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Abstract. Many works have been done in classical theory of thermoelasticity in materials with memory
by researchers like Nunziato, Chen and Gurtine and many others. No work is located in generalized
thermoelasticity regarding materials with memory till date. The present paper deals with the wave
propagation in materials with memory in generalized thermoelasticity. Plane progressive waves and
Rayleigh waves have been discussed in details. In the classical theory of heat conduction it was observed
that heat propagates with infinite speed. This paradox has been removed in the present discussion. The set
of governing equations has been developed in the present analysis. The results of wave velocity and
attenuation coefficient corresponding to low and high frequency have been obtained. For thermal wave the
results show appreciable differences with those in the usual thermoelasticity theory.
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1. Introduction

In the mechanics of continuous media, a material is said to have hereditary characteristics or
memory if its behavior at time ¢ is specified by the past experience of the body upto time 7. The
theory of heat conduction in materials with memory has drawn the attention of many researchers.
The motivation was provided by an unpleasant feature of the classical linear theory of heat
conduction viz., that a thermal disturbance produced at some point in the body felt instantaneously
at all other points, this contradicts the relativistic principle that energy cannot be propagated at
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speeds exceeding the velocity of light. Gurtin and Pipkin (1968) first established a general non-
linear theory of heat conduction in rigid materials with memory for which thermal disturbances
propagate with finite speed. They assumed that the response functional viz., the entropy, free energy
and heat-flux depend on the present value of the temperature and the integrated histories of the
temperature and the temperature gradient.

Nunziato (1971) considered a slightly different memory theory of heat-conduction. He assumed
the response functional to depend on the histories upto the present time of the temperature and the
temperature gradient. In his theory heat conduction depends also on the present value of the
temperature gradient so that Fourier’s law of heat conduction is obtained as a particular case, if £(0),
the instantaneous conductivity, is non-zero. On the other hand, if A(0)=0, Nunziato’s heat
conduction equation agrees with that of Gurtin and Pipkin. Chen and Gurtin (1970) extended the
theory presented by Gurtin and Pipkin to deformable media. They started with the constitutive
assumptions that the response functional viz., the stress, entropy, free energy and heat-flux depend
on the present values of the temperature and the deformation gradient and the integrated histories of
the deformation gradient, temperature and the temperature gradient. On the other hand, McCarthy
(1970) developed a theory of thermo-mechanical materials with memory on the assumption that the
response functionals are dependent on the present values of the temperature and the deformation
gradient, histories of the deformation gradient and the temperature and the integrated history of the
temperature gradient. Chakraborty (1976), however, assumed the response functionals to be
dependent on the present values of the temperature and the deformation gradient and the histories of
the temperature, deformation gradient and the temperature gradient. His assumptions are thus less
restrictive than those of Chen and Gurtin and of McCarthy. He extended Nunziato’s theory of heat
conduction to deformable bodies and deduced the generalized stress-strain relations and the coupled
equation of heat conduction for materials with memory and obtained the linearised forms of these
equations. The stress-strain relations are similar to those of a linear thermo-visco-elastic solid given
by Eringen (1967, p.367-368). The heat conduction equation for a thermo-visco-elastic solid is the
same as that for the thermo-elastic solid Eringen (1967). It is, thus, observed that the stress-strain
relations and the heat conduction equation obtained by Chakraborty (1976) are more general than
those of others in the sense that, the equations of classical thermoelasticity as well as those of
classical thermo-visco-elasticity can all be obtained as particular cases. The stress-strain relations
and the coupled equation of heat conduction in the linear coupled thermo-elasticity theory given by
Chadwick (1960) for thermoelastic materials (Miiller 1967) can be obtained as a particular case
from those deduced by Chakraborty. This is to be expected, since for “thermoelastic” materials the
response functionals depend only on the present values of the temperature, temperature gradient,
and the deformation gradient. Hence “thermoelastic” materials are special cases of “thermoelastic
materials with memory”.

