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Unified plastic-damage model for concrete and its 
applications to dynamic nonlinear analysis of structures
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Abstract. In this paper, the energy-based plastic-damage model previously proposed by the authors
[International Journal of Solids and Structures, 43(3-4): 583-612] is first simplified with an empirically
defined evolution law for the irreversible strains, and then it is extended to its rate-dependent version to
account for the strain rate effect. Regarding the energy dissipation by the motion of the structure under
dynamic loadings, within the framework of continuum damage mechanics a new damping model is
proposed and incorporated into the developed rate-dependent plastic-damage mode, leading to a unified
constitutive model which is capable of directly considering the damping on the material scale. Pertinent
computational aspects concerning the numerical implementation and the algorithmic consistent modulus
for the unified model are also discussed in details, through which the dynamic nonlinear analysis of
damping structures can be coped with by the same procedures as those without damping. The proposed
unified plastic-damage model is verfied by the simulations of concrete specimens under different quasi-
static and high rate straining loading conditions, and is then applied to the Koyna dam under earthquake
motions. The numerical predictions agree fairly well with the results obtained from experimental tests and/
or reported by other investigators, demonstrating its capability for reproducing most of the typical
nonlinear performances of concrete under quasi-static and dynamic loading conditions.
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1. Introduction

As we know, an undamped structure would vibrate freely and the magnitude of the oscillation

would be constant if no energy-dissipation exists. However in reality, energy is inevitably dissipated

by the motion of the structure and the magnitude of the oscillation steadily diminishes. Named as

damping, this energy dissipation is of significant influence on the response of structures under

dynamic loadings. In the literature, damping is generally considered via the classical Rayleigh
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assumption where the damping matrix Ξ is the linear combination of the mass matrix M and

stiffness matrix K, that is,

(1)

where βM and βK are user-defined constants, related to the critical damping value ξi and the natural

frequency ωi for a given mode i as

(2)

It is known that the mass-proportional damping matrix  would introduce a physically

inadmissible dissipation under rigid body motions, and it alone could not provide sufficient

dissipation to suppress the high-frequency numerical noises even if the powerful HHT-α method

(Hughes 1987) is used. Therefore, many researchers (El-Aidi and Hall 1989, Vargas-Loli and

Fenves 1989, Bhattacharjee and Leeger 1993, Lee and Fenves 1998, Faria et al. 2002, etc.) adopted

the stiffness-proportional damping matrix alone to consider the energy dissipation, that is

 (3)

However, the key problem in dynamic nonlinear analysis is that the stiffness of structure would

change with time as the material comes into nonlinearity, a constant stiffness matrix K throughout

would introduce fictitious damping forces that remain high on a finite element with vanishing

stiffness (El-Aidi and Hall 1989), which is obviously not physically right. To solve the problem,

various methods were proposed either by setting the damping to zero on a cracking element or by

adopting the tangent matrix. Unfortunately, the former method would lead to the numerical

problems of convergence and stability, and the later one would obtain negative damping when the

material comes into softening regions. In fact, energy is mostly dissipated on the material scale, so

it might be more consistent to consider damping by endowing a constitutive model with the

capability of reproducing the appropriate energy dissipations.

In additional to the energy-dissipation, other issues such as the strain rate effect under high rate

straining and the typical nonlinear behavior evidenced under quasi-static loading conditions should

be also addressed appropriately in the dynamic nonlinear analysis. It is now generally accepted that

the observed nonlinearities in concrete behavior are mainly attributed to two distinct microstructural

changes: (i) the evolution of microcracks and/or microvoids and (ii) the shear slidings (plastic

flows) along some preferred crack lips. Owing to the inherent capabilities of continuum damage

mechanics (CDM) and plasticity of describing the above two mechanisms, different versions of

combined plastic-damage models have been proposed to describe the nonlinearities of concrete

since 1980s (Ortiz 1985, Simo and Ju 1987, Ju 1989, Lubliner et al. 1989, Yazdani and Schreyer

1990, Faria et al. 1998, etc.). Among others, an energy-based plastic-damage model (Li and Wu

2004, Wu and Li 2004, Wu et al. 2006) has recently been proposed for concrete, where the damage

criteria is established based on the damage energy release rate (DERR) and the irreversible strain is

described within the framework of effective space plasticity (Ju 1989). The model not only is

thermodynamically consistent and computationally efficient but also is able to reproduce fairly well

the typical experimental observations of concrete under quasi-static loadings, such as the stiffness

degradation, the enhancement of strength and ductility under compressive confinement, the strength
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decay induced by orthogonal tensile cracking, the unilateral effect under cyclic loading and the

irreversible deformations upon unloading. 

