

4

BSWI 0.27970 0.34070 0.39668 0.7987 2.99893 3.12238

Exact 0.28 0.34 0.39 − − −

Error (%) 0.10714 0.20588 1.71282 − − −

w100D0/qL
4

Mx10/qL
2

My10/qL
2

wD0100/PL
2

Mx10/P My10/P
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Fig. 6(a) shows deformation of square plate for corner point supported boundary conditions on all

four-corner point subjected to uniform load. The contour plots of the deformed plate along x

direction are shown in Fig. 6(b), the bottom line is the deformation of middle line along x direction

and the upper line is the back edge.

4.2 Example 2: Skew plate 

A skew plate (skew angle α = 60o) subjected to a uniform load, which is modeled with simply

supported boundary conditions on two opposite sides and the other two sides are free (SFSF).

Table 3 shows the FEM BSWI results of central displacement and moment and those of the other

Table 3 Comparison of FEM BSWI results of central displacement and moment of the skew plate with those
of the other FEM. (SFSF.) (Zienkiewicz 1988)

(a) Central displacement 

Mesh BSWI DKQ ACQ LSL-Q12 MITC4 MiSP4 MMiSP4 DSQ

8 × 8 − 0.7876 0.7920 0.7918 0.7610 0.7781 0.7604 0.7840

10 × 10 0.7925 − − − − − − −

12 × 12 − 0.7909 0.7927 0.7927 0.7785 − − −

16 × 16 − 0.7920 0.7930 − − 0.7894 0.7832 0.7871

Exact 0.7945

(b) Central moment 

Mesh BSWI DKQ ACQ LSL-Q12 MITC4 MiSP4 MMiSP4 DSQ

8 × 8 − 0.9605 0.9990 0.9777 0.9090 0.9423 0.9052 0.9609

10 × 10 0.9715 − − − − − − −

12 × 12 − 0.9602 0.9777 0.9680 0.9370 − − −

16 × 16 − 0.9601 0.9700 − − 0.9567 0.9466 0.9602

Exact 0.9589

w 100× D0/qL
4

×

My 10× /qL
2

Fig. 6 The deformation of square plate for corner point supported on all four-corner points subjected to
uniform load
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FEM. Both the displacement and moment results indicate the FEM BSWI have higher accuracy and

less meshes.

Fig. 7(a) shows deformation of skew plate for SFSF, which is subjected to uniform load. The

contour plots of the deformed plate along x direction are shown in Fig. 7(b), the deformation of

middle line along x direction is shown as dashed.

Table 4 shows results of the FEM BSWI and the other methods of a skew plate, which is

subjected to a uniform load under two different boundary conditions, i.e. simply supported and

clamped boundary on all four sides. The skew angle α is chosen from 30 to 90 degree. The FEM

BSWI solutions are match well with those of the other methods.

4.3 Example 3: Free vibration for thin plate

Firstly, we use FEM BSWI to analysis the free vibration problem of a square plate for various

Table 4 Central displacement  of skew plates for simply supported or clamped boundary
conditions at all four sides (GangaRao 1988, Morley 1963)

Skew angle 
α

Simply supported skew plate subjected to 
uniform load of intensity q

Clamped skew plate subjected
to uniform load of intensity q

BSWI GangaRao Morley BSWI GangaRao Morley

90o 4.0625 4.06 4.06 1.2652 1.27 1.26

85o 4.0134 4.01 4.01 1.2487 − −

80o 3.8683 3.87 3.87 1.2002 1.20 1.20

75o 3.6343 3.64 − 1.1226 − −

70o 3.3228 − − 1.0206 1.02 1.02

60o 2.5419 2.56 2.56 0.7680 0.771 0.769

55o 2.0929 2.14 0.6317 − −

50o 1.6955 1.72 1.72 0.4982 0.503 0.500

45o 1.2830 1.32 − 0.3741 − −

40o 0.9264 0.958 0.958 0.2648 0.269 0.270

30o 0.3883 0.406 0.408 0.1039 0.108 −

w 1000× D0/qL
4

×

Fig. 7 The deformation of skew plate for SFSF subjected to uniform load
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boundary conditions i.e. case1, case2, case3 and case4, which is similar to example 1. The first five

non-dimensional natural frequencies  solved by FEM BSWI and other analytical

methods are shown in Table 5. The accuracy of FEM BSWI is very high. 