Chen, Amos, Nunziato and McCarthy have studied propagation of thermoelastic waves. Chen
(1969) studied the amplitude variation of the temperature rate waves of arbitrary form, assuming
that the constitutive relations of the material are given by the linearised theory derived by Gurtin
and Pipkin (1968). Amos and Chen (1970) obtained the speed of propagation of one dimensional
thermal waves, while Nunziato (1971) determined the attenuation and the speed of plane
temperature rate waves. McCarthy (1970) studied the propagation of “first order” waves using his
own derived equations (McCarthy1970).

The recent works in this line by Bhattacharyya (1991), Matinez and Quintanilla (1995), Chirita
and Quintanilla (1997), Hongjun (2001), Iesan and Quintanilla (2002), Maria Grazia and Yuming,.
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Qin (2002), Maria Grazia and Federico (2003), Maria Grazia (2003), Zhou et al. (2003), Maria
Grazia and Elena (2004) may be of worth mentioning.

In the present paper we study plane progressive thermoelastic waves and Rayleigh waves in
generalized thermoelasticity in a general form using the more general equations deduced by
Chakraborty (1976). As in the usual coupled thermoelasticity theory, it is observed in the present
analysis that there exist two types of propagating plane waves, one is the quasi-elastic wave and the
other is the quasi-thermal wave (Chadwick 1960, p.283). Both the waves, however, exhibit
dispersion and attenuation. The modified elastic wave speed approaches the “instantaneous” value
of the classical compressional wave velocity at high frequencies and its “equilibrium” value
modified by the coupling factor at low frequencies. Its attenuation coefficient tends to a constant
value at large frequencies and is proportional to the square of the frequency at low frequencies.
Similar features are observed in the usual coupled thermoelasticity theory. But a new feature,
exhibited by purely elastic waves in materials with memory, is that these waves are subject to both
dispersion and attenuation. The purely elastic wave speed approaches the “instantaneous” value of
the classical compressional wave velocity at high frequencies and its equilibrium value at low
frequencies. The attenuation coefficient is proportional to the square of the frequency at low
frequencies and tends to a constant value at high frequencies.

It is also observed that for thermal waves both the velocity and the attenuation coefficient are
proportional to the square root of the frequency at low and high frequencies.

Finally, the dispersion equation for Rayleigh waves has also been obtained in the present study. It
has a form analogous to that in the usual linear coupled thermoelasticity theory.

2. Formulation of equation

Following the analysis of Dhaliwal and Sing (1980), Lord and Shulman (1967) and Green and
Lindsay (1972) in generalized thermoelasticity, the stress-strain-temperature relations and heat
conduction equations are written below:

Assuming isotropy and linearity the equation of heat conduction or energy equation can be written
as

(i) a(0)O+1,0)+ Oj'a/(s)[é()?, t—5) + 1,003, t=5)]ds + 7(0)div[il (%, 1) + Sytyid (X, )]

+ [0 ($)div[iE R, 1=5) + Sutoid (R, 1-5)1ds = KO)VOE, 1)+ K ()VOF, =s)ds (1)

(ii) Stress-Strain-temperature relations are

0;(X,1) = [A0)e(¥, 1)~ O AX, D)+ 1,0, 1)}5; +2u(0)e X, 1)]

+ ()R, 1-5) =B (IO, 1-5)+ 10(R,1-5)3,} + 24 (s)ey(R, 1 -5)]ds 2)

0
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(iii) Equations of motion are
> > 2
0y, (X, 1) = pu (X, 1) €)
(iv) Strain-displacement relations are

Y

1 ..
e. = 5(“i,j+uj,i) i,j=1,2,3 (4a)

In Egs. (1) and (2), a(s) and k(s) are respectively the energy-temperature relaxation function and
the heat-conduction relaxation function, which in the case of “thermoelastic” materials correspond
to specific heat and conductivity respectively. A(s) and g(s) may be called the Lamé relaxation
functions corresponding to the usual Lamé constants. B(s) and 7(s) are the relaxation functions
corresponding to f# and 7 where [ is the coefficient of the temperature deviation in the stress-strain
relation, and 7 is the coupling constant. € denotes temperature deviation and i ()?> ,t) is the
displacement vector.
It should be noted that the relations

and £(0) = [34(0) +2u(0)] ey (4b)

n(0) = T,5(0)

where a7 is the coefficient of linear expansion and 7, is the reference temperature, hold though they
are not valid for other values of the arguments (they are valid for “thermoelastic” materials when
a(s), B(s), A(s), k(s), n(s), u(s) are all constants). If the relaxation functions a(s), A(s), A(s),
k(s), n(s), u(s) are constants the Egs. (1) and (2) reduce to the corresponding equations in the
usual linear thermoelasticity theory.