Due to its main intention for large time-consuming dynamic nonlinear analysis, in Section 2 of this

paper the above plastic-damage model is first simplified with an empirically defined evolution law

for irreversible strains, and is then extended into its rate-dependent version to embody the strain rate

effect. Regarding the energy dissipations, a new damping model on the material scale is proposed

and incorporated into the developed rate-dependent plastic-damage model within the framework of

CDM, leading to a unified constitutive model to directly take the damping into consideration.

Pertinent computational aspects concerning the numerical implementation and the algorithmic

consistent modulus are discussed in details in Section 3, through which the dynamic nonlinear

analysis of damping structures can be dealt with by the same procedures as those without damping.

Section 4 is devoted to the validation of the proposed unified plastic-damage model by some

experimental tests of concrete specimens under quasi-static and different rate straining loadings. In

Section 5 the proposed unified model is applied to the dynamic nonlinear analysis of Koyna dam

under earthquake excitation to further demonstrate its effectiveness and capability for the nonlinear

analysis of concrete structures. Section 6 closes this paper with the most relevant conclusions.

2. Unified plastic-damage model for concrete

2.1 Basic idea

The governing motion equation for discretized structure due to the external specified ground

accelerations  and other static loadings  can be generally written as

(4)

where  and  are the displacement, velocity and acceleration relative to ; lg is the influence

matrix for ;  is the total external force vector.

In Eq. (4), the internal resisting force  consists of two parts: (i) the restoring force F
res,

expressed as function of the deformation in the structure

(5)

and (ii) the damping force Fvis, related to the deformation rate

(6)

where Ω is the finite element domains of the integral of the stress field; B is the matrix form of the

strain-displacement operator; σ and σvis are the Cauchy stress and the damping stress, respectively.

Therefore,  can be rewritten as

(7)

with σtot being the total stress resulted from external loadings, expressed as
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(8)

It will be shown later that it is not the total stress σtot, but the Cauchy stress σ alone which

influences the damage evolution and other material nonlinear behavior, i.e. in one word, the

damping stress is just the result but not the reason.

2.2 Energy based plastic-damage model

Theoretically, the above principle applies for many constitutive models, and it is thus possible to

establish a unified one that directly takes the damping into consideration on the material scale. Here

the energy-based rate-independent plastic-damage model previously proposed by the authors (Wu

et al. 2006) is chosen as a start to develop such one. Basically, a tensile damage scalar d+ and a

shear damage scalar d− respectively corresponding to pure tension and pure compression, are

adopted to describe the tensile and shear damage mechanisms that result in the degradation of

macro-mechanical properties. The effective stress  in damaged material is assumed to follow the

classical elastoplastic behavior (Ju 1989, Faria et al. 1998), i.e.

(9)

or equivalently

(10)

where S0 and  denote the usual fourth-order isotropic linear-elastic stiffness and

compliance tensors, respectively; ε, εe and εp are all rank-two tensors, denoting the strain tensor, its

elastic and plastic tensor components.

To determine the plastic strain εp, the so-called “effective stress space plasticity” (Ju 1989), can be

resorted to establish the evolution law for the plastic strains. Since the present unified model is

mainly intended for large time-consuming dynamic analysis, here a simplified evolution law is

postulated, in which the plastic strains are treated as an “overall effect” (Faria et al. 1998, Li and

Wu 2004), i.e.

(11)

with  being expressed as

(12)

where H(·) is the Heaviside function and  is the McAuley function; E0 denotes

the Young’s modulus;  are parameters controlling the evolution of plastic strains. In

Eq. (11),  can be viewed as the “direction” of the plastic flows and  the plastic multiplier in

classical plasticity.