Fig. 8 shows the first six-mode shapes of thin plate for clamped boundary on all four edges.

Secondly, the free vibration problem of a skew plate is also given. Table 6 gives the non-

dimensional natural frequencies  of the skew plate for various boundary

conditions, i.e. case 1: clamped boundary conditions on all four sides (CCCC), case2: simply

supported boundary conditions on all four sides (SSSS), case3: simply supported boundary

Ωi i 1 2 … 5, , ,=( )

λi i 1 2 … 5, , ,=( )

Fig. 8 The mode shapes of thin plate for clamped boundary on all four edges

Table 5 The first five natural frequencies of rectangle square plate for various boundary conditions (Frequency
parameters ).( Blevins 1979, Warburton 1954)

case Method
Ω1

(rad/s)
Ω2

(rad/s)
Ω3

(rad/s)
Ω4

(rad/s)
Ω5

(rad/s)

1

BSWI 35.9915 73.4457 73.4457 108.3172 131.9954

Exact 35.99 73.41 − 108.3 131.6

Error (%) 0.0042 0.0486 − 0.0159 0.3005

2

BSWI 19.7394 49.3575 49.3575 78.9689 98.8359

Exact 19.74 49.35 − 78.95 98.64

Error (%) 0.0030 0.0152 − 0.0239 0.1986

3

BSWI 28.9532 54.7601 69.3689 94.6373 102.3746

Exact 28.95 54.74 69.32 94.59 102.2

Error (%) 0.0111 0.0367 0.0705 0.0500 0.1708

4

BSWI 23.6471 51.6865 58.6675 86.1621 100.4169

Exact 23.64 51.67 58.65 86.12 100.30

Error (%) 0.0300 0.0319 0.0298 0.0489 0.1166

Ωi ω iL
2
ρt/D0( )

1/2
=
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conditions on two opposite sides and the other two opposite sides are clamped (SCSC), case4:

clamped boundary conditions on one side and the other three sides are free (CFFF), case5: clamped

boundary conditions on two opposite sides and the other two opposite sides are free (CFCF) and

case6: simply supported boundary conditions on two opposite sides and the other two opposite sides

are free (SFSF).

To validate the accuracy of FEM BSWI, the non-dimensional fundamental frequency λ1 of the

skew plates for various boundary conditions has been compared with those obtained by Raju (1980)

and Liew (1993), as shown in Table 7. The difference between two results is negligible. From these

results, it may be noted that the proposed FEM BSWI gives the reliable and accurate solutions

Table 6 The first five natural frequencies of skew plate for various boundary conditions
(Frequency parameters ) 

Case Skew angle α 90o 75o 60o 45o 30o

1 (CCCC)

λ1 3.6467 3.8702 4.6751 6.6854 12.6068

λ2 7.4416 7.3926 8.2850 10.8734 18.7711

λ3 7.4416 8.3810 10.6963 15.3670 25.9691

λ4 10.9748 11.1230 12.1546 16.1455 32.1820

λ5 13.3739 14.1385 16.8948 20.9490 35.6906

2 (SSSS)

λ1 2.0000 2.1154 2.5371 3.6231 6.9105

λ2 5.0010 4.8853 5.3357 6.7262 10.7707

λ3 5.0010 5.6886 7.3029 10.2478 15.6684

λ4 8.0012 8.0137 8.5129 11.0790 21.7654

λ5 10.0142 10.5555 12.4840 14.5090 22.1514

3 (SCSC)