In the absence of body forces the equation of motion in deformable materials with memory
becomes, by the use of Eq. (2),

L(O)WVZ (R, 1)+ {2(0) + u(0) Y grad divii (%, 1) - f(0)[gradd (R, ) + t,grad (R, 1)]
+ j[y'(s)v%?()?, t—s5)+ {A(s)+ 1/ (s)} grad divii (¥, 1 - 5)
0
—B'(s)[grad&X, t—s) + t,gradO(X, t - s)|ds = pii (%, 1) (5)
Taking the divergence of the Eq. (5), we obtain

{A(0) +2(0)}VZe(¥, 1) —,B(O)[VZG()?, 1+ rlgtvze(?, r)}
+o]'{{/1'(s)+2y'(s)}vze()?,t—s)— ﬁ’(s){vze()?,t—s)+tl§[V26’(?,t—s)Hds = pe(¥,1)  (6)

where e(X, 1) = divil (¥, 1).
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3. Solution of the problem
Let us assume the following form of the plane wave solutions of Egs. (1) and (6),
[e(X, 1), 87, D)] = (e, G)explin(t -3 .ilc)]

where @ > 0 and 7 is a unit vector.
Substituting Eq. (7) in Egs. (6) and (1), we get

[{A(0)+24(0)} + {A"(@) + 271" (@) } — pc’ley— [BO)(1 + tiw) + B'(@) {1 + t,iw}] 6, = O
[a(0)(io~t,0) + @' (@) {io—1,0°}]16, + [(i®) + Syty(~)]7(0)e,
+eglio+ 1,5,(-)]7'(0) = [k(0) + k' (0))(-'/c)
or, [(io—t,0"){7(0) + 7' (@)} + (&°/c) (k(0) + k() }]6,
+(io— Syty®”) {7(0) + 7'(@) }ey = 0
where
(@' (o), B'(0), 7" (0), A (@), 1'(0), 7' (), k' (@) =
T(a'(s), B(s), 7(5), A'(5), 1'(s), n'(5), k'(5))exp(—iws)ds
Putting
a(0)+a'(w) = 4, p(0)+ E’(a)) =B, 4(0)+2u(0)+ /_‘t'(a)) +2u'(w) =1L
k(0) +k'(@) = K, u(0)+p'(0) =M, n(0)+7'(0) = N

and eliminating ey, & between Eqgs. (8a) and (8b), we get

(1 +iwty8)pc'A—[(1 + i@t AL + piwK + (1 +1,i)(1 + Sytyi)BN] +iwLK = 0

601

)

(8)

(8b)

)

(10)

(11)

If t, =1t =0, we get back the results 6(a) and 6(b) of Chakraborty (1976) in classical

Thermoelasticity.
The roots C 2,, , of Eq. (11) are given by

C’5 = [AL(1 + iwty8y) + pioK + (1 + iwt)(1 + iwt,6,) BN+D]/[2pA(1 + iwty5y)] (12)

where

D’ = {AL(1 +iwt,5,) + pioK + (1 +iot,)(1 +it,5,) BN} —4ioLK(1 +iot,5,) pA

(13)

If n(s) =0, the root C; corresponds to quasi-elastic wave and the root C, corresponds to quasi-

thermal wave, because for 77(s) = 0 and #,= 0,

C, = (LIp)'?, C, = (iwK/A4)

1/2 1/2
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and these roots correspond, in the uncoupled problem, to a pure elastic and thermal wave
respectively.
Let us now analyse the roots of the dispersion Eq. (11) for low and high frequencies.