Differentiating Eq. (9) to time and calling for Eq. (11), one obtains the rate form between the

effective stress and the strain tensor as follows

(13)

where  is the effective elastoplastic tangent tensor expressed as
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(14)

with  being the unit tensor of  and  denoting the norm of .

To describe the different nonlinear behavior of concrete under tension and compression,  and its

rate tensor  are decomposed into their positive and negative components ( ) and ( )

as follows

(15)

where representing the nth eigenvalue and the corresponding eigenvector of  by  and , the

positive and negative projection operators of  are expressed as 

; (16)

with I being the fourth-order identity tensor and the second-order symmetric tensor  expressed

as

(17)

With the elastic Helmholtz free energy defined as the degradation of the initial elastic strain

energy, the following constitutive relation is obtained (Wu et al. 2006)

(18)

where the fourth-order symmetric tensor D is the damage tensor, expressed as

(19)

Remark 1. The evolution rule for the plastic strains in Eqs. (11) and (12) can be viewed as an

extension of an earlier proposal in Faria et al. (1998). However, there exist several distinct

differences between the two rules: (i) Faria et al. assumed that the flow “direction” is elastic strain

ε
e, but here the effective stress  is adopted since the plastic potential and the flow direction are

function of  in the effective stress space plasticity (Ju 1989, Wu et al. 2006); and (ii) the plastic

strains under tensile stress states are prevented by the formulation in Faria et al., but are accounted

for in the present model.

2.3 CDM-based damping model 

Following the basic idea presented in Section 2.1, here an effective damping stress  in the

damaged material is defined to follow the standard visco-elastic relation

(20)

where βK is the classical Rayleigh stiffness-proportional damping parameter introduced in Eq. (1).
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Similarly,  and its rate tensor  can also be decomposed into their positive and negative

components  and  as follows

(21)

where  are the projection operators of  which can be referred to Eq. (16).

Taking the tensile and shear damage mechanisms into consideration, one obtains the following

expression for the Cauchy damping stress σvis

(22)

where the fourth-order symmetric tensor Dvis is the damage tensor of the damping stress expressed as

(23)

Substituting Eqs. (18) and (22) into Eq. (8), one obtains the total stress σtot due to external loadings

(24)

where  and  are defined as

(25)

Remark 2. Substituting the above defined damping stress in Eq. (22) into Eq. (6) leading to the

following damping force Fvis

(26)

where the nonlinear damping matrix  is

(27)

with  being the damping-related stiffness matrix of the discretized structure, i.e.

(28)

As long as the corresponding integration points of a finite element remain linear, i.e.

, Eqs. (23) and (28) lead to  where K0 denotes the initial linear

elastic matrix, indicating that the proposed damping model reduces to the classical Rayleigh

stiffness-proportional damping one. From Eqs. (26)-(28), it can also be concluded that once the

damages in the material increase, the damping force F
vis and damping-related stiffness matrix

 will decrease correspondingly. Upon crack closure the stiffness and hence the damping

will be partially restored due to the unilateral effect under cyclic loadings.

The above facts agree with the observed phenomena, demonstrating the justification of the

proposed damping model.
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2.4 Characterization of damage

In order to determine the damage states, damage criteria should be introduced analogous to the

yield criteria in plasticity. In Wu et al. (2006), the contribution of plastic strains was considered to

derive the following elastoplastic DERRs Y ±

(29)

where  and  are the first invariant of  and the second invariant of (the deviatoric

component of ), respectively;  with ϑ being the ratio between the strengths

under equibiaxial and uniaxial compression (usually in the range of 1.1~1.2) which takes the value

of 1.16 in the present model leading to α = 0.1212.

Therefore, thermodynamically consistent DERR-based damage criteria are established as

(30)

with  being the current damage thresholds controlling the size of the damage surfaces.

Correspondingly, the initial tensile and shear damage thresholds  are valuated as

; (31)

where  and  are the stresses (positive) beyond which nonlinearity becomes visible under

uniaxial tension and uniaxial compression, respectively. 

For rate-independent materials, upon damage loading the evolution laws for  can be determined

by calling for the damage consistency condition, i.e.