λ1 2.9336 3.1112 3.7530 5.3669 10.1524

λ2 5.5484 5.7485 6.5226 8.5179 14.3698

λ3 7.0285 7.5687 9.4602 12.6589 20.4279

λ4 9.5888 9.5410 10.2476 14.1040 26.9970

λ5 10.3727 11.3725 14.0355 17.5510 29.2222

4 (CFFF)

λ1 0.3518 0.3633 0.3986 0.4584 0.5431

λ2 0.8623 0.8816 0.9552 1.1483 1.6489

λ3 2.1577 2.2536 2.5671 2.7487 3.2043

λ4 2.7564 2.6691 2.6295 3.2230 4.7242

λ5 3.1384 3.4332 4.1946 5.1525 6.1515

5(CFCF)

λ1 2.2478 2.3672 2.7803 3.7266 6.1783

λ2 2.6785 2.7724 3.1071 3.9226 6.2353

λ3 4.4206 4.5485 5.0330 6.3018 10.1236

λ4 6.2065 6.5448 7.5216 8.9463 12.9032

λ5 6.8166 7.1445 8.2662 10.7022 16.5606

6(SFSF)

λ1 0.9759 1.0334 1.2317 1.6721 2.6477

λ2 1.6348 1.6708 1.7970 2.0872 2.8062

λ3 3.7217 3.6465 3.6518 4.0210 5.5009

λ4 3.9472 4.2005 5.0128 6.0910 7.6158

λ5 4.7369 5.1370 6.2297 8.0651 10.5324

λi ω iL
2
/π

2
( ) ρt/D0( )

1/2
=
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regardless of the higher corner singularity due to the decreased of skew angles and geometric

constraints.

Fig. 9 gives the first six-mode shapes of skew plate for simply supported boundary conditions on

all four edges, where the skew angle α = 60.

5. Conclusions

Based on the two-dimensional tensor product BSWI, the FEM BSWI solving equations are built

Table 7 Comparison of non-dimensional fundamental frequency (λ1) of thin skew plate for various boundary
conditions. (Raju 1980, Liew 1993)

Case Method
Fundamental frequency for skew plate angles

90o 75o 60o 45o 30o

1 (CCCC)
Raju 3.6481 3.8716 4.6744 6.6652 12.4080

Present 3.6467 3.8702 4.6751 6.6854 12.6068

2 (SSSS)
Raju 2.0006 2.1172 2.5479 3.6664 7.0582

Present 2.0000 2.1154 2.5371 3.6231 6.9105

3 (SCSC)
Raju 2.9347 3.1122 3.7497 5.3300 9.8868

Present 2.9336 3.1112 3.7530 5.3669 10.1524

4 (CFFF)
Liew 0.3517 0.3631 0.3983 0.4571 0.5346

Present 0.3518 0.3633 0.3986 0.4584 0.5431

5 (CFCF)
Liew 2.2462 2.3656 2.7763 3.6933 5.8584

Present 2.2478 2.3672 2.7803 3.7266 6.1783

6 (SFSF)
Liew 0.9759 1.0334 1.2310 1.6649 2.5810

Present 0.9759 1.0334 1.2317 1.6721 2.6477

Fig. 9 The mode shape of skew plate for simply supported boundary conditions on all four edges
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to solve the rectangle and skew plate bending and vibration problems. Because the good character

of BSWI scaling functions, the FEM BSWI presented in this paper is a useful tool to deal with high

performance computation in engineering. The numerical results are presented in this paper for

several well-selected problems demonstrating the accuracy, efficiency and reliability of the method

developed herein. It has been noted that the examples used in this paper adopted the tensor product

BSWI scaling functions for m = 4 at j = 3 to form the FEM BSWI solving equations. But the other

scaling functions of BSWI such as m = 4 at , also can be applied to form FEM BSWI

equations to get higher accuracy.

Because the built-in hierarchy property of wavelet, which is suitable for a multi-level solution

procedures, the future research is the construction of hierarchy FEM BSWI in order to make use of

the advantages of wavelets basis functions for approximation in FEM.
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