(a) Low frequency

Expanding o'(®@) for small @ in the form

a'(0) = axon[ﬁ)a'(m} o+ ... (14)

w=0

we can write

a'(w)= a(o)—a(0)—ia,w

where o, = J'sa’(s)ds (15)
0

If we assume the existence of integrals of the type

a, = _[s"a(")(s)ds, n>1
0

we can retain terms of higher order in @ in Eq. (14).
Thus, for small @, we can write

A= a(o) -ia,0, B=f(o)-iof, M= (u(®)-iuo)
L= A(0)+2u(0)—io(A +24) = (o) —iwl, (16)
K~ k(x0) - iok,, N~ n(x0)-ion,

where a,, B, A1, th, 111, k, are integrals, assumed to converge, of the type Eq. (15). Using the
results Eq. (16) in Eq. (12) and extracting the square root, we get for small @

Ci= [@Jm ' [1 ¥ ?((o?))g((of))}m

o 1(0) ar(0) + B (0) 7(0)
e, ke)B() ()
() (I(0) () + B() ()’

(17)

19Ol () () — e [(0) — 1y al(0) = By () — 17, (@) + (¥, + 1 5) () 17(0)
x| 1 +l2

[(0) a(e0)

D
Q
| —
S

k(oo)}m s ﬂ(w)ﬂ(w)J”z

® . )
X Hl + m(toa(oo)é}k— al)}"‘ 1{1 - m(toa(oo)é}k— al)H (18)
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If 1, V, denote the wave velocities and v, v, the attenuation coefficients for the modified elastic
and thermal waves respectively, then

2
A S (19)
ReC,;
v = a)lm—(; i=1,2 (20)
[e
Form Egs. (17)-(20), we obtain
1/2 1/2
vV, ~ [MJ [1 + MJ [1+0(w)] 1)
P I(0) ()
2
®

ot 5]
(00) +241(0) 1(0) (o)
i 1(0) + 1 a() + B 1p(0) + 17, B(90) = 14 5l (20) at(0) = (#, + 1 5) B(o0)17(0)
. I(0) () + 1) B(0)
hma@®)duty , K)B()n()
a() (I() () + B(0) 7(0))”

< [20k(0)1"T | B() ()] | _ @] ()t Gy =
V”[ l(oo)J [1+l(oo)a(oo)J {1 2{ I(0) H @3)
o [ L) Py D)y of el (24)
27 [2k(0) 1(0) o) 2 I(0)

From Eq. (21) we see that no relaxation parameter is present, if we neglect terms of higher order of
o than the first. But, if we consider terms up to @?, then J; contains terms involving #, and #. The
above results completely agrees with Chakraborty (1976), if we take #, = #, = 0

(b) High frequency

Integrating each of the transforms in Eq. (9) by parts, we obtain

@'(o) = - a(0), a'(0) a"(w) (25)
@ o o

Pl £Q, FO B 2o
)

w W
where

a" (o) = Ia"'(s)exp(—ia)s)ds, etc.
0
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Hence for large @, we can write
A~ a(0)-La'(0), BxpO)-Lp(0)
@ @
K~k(0)=Zk'(0), L=~ (A(0)+24(0)) = =(2'(0) +24'(0))
@ ®

M~ 11(0) - ai)u'(O), N~ 5(0)- é 7(0) 27)

The substitution of Eq. (27) in Eq. (12) yields, for large @,

@k . 1] B0)n0) , k(O '), 1
C= o) [1+2w{ + + (r1+rof>;k>ﬂ<0)n<0>}

pk(0)  k(0)  a(0)  pk(0)

+i{1—i(/”(o)”(o)+"'(°>—“'(°)+ ; <r1+z06,k>ﬁ(0)n<0>)H (8)

2o\ pk(0)  k(0) a(0) pk(0)
[A0) +24(0)]" (i A(0) +24(0)
C”[ D } [] (250 /1(0)+2;1(0))J 9)

The wave velocities and attenuation coefficients for the elastic and thermal waves are given by

< [20KO)]7] 1 ]BO)n(0) , K(0)_a'(0), 1
e [1 20}{ e ORRET a(o)+pk(0)<r1+r0@k>ﬁ(0)n(0>H (30)

[0, 1[B0)n©) , K(©0)_a©), 1
v=Seon) {1 Zw{ TR a(o)+pk(0)(r1+roa‘,k)/>’<0>n<0>H (1)

4] (32)