(32)

For rate-dependent materials, such as concrete, the above Eq. (32) no longer holds right. Here

analogous to the Perzyna-type viscoplastic regularization (Perzyna 1966), the following evolution

rules for  are postulated similar to those previously proposed by others (Simo and Ju 1987, Ju

1989, Cervera et al. 1996, Faria et al. 1998)

(33)

where  are the viscous flow functions of the damage thresholds (Cervera et al. 1996);  are the

viscous coefficients;  are positive exponents assumed to be material properties. According to the

experiment data of Suraris and Shah (1984), here the following values are adopted as:

= 2.1 × 1010 N/s.m, = 6.0 × 1011 N/s.m, a+ = 5.5 and a− = 4.5.

Applying the normality rule to the damage criteria expressed in Eq. (30) and performing a trivial

integration, one obtains (Faria et al. 1998, Wu et al. 2006)

(34)
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(35)

(36)

In Eq. (35), for reinforced concrete parameters A+ and B+ should be related to the reinforcement

ratio ρs as follows (Wu et al. 2006)

(37)

with db being the rebar diameter (in mm) and cs generally taking the value of 75 mm. And by

imposing the simulation curve to fit the one obtained from a 1D experimental test (See the

Appendix for details), parameters A− and B− in Eq. (36)  may be determined as

(38)

where  and fc respectively denotes the linear-elastic strength and the peak strength under uniaxial

compression;  denotes the shear damage up to fc, which can be determined by measuring the

degradation of unloading stiffness.

2.5 Considerations in the plain concrete structure

It is now well known that, the softening behavior occurs on the material scale often introduces

mesh sensitivity in the results obtained by the standard finite element method, in the sense that the

predictions do not converge to a unique solution but leads to narrower crack bands as the mesh is

refined. In practical simulations for reinforced concrete structures, the mesh is usually such that

each element contains rebars. The interaction between the rebars and the concrete tends to reduce

the mesh sensitivity, provided that a reasonable amount of tension stiffening is introduced in the

concrete model to simulate this interaction.

However in the cases with little or no reinforcement, e.g., the plain concrete, rock, etc., when the

tangent stiffness no longer remains positive definite, the parameters A+ and B+ expressed in Eq. (37)

are inappropriate to model those materials with strain softening regions unless the model is non-

locally regularized. To circumscribe the spurious mesh sensitivity, many methods have been

proposed in the literature among which the most popular are the non-local methods (Pijaudier-Cabot

and Bazant 1988, Bazant and Pijaudier-Cabot 1989, etc.), the gradient models (de Borst et al. 1995,

Peerlings et al. 1996, Comi 1998, etc.), the strong (weak) discontinuity models (Belytschko et al.

1988, Oliver and Simo 1994, Oliver 1996, Ortiz et al. 1987, Simo 1993, etc.) and the imbedded

cracks methods (Jirasek and Zimmermann 2001). However, all the numerical implementations of

the above methods either lead to complex algorithm or require enhancements of the standard finite

element method. And more importantly, the dynamic nonlinear analysis of massive concrete

structure is greatly time-consuming, and is worsened if the full Newton-Raphson algorithm is

adopted. The above facts make them impractical in the actual engineering concrete structures. 

Here the concept of crack bank theory (Bazant and Oh 1983, Rots 1988, Mang and Hofsetter
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1995, Calayir and Karson 2005, etc.) is employed. Under such conditions, Eq. (37) renders A+ = 1.0,

and therefore Eq. (35) reduces to the following simple one-parameter function

(39)

where for plain concrete, the value of B+ are no longer constant, but is dependent on the mesh sizes

and related to Gf
+
/ lch, with Gf

+
 signifying the Mode-I fracture energy assumed as material properties,

and lch denoting the characteristic length of the finite element meshes. Applying Eq. (39) to uniaxial

tension and integrating the area under the obtained stress-strain curve, one obtains

(40)

Based on the method originated by Oliver et al. (1990), the following measure of the

characteristic length is approximated as , with V and ndim denoting the

volume and the spatial dimension of the elements, respectively. As stated in Scotta et al. (2001), the

adopted expression for characteristic length can ensure sufficient preciseness independent the mesh

sizes, comparing to the analytical values in concern to the energy dissipation. Though the

parameters determined from the crack band theory can not completely eliminate the dependence of

the numerical solution on the mesh refinement, the critical advantage over other methods is

obvious: It requires an ignorable increase of the consuming time, and can be directly implemented

into the standard finite element programs. It is noted that, if the softening behavior under

compression is of great significance to the analysis, the above crack-band method can also be

similarly employed to minimize the mesh-dependence.

The concerned computation aspects are to be discussed in the next section.

3. Computational aspects

3.1 Linearization of governing equation of motion

In accordance with the HHT-α method (Hughes 1987), at current increment step n + 1 the

discretized form of the equation of motion in Eq. (4) is written as

(41)

or its linearization form
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where parameter αf is to reduce the high-frequency numerical noise and  leads to the

unconditional stability of the above integration method. In the present model, αf = 0.05 is adopted to

quickly remove the high frequency noise without any significant effect on the meaningful lower

frequency response (the numerical dissipation is always quite small, mostly less than 1% of the total

energy).

The linear acceleration field assumption of Newmark-β method yields the following expressions

for the velocity and acceleration increment vectors

(44)

(45)

where  is the increment of time; βf and γ are parameters related to αf

(46)

Correspondingly, from Eq. (44) the strain rate  in Eq. (20) becomes

(47)

where  denotes the increment of ε. Substituting Eqs. (44) and (45) into Eq. (42) and after some

simple mathematics manipulations, one obtains the quasi-static governing equation in an increment

format

(48)

where ∆P is the increment of the quasi-static external loading vector, and the quasi-static tangent

matrix  is expressed as

(49)

It can be clearly seen from Eqs. (43) and (49), the numerical implementation of the proposed

unified plastic-damage model requires to carry out two main tasks: (i) updating the total stress

 with a stable algorithm; (ii) providing the corresponding algorithmic consistent mudulus

 (Simo and Hughes 1998). Once the above jobs are completed, the dynamic nonlinear

analysis of damping structures can be transformed into the conventional quasi-static one to be

solved by the general finite element method (Zienkiewicz and Taylor 2000).

3.2 Stress updating algorithm

From Eq. (47)  is explicit and the effective damping stress  can thus be directly

computed through Eq. (20), so only the effective stress  is required to update the total stress

. For the proposed evolution law for the plastic strain, the backward-Euler time

discretization method is applied to integrate Eq. (13), leading to
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(50)

Introducing

(51)

Similar to the method proposed in Faria et al. (1998), the following relation is then obtained to

update 

(52)

where

(53)

It can be seen that in Eqs. (51) and (52)  can be updated analogous to the classical radial

returning mapping algorithm which includes the elastic-predictor and plastic-corrector steps: since

∆ε is provided in a strain-based algorithm, the elastic-predictor  is calculated by Eq. (51) and

then  can be updated by Eq. (52). High numerical efficiency can be thus guaranteed by the

proposed evolution law for the plastic strain, since a maximum of four iterations are required due to

the 0/1 discontinuity resulted from the Heaviside function.

Once  is obtained and then decomposed into its positive and negative components

, by Eqs. (29) the DERRs  can thus be valuated to update  as follows. 

For rate-independent cases, integrating Eq (32) under given initial conditions, one obtains the

updated values of  as

(54)

For rate-dependent cases, with the unconditionally stable trapezoidal method, the updated  can

be written as the following residual form

(55)

where

(56)

Since the value of  is adopted in the present model, Eq. (55) is the nonlinear function of

, which can be solved by the Newton-Raphson algorithm whose iteration form is

 (57)

where  denotes the improved entity after (k + 1)th iteration and  is the derivative of

 to , expressed as
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After  are updated through Eq. (54) or Eqs. (55)-(58), the damage variables  can be

calculated by Eqs. (35) and (36) and the total stress  can be updated by Eq. (24).