[

o [0 200 T

s Coreroilbror ol ko) @

It is observed that both the modified elastic and thermal waves in generalized thermoelastic
medium exhibit damping and dispersion. The modified thermal elastic wave speed, unlike that in
the classical result approaches the instantaneous value of the classical compressional wave velocity
at high frequencies and its equilibrium value is modified due to the presence of the coupling factor
at low frequencies. Both the quasi-thermal wave speed and attenuation coefficient are proportional
to the square root of the frequency at low frequency. Results for ‘thermoelastic’ materials may be
obtained from the results Eqgs. (21)-(24) and Egs. (30)-(33) by taking the relaxation functions to
constants. They agree with those given by Chadwik (1960) and Nowacki (1962).

We neglect the coupling between the temperature and the displacement fields by putting
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n(s) = n(0) = n(o) =0

in Egs. (21)-(24) and Egs. (30)-(33) and get the corresponding results for the purely elastic and the
purely thermal modes. Results for purely thermal mode agree with those given by Nunziato (1971).
For the purely elastic mode
2

vs [Mﬁl mﬂ%ﬂ as @0 (34)

S S R .

. W

J as @w—0 (35)

where Viand v; are the wave speed and attenuation coefficient for the purely elastic waves. Also,

V= [lLLﬂ—)O -;2 0 T/z[l + Llla)z(ﬂ,((ﬁ);:—izl(o))zJ as w—> o (36)
EE _%(,1(0) fzﬂ(o)) 1/2[/1/7}8; : iz((oo))}[] " O(wlz)} as o=@ (37)

The results Eqgs. (34)-(37) show that the purely elastic wave has its modification, and the quasi-
elastic wave is subject to damping and dispersion. This is a feature exhibited by the elastic waves
only in material with memory both in the cases of classical and generalized thermoelasticity. The
attenuation coefficients at low and high frequencies are proportional to A, + 24, and A'(0) +
24'(0) respectively. These will vanish if A(s)+2u(s) is a constant i.e., in classical elasticity.
Thus attenuation of pure elastic wave occurs in materials with memory both in the cases of classical
and generalized thermoelasticity. However, it may be pointed out that the effect of generalized
thermoelasticity is found to be absent. The velocity for pure elastic waves tends to different limits,
in general, according as @ —> 0 or w— o; but if A(s)+2u(s) is a constant, as in classical
elasticity V; becomes independent of @ and assumes the constant value of the classical
compressional wave velocity.

4. Rayleigh waves
Putting the displacement vector i in the form
0 = grad¢+r0t2, A= (0,0, w)
as the sum of irrotational and solenoidal components in the Egs. (1) and (5), we get

[{A(m +2u(0)}V? —p%}m?, 1) - PO, 1) + 1,0(3, 1]

+ [HA(S) + 20 ()} V2R, 1= )= B ()LOF, 1) +1,6(F, 0)]ds = 0 (38)

0
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WOV YR, 0= pi 1)+ 1SV UE, 1-5)ds = 0 (39)
0
a(0)(0+1,0)+ [/($)[OF, 1=5)+ 1,0, 1=5)]ds + n(0) (V2 H(F, 1)+ St V2P, 1)}
0

+ Oj'n'(s){vqu()?, t—5)+ Sute@(X, t—5) Yds = k(0)V>O(X, 1)+ D]k’(s)Vzﬁ()?, t—s)ds (40)

Using the substitution (Nowacki 1962)
OG0, 63,0, w(E, 0} = (60, d(x), P (x) }explio(t—x,/C)]
and Eq. (10) in Egs. (38)-(40) we get

[KL(D*— &*/C*Y —io(D*— &*/C*){(1 + ity)AL + (1 + iot,)(1 + ity@)BN + ipoK }

—ia'p(1 + ity@)41(0,4) = 0 (41)

[M(D’ — &°/C*) + p&’ ]y = 0 (42)
where D= d
dx,

For surface waves we assume the solutions of Eqs. (41)-(42) in the form
w(x)) = Asexp(—yx,) (43)
and
$(x1) = Arexp(=xi 1) + Arexp(=x, 22) (44)
where y; and y, are the roots of the equation

[KL(Z —a*) + iy —a®){(1 + ity@)AL + (1 + iwt,)(1 + iwty)BN + ipoK}
— i@ p(l +tyiw)d = 0 (45)