3.3 Consistent tangent moduli

Taking derivative of Eqs. (50) and (20) and calling for Eqs. (53) and (47), one obtains

 (59)

where the subscript  is omitted in this section for expression simplicity; the fourth-order tensor

 and  are the consistent effective tangent modulus due to the deformations and damping,

respectively, expressed as

(60)

With the above results, the derivatives of the Cauchy stress in Eq. (18) and the damping stress in

Eq. (22) can be written as

(61)

(62)

For rate-dependent cases, the algorithm of updating the damage thresholds r± given in Eq. (55)

leads to

(63)

with  being

(64)

It can be concluded that when  approach to infinity,  will tend to identity and Eq. (63)

reduces to Eq. (32), demonstrating Eq. (63) applies for both the rate-independent and the rate-

dependent cases. In Eq. (63)  can be derived through their definitions in Eq. (29)

(65)

(66)

Then the derivatives in Eqs. (61) and (62) can be expressed as

(67)

where h± are the hardening/softening functions obtained from Eqs. (35) and (36) as follows
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(68)

(69)

It is therefore possible to obtain the following relations

(70)

with the fourth-order tensor  and  being

(71)

(72)

Calling for the definition of total stress σtot in Eq. (24), the final expression for the numerical

consistent tangent modulus in Eq. (49) is thus obtained as

(73)

where  is unsymmetric fourth-order tensor.

4. Validation examples

In this section several examples of concrete specimens are utilized to illustrate the validity of the

proposed unified plastic-damage model and the capability of reproducing the typical nonlinear

behavior of concrete under static and different rate straining loading conditions, where one four-

node plane stress element with characteristic length lch = 0.10 m is adopted in all of the simulations.

4.1 Rate-independent cases

4.1.1 Monotonic uniaxial tests

The experimental results from a monotonic uniaxial tensile test (Zhang 2001) and a monotonic

uniaxial compression one (Karson and Jirsa 1969) are taken as the first example to check the

adequacy of the numerical model. The material properties used in the simulations were: for the

tensile test, E0 = 38 GPa, ν0 = 0.2, = 3.4 MPa, A+ = 1.0, Gf = 70 N/m; and for the compressive

one, E0 = 31.7 GPa, ν0 = 0.2, = 10.2 MPa, A− = 1.0, B− = 0.16. Fig. 1 compares the predicted

stress-strain numerical curves with those obtained from the experimental tests. For both tests

predictions from the present model agree well with the experimental results, either in the hardening

or in the softening branches.
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4.1.2 Monotonic biaxial tests

The proposed model is also validated with the results under biaxial compression (σ3 = 0) reported

in Kupfer et al. (1969). The material properties adopted in the simulation were: E0 = 31 GPa,

ν0 = 0.2, = 3.0 MPa, = 15.0 MPa, A± = 1.0, Gf = 100 N/m, B− = 0.213. For specimens under

load conditions σ2/σ1 = −1/0, σ2/σ1 = −1/−1 and σ2/σ1 = −1/−0.52, the predicted stress-strain curves

illustrated in Fig. 2(a) agree well with the experimental ones, capturing the overall experimental

behavior.

To illustrate the capability of the proposed model for predicting the nonlinear behavior of concrete

under other biaxial stress states, using the same material properties as above, the numerical biaxial

strength envelope is reproduced in Fig. 2(b), almost coincident with the experimental one from

Kupfer et al. (1969). As clearly perceptible in Fig. 2(b), another important attribute of the present

f0
+

f0

−

Fig. 1 Monotonic uniaxial tests

Fig. 2 Monotonic biaxial compression tests (Kupfer et al. 1969)
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model is its ability to predict not only the strength enhancement of concrete under biaxial

compression, but also the decay of the compressive strength induced by orthogonal tensile cracking

under tension-compression stress states.

4.1.3 Rate-dependent simulations

A model concrete with the material properties of E0 = 31 GPa, ν0 = 0.2, = 2.0 MPa,

= 15.0 MPa, A± = 1.0, Gf = 70 N/m, B−= 0.213, is analyzed in uniaxial tension and uniaxial

compression under different strain rate  (between 10−7/s and 1/s). The obtained strain-stress curves

are depicted in Fig. 3(a) and Fig. 3(b) together with that of rate-independent result ( = 0/s). The

predicted peak strength ratio versus the strain rate curves from the proposed model (see Fig. 3(c))

agree well with those obtained by Suaris and Shah (1984), illustrating the capability of the proposed

model for reproducing the strain rate effect. It can be seen from Fig. 3 that under both tension and

compression, (i) as the strain rate increases, the peak strength also enhances especially more

pronounced in tension, which is evidenced by experimental observations (Suaris and Shah 1984);

f0
+

f0

−

ε·

ε·

Fig. 3 Strain rate effect of concrete
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(ii) as the strain rate approaches to zero, the results tend to the one by the rate-independent version.

More application examples of the concrete specimens and structures under static loading can be

found in Wu et al. (2006).

5. Application to Koyna dam

To further illustrate the capability of the proposed unified plastic-damage model for the dynamic

nonlinear analysis of concrete structures, the Koyna dam subjected to earthquake motions in 1967,

which has been extensively studied by other investigators (Chopra and Chakrabarti 1973,

Bhattacharjee and Léger 1993, Ghrib and Tinawi 1995, Cervera et al. 1996, and Lee and Fenves

1998, etc.), is selected to be analyzed in this section.

5.1 Finite element modelling

The geometry of a typical non-overflow monolith of the Koyna dam which is 103 m high and

71 m wide at its base, is illustrated in Fig. 4(a). The upstream wall of the monolith is assumed to be

straight and vertical, slightly different from the real configuration. The depth of the reservoir at the

time of the earthquake is 91.75 m. The mechanical properties of the concrete are: density

ρ0 = 2643 kg/m3, E0 = 31 GPa, ν0 = 0.2, fc = 24.1 MPa, which are taken from those used by previous

investigators.

Following the work of other investigators, in this simulation the two-dimensional analysis

assuming plane stress conditions is used, and two employed meshing technoques are shown in

Figs. 4(b) and 4(c), where Mesh A: relative coase meshes with seeds bias towards the slope

changes on the downstream face, consists of 760 four-node plane stress quadrilateral isoperimetric

elements with reduced integration, and Mesh B: uniformly distributed meshes with 1740 same type

of elements. In both analyses, The dam-foundation interactions are ignored by assuming that the

foundation is rigid and the hydrodynamic pressure resulted from the vertical component of the

Fig. 4 Geometry and FEM meshes of Koyna dam
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ground motion is assumed to be small enough to be neglected. The dam-reservoir interaction due to

the transverse component is modeled using a 2-node element by the added mass technique

(Westergaard 1933), in which the added mass per unit area of the upstream wall is given in an

approximate form by the expression

(74)

where ρw = 1000 kg/m3 and hw are the water density and the height relative to the foundation.

The transverse and vertical components of the ground accelerations recorded during the Koyna

earthquake are shown in Fig. 5 (units of g = 9.81 m/sec2). In the first step, a static analysis for the

dam is carried out to the gravity loading and to the hydrostatic pressure of the reservoir on the

upstream wall. A frequency extraction analysis without the reservoir is then performed to determine

the first four natural frequencies as shown in Table 1, which are in good agreement with the values

reported by Chopra and Chakrabarti (1973). The material damping property is assumed to provide a

3% (between the general accepted about 2-5%) fraction of the critical damping for the first mode of

vibration of the dam, and then from Eq. (2) with βM = 0 and ω1 = 18.87 rad/s, one obtains βK=

0.003183s. 

The other model parameters adopted for the simulation are: = 2.41 MPa,

=10.0 MPa, A± = 1.0, Gf = 200 N/m, B− = 0.18, ξ + = 0.10, ξ − = 0.20. It is noted that here no

empirical enhancement of the tensile strength ft is made as in Lee and Fenves (1998) since the

strain rate effect can be well captured by the presented unified model.

mw
7

8
---ρm hw hw y–( ) y hw≤( )=

f0
+ ft 0.1fc= =

f0

−

Fig. 5 Ground accelerations of Koyna earthquake

Table 1 Natural frequencies of the Koyna dam

Mode No.
Natural frequency (rad/s)

Present model Chopra and Chakrabarti (1973)

1 18.87 19.27

2 50.11 51.50

3 68.18 67.56

4 98.77 99.73
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5.2 Results of dynamic nonlinear analysis

With the above parameters, the nonlinear responses of the dam under the horizontal and vertical

earthquake excitations are then analyzed.

Firstly, the nonlinear and linear analyses with Mesh A are carried on and the numerical

predictions are showed in Fig. 6(a), represented with the time-history of the relative spatial

horizontal displacement (to the ground motion) at the left corner of the crest (the positive values

represent the displacement in the downstream direction). The predicted results show the necessity of

considering the nonlinear behavior of concrete, since the linear analysis greatly overestimates the

response of concrete structures.