If #y and #, are each equal to zero, the Eq. (45) totally coincides with that obtained by Chakraborti
(1976). Now putting the expression Eq. (44) in Eq. (38), we get

01(%) = Gl =)+ pol) Avexpiix)
+ (L5~ a’) + po’ ) Ayexp(—px,) } ] (46)

The stress components 0'“()? ,t) and 0'12()? ,1) given by Eq. (2) can be rewritten in terms of the
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potential functions ¢, v as

G2 = 20004 1o(R, 1)+ 2 [1 (5 1o, 1= 5)ds

(O YR, 1) = Y (B D]+ [ (W@, 1 =)= vy, (R, 1=9)]ds (47)
0

0 (X, 1) = ph(X, 1)+ 20(0) [y, 12(¥, 1) = $ (X, 1)]
2 [H (Y@, 1=5) = (¥, 1-5)]ds (48)
0
Then the boundary conditions

260, x,;t)
ox

1

+hO(0,x53t) = 0

011(0,x5351) = 0 = 0,(0, x,;¢)
will yield the system of equations
(2a"—7)A, + (2d" — ©) A4, + 2iayd; = 0
2iay, A, + 2iay,A, - (2612 - rz)A3 =0
(h=x)n A, + (h=x)n4, = 0 (49)

2 2 2 2 2 2 2, 2 2 2 2\12
where n, , =y, +0 —-a, 0 =po’/L,a =&’ /C", 1= po’ /M, y=(a -7)

The condition of consistency of the system of Eq. (49) gives

(2a2— 1'2)2 _ 4a2(a2— TZ)‘/Z(Zlnz—Zznl)h + i x(n —n,)
(ny—ny)h + (yin, — xony)

. 2 2 1/2
e, a-T)T-a)+p+m+npl-4d@-7) 1+ )
= h[(2d - 7)Y (n+ 1) + 4’ (@ - 7) {(F-d) - 1 )] (50)

For small @, @ << 1, this Eq. (50) becomes [see Appendix]

i+ ,-“Za,”z{i ___pa) } . {l(w)a(oo) : /7’(00)77(00)}“2
¢ I@)a) + feyn) I)k()

x{(z_L)z_i(L_J_)m.{L_ pu() H
c* oy c*Net (o) c? l(o)a(o) + B() (o)
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_ L{(Z p )2.[ivuwlfz{l(oo)a(oo)+ﬁ(oo>n<oo>}‘”2

o'? Nt () a(0) k()
X{L_ pa(®) }m}_i(L_LQ”Z V2
c? l(o)a(x) + B(0) (o) ch et (o
[i B pa(©) Jl/z} . {l(oo)a(oo) + ,B(oo)n(oo)}_l/z[l + O(a)m‘)] 1)
c* l(o)a(x) + S(0) (o) I(o0)k(0)

The result Eq. (51) shows that, on neglecting terms of order o', the velocity C ceases to depend
upon the frequency @ and the thermal constant /# (Chadwick 1960).

We then have
2 -2 2 -1/2 2 1/2
-55] -5 -

This result is analogous to the corresponding result in classical thermoelasticity.

5. Conclusions

It is observed that both the modified elastic and thermal waves in generalized thermoelastic
medium exhibit damping and dispersion. The modified thermal elastic wave speed, unlike that in
the classical result approaches the instantaneous value of the classical compressional wave velocity
at high frequencies and its equilibrium value is modified due to the presence of the coupling factor
at low frequencies. Both the quasi-thermal wave speed and attenuation coefficient are proportional
to the square root of the frequency at low frequency.
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Appendix

;ﬁ and ;é are the roots of the equation

[KL(/ - a*) —io(7 —a){(1 + it,@0)AL + (1 + iot,)(1 + ioty)BN + ipoK} —io’p(1 + tyiw)A = 0

or
LKy - 128’ LK + io{(1 + ity@)AL + (1 + it, ®)(1 + ityw)BN + ipoK}] +
a +iwa + ity + +1ho + ilyo +IpwK; —10 + 1ty =
LK+ iwd {(1 + ity@)AL + (1 + it,0)(1 + ity@)BN + ipoK} —iow'p(1 + ityw)A] = 0
Therefore
7+ =28 LK +io{(1 + ity@)AL + (1 + it,)(1 + ity@)BN + ipwK} /LK
and