Secondly, two nonlinear analyses are carried on adopting the two finite element meshes. The

reproduced results of the relative horizontal displacement at the left corner of the crest, are shown in

Fig. 6(b). Noted that the obtained two time-history curves are rather close to each other,

demonstrating the effctiveness of adopted crack band theory in guaranteeing the mesh objectivety in

the sense of structural responses.

From Fig. 6(b), it can also be seen the crest displacement remains less than 30 mm during the first

4 seconds of the earthquake, and after these 4 seconds, the amplitude of the oscillation of the crest

increases substantially, demonstrating severe damage evoluted in the structure during these

oscillations.

The predicted evolution of tensile damage with Mesh A in the concrete dam at six different times

during the earthquake is illustrated in Fig. 7. Times t1 = 3.958s, t3 = 4.363s, and t5 = 4.747s

correspond to the first three large excursions of the crest in the upstream direction, and times

t2 = 4.165s and t4 = 4.534s correspond to the first two large excursions of the crest in the

downstream direction. And time t6 = 10.000s corresponds to the end of the earthquake excitation. 

As another statement that the presented analysis is also mesh-independence controlled in the sense

of local responses, the distributions of tensile damage in the dam at the last analysis time t6 are

comparied in Fig. 8 for two finite meshes. It can be clearly seen that damage has evolved at the

base of the dam on the upstream face due to the infinitely rigid foundation and in the region near

the stress concentration where the slope on the downstream face changes. Also tensile damage

Fig. 6 Predicted results of Koyna dam
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Fig. 7 Evolution of tensile damage (Mesh A of deformation scale factor = 50)

Fig. 8 Effect of meshes size on the distribution of tensile damage in the dam
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appears in several elements along the upstream face due to the transverse interaction of dynamic

hydropressure. The damage patterns numerically reproduced by the proposed model are consistent

with the observed phenomena and those reported by other investigators.

6. Conclusions

In this paper, the rate-independent plastic-damage model previously proposed by the authors is

first simplified using an empirically-defined evolution law for irreversible strains and then extended

into its rate-dependent version to describe the strain rate effect. To characterize the energy

dissipation mechanism of structure under dynamic loadings, a new damping model in which a new

visco-elastic-damage damping stress due to the vibration is obtained is proposed. It has been

illustrated that the proposed damping model reduces to the classical Rayleigh stiffness-proportional

damping while the material remains linear-elastic. Also the typical characteristics of the damping in

the dynamic nonlinear analysis, e.g., the decreasing damping force resulted from the stiffness

degradation of the structure, and the partial restoring of damping due to the unilateral effect upon

crack closure, etc., can be well reproduced. Within the framework of continuum damage mechanics,

the proposed damping model is incorporated into the rate-dependent plastic-damage model, leading

to a unified constitutive model for concrete which is able to directly account for damping on the

material scale. Pertinent computational issues concerning the numerical implementation and the

algorithmic consistent modulus for the unified model are also discussed in details, through which

the dynamic nonlinear analysis of damping structures can be coped with by the same procedures as

those without damping.

The proposed unified plastic-damage model is then applied to concrete specimens under different

quasi-static and different rate straining loading conditions, and to the Koyna dam under earthquake

motions. The predicted results agree fairly well with those from experimental tests and/or other

investigators, demonstrating its capability of reproducing most of the typical nonlinear performances

of concrete, including the stiffness degradation, the enhancement of strength and ductility under

compressive confinement, the strength decay induced by orthogonal tensile cracking, the irreversible

deformations upon unloading, the stain rate effect and the damping energy dissipation.
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Appendix: Determination of parameters A− and B−

Under uniaxial compression, Eq. (36) becomes

(A.1)

where  denote the elastic strain (positive value) and . Therefore the stress-strain relation under
uniaxial compression is expressed as

(A.2)

Therefore introducing the elastic strain  corresponding to peak strength parameter f
c
,  is then deter-

mined by equating , i.e.,

(A.3)

from which Eq. (38)2 can be easily obtained.
Substituting Eq. (38)2 into Eq. (A.2), one obtains the expression for the peak strength f

c

(A.4)

from which parameter A− can be determined as Eq. (38).
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