7 = [d' LK +iod {(1 + ity@)AL + (1 + it,0)(1 + ity@)BN + ipoK} — i p(1 + ityw)A)/LK
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Now o’ = &’/C’
A~ a()—ia,0, B~f(«) - iof, M~ (u«)-ino)
Lr A(0)+2u(0)—io(A +21) = () —iwl,
K~ k() - iok,, N~ n(x)-ion,.

2,2 Ja(0)l(0) + f(o) n(x)
Zl+)(z~la){ 1(o0) k() }

2. 2zﬁ{a(°0)l(°°)+ﬁ(°0)77(°0)},{1_ pC a() }
o 1(o0)k() () () + A=) ()

172

PRT i {a(oo)l(oo) + ,3(00)77(00)}”2 , {1 ol }
¢ I(0)k(0) a(®) () + B(0) ()

2 o) a(©) () + B(0) n(o)
(1 + 1) NM){ I(0)k(0) }"‘

172

Jfio™? {a(oo)l(oo) . ﬁ(oo)n(oo)}”z _ {1 pCa(e) }
C

[(0) k() ~ a(®)l(0) + (=) (=)

_ m{ a(e0)(0) + ﬂ(oo)n(oo)}_
(o) k()

=
)

PPYCiy {a(oo)l(oo) +/>’(00)77(oo)}_”2 | { 1 pate) } |
72 I(0)k(0) > a(®)l(o) + f(o) (o)

o a()(e) + ey p()|
(i + ) =(io) { 1(o0) k(o) } .

12 [()k() C a()l(@) + B(*) n()

l

[1 Lo {a(oo)l(oo) . /3(00)77(00)}_”2 _ { 1 pa() H

Qd* =)~ w“(ci _ /ﬁ)z .

2_ 2 2 2 ~i a(0) () + f(0) () y
(o -a)+xi+n+0n0 w{ TCVh(®) }

LLo” {a(oo)l(oo) . ﬁ(oo)n(oo)}m . { 1 pa() }
[()k(0) G a)() + A ()

45’2(0'2 - az)m)(]}{z(ll + )=
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172

L1 __p )" {a(w)l(w)+ﬂ(°o)f7(°°)}1/2,{1_ p o) }
& ) 1()k() () (e0) + ) 1)
LLo” {a(oo)l(oo)w(oo)n(oo)} { 1 pa() } |
1()k(0) G a)() + A ()

(2a -7 )(11 + Zz) [0 (0) )W(C y(OO)) {a(oo)l(;élo)o;-k,(ﬁoi;o) 77(00)} X

LLo” {a(oo)l(oo)w(oo)n(oo)} { 1 pa() } |
1()k(0) G a)() + A ()

2 40 1 1/2
4d’ (¢ -a) (& -d) - NFw(E_ﬂ(/ZOQ "

(L_L)__,{06(00)1(°O)+ﬂ(°°)77(°°)} { 1 pa(=) } ,
(=) ¢ " 1(0)k(=) G alw)l(®) + () 1)

Therefore

2 5 12
Qa - (- + i+ i+ nnl-4a(F-1) nnn+n) =
1/2

hQd -7 (1 + ) +4d’ (6= 7) " {(0 - ') - 1}

becomes

1+ l.]/zwl/z{i B pa(xo) }1/2 . {l(oo)a(oo) + f() 77(00)}_”2 y
() a(w) + f(w)n(w) [(0)k(e0)

1/2
{(Cz _ﬂ(poo)) ci(ci_;ﬁ) é_ z<w>a<£"+‘?%wmw>} } ) QL{(E ‘,,{;))

{im N wl/z{l(oo)a(oo) + f() 77(00)} y {L B po() } }_

a() k() C l(o)a(®) + (o) n(x)
4 (L_L)W_IWF pa(0) }1/2}‘{1(00)0{(00)+ﬂ(oo)7](oo)}_1/2
chNet () C l(o)a(®) + f(o) n(x) (o) k()
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