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1. Introduction

It is well known that the accuracy of finite element solutions deteriorate in the presence of severe

mesh distortions. But distortion is often unavoidable in mesh procedure involving complex

geometry. Lee and Bathe (1993) studied the influence of mesh distortion on the serendipity and

Lagrange quadrilateral elements. Lautersztajn and Samuelsson (2000) discussed the effects of

geometric distortions on four-node isoparametric quadrilateral elements and concluded that the

element performance can be rendered ‘insensitive’ to a particular type of mesh distortion by

increasing the order of the interpolation functions for the displacement field. In order to overcome

the influence of element distortions, unsymmetric 8-node (Rajendran and Liew 2003) and

unsymmetric 20-node element (Ooi et al. 2004) are developed to reproducing any linear and

quadratic displacement field under any admissible mesh distortions. However, they will produce an

asymmetrical stiffness matrix, so these formulations require an asymmetrical solver to solve the

resulting stiffness equations.

The goal of this paper is to discuss the effects of element distortions on the accuracy and

efficiency of enriched quadrilateral elements with bubble functions. A bubble function is defined as

a function that vanishes along the element boundaries. Bubble functions have been introduced to

construct plate element models (Auricchio and Taylor 1995, Cook et al. 2002, Hong et al. 2001).

They are employed to solve advection-diffusion problems by Brezzi, Franca and Farhat (Brezzi et al.

1992, Brezzi and Russo 1994, Franca and Farhat 1995). Furthermore, the limitation of bubble

functions is discussed by Franca and Farhat (1994) and error analysis of residual-free bubbles is

discussed by Brezzi et al. (1999) and Sangalli (2000).

2. Formulation of the enriched elements

In this paper, the enriched quadrilateral elements are constructed by adding the interior nodes of

Lagrange basis to a serendipity basis. The serendipity basis is then corrected so that the Kronecker

delta property is satisfied at the interior nodes.

† Associate Professor, Corresponding author, E-mail: spho@mail.ncku.edu.tw

 Technical Note

DOI: http://dx.doi.org/10.12989/sem.2007.25.2.269



270 Shi-Pin Ho and Yen-Liang Yeh

For the general case of an n-th order element of the family of enriched elements (herein

designated nSmL element), the interior nodes of the m-th order Lagrange element are added to the

n-th order serendipity elements. The shape functions of the nSmL element can be represented as 

(1)

Here , it enables Ni to satisfy the  condition.

In general, all the interior freedoms can be made invisible to the user by applying a small dose of

static condensation. The element coefficient matrix can be reduced at the element level and divided

into several partitions

(2)

where ue is the undetermined variables vector of the edge nodes and ui is the undetermined

variables vector of the interior nodes. Kee, Kei, Kie and Kii are submatrices. Because the interior

nodes have no relation with other elements, we can use Kii as pivoting to condense it. Let

 and , the coefficient matrix can be shown as

(3)

Then the  and  are assembled to the global coefficient matrix and force. After ue is solved,

we get ui as

(4)

Therefore we can see that Gaussian elimination is used to produce the  and , then store the

parts  and  which are needed to solve ui.

In the coefficient matrix  it can be seen that Kee applies partial

factorization and this procedure can be regarded as a precondition (Farhat and Sobh 1989). Notably,

this precondition is applied directly to the entities of the coefficient matrix, so the procedure for

solving the system of equations can be applied to another precondition if the precondition conjugate

gradient method is used.

3. Test problem: A cantilever beam subject to a linear bending moment

A plane stress problem is considered in this section to verify the accuracy of the enriched

elements. Isotropic material is used in the numerical example. The degrees of freedom of the

internal nodes are statically condensed out from the element stiffness matrix before assembling into

the global stiffness matrix. The precondition conjugate gradient method (PCG) is used to solve the

system of equations. The following elements are assessed under undistorted element and various

distorted elements as shown in Fig. 1.
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1. 8- and 12-node serendipity element (2S and 3S elements)

2. 9- and 16-node Lagrange element (2L and 3L elements)

3. Enriched quadrilateral elements (2S3L, 2S4L, 3S2L and 3S4L elements)

The linear bending moment problem assesses the distortion sensitivity of the cubic element and is

described in Fig. 2. Three difference meshes as shown in Fig. 3 are considered to assess the effects

of mesh distortions. Mesh 1 consists of elements having severe angular distortions, while Mesh 2

consists of elements with curved-edge distortion. Mesh 3 consists of elements with unevenly-

spaced-nodes distortion. The results show solution error as error energy norm  with the

following definitions (Zienkiewicz and Taylor 1989):

e eng

Fig. 1 Element distortions classification

Fig. 2 Test problem : A cantilever beam subject to a linear bending moment

Fig. 3 Meshes used for solving the demonstrative problems
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Error energy norm : (5)

where σ and ε is the exact solution vector, stress vector and strain vector, respectively. σh and εh is

the approximate solution vector, stress vector and strain vector, respectively. The normalized tip

deflections v which are normalized with respect to the theoretical solution are also listed in the

following table. The theoretical solution of mesh 1 and mesh 3 is 0.008046 and the theoretical

solution of mesh 2 is 0.000366.

Table 1 shows the numerical result of the enriched quadrilateral elements. In the angular distortion

and curved-edge distortion results of the second order cases, the 2L, 2S3L and 2S4L elements have

higher resistance for distortion than the 2S element and the 2S3L and 2S4L elements are a little

more accurate than the 2S element. In the unevenly-spaced-nodes distortion cases of the second

order cases, all the second order elements are sensitive to unevenly-spaced-nodes distortion. In the

third order cases, the results also show that the 3L and 3S4L elements are not affected by angular

distortions whereas the 3S and 3S2L elements perform poorly when subjected to angular distortions.

The 3S and 3S2L elements are badly affected by angular distortions but the result of the 3S2L

element is more accurate than the result of the 3S element. Furthermore, the 3L and 3S4L elements

are able to reproduce the third order displacement field exactly even subject to the angular

distortions. These third order elements are affected by the unevenly-spaced-nodes distortion, but the

3S2L element, with one extra node in the center, is more accurate than the 2S element. Therefore,

the additional shape functions can improve the accuracy in the element’s interior when the elements

are subjected to curved-edge distortion and unevenly-space-nodes distortion.

4. Conclusions

The effect of element distortions on the enriched quadrilateral elements, which are constructed by

adding the interior nodes of Lagrange basis to a serendipity basis, has been discussed with both the

completeness requirements test and numerical example in this paper. The enriched quadrilateral

elements 2S3L and 2S4L are less sensitive to angular distortion than the second order serendipity

and Lagrange elements. The 3S2L element and 3S4L element have higher resistance for angular and
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Table 1 Results of enriched quadrilateral elements for test problem

Gauss 
quadrature

Mesh1 Mesh2 Mesh3

v v v

2S 3 × 3 3.9320E-01 5.576% 5.1852E-02 91.140% 2.5393E-01 11.031%

2L 3 × 3 1.9100E-01 78.180% 4.8523E-02 91.242% 2.5227E-01 11.075%

2S3L 4 × 4 1.9068E-01 78.335% 3.8015E-02 98.258% 2.5095E-01 11.226%

2S4L 5 × 5 1.9044E-01 78.470% 3.5421E-02 98.906% 2.4637E-01 11.547%

3S 4 × 4 3.8978E-01 7.167% 2.7383E-02 96.542% 1.0977E-01 65.107%

3L 4 × 4 4.9959E-05 100.000% 6.9796E-03 100.000% 8.8741E-02 80.065%

3S2L 4 × 4 1.8642E-01 78.874% 1.2264E-02 98.247% 9.0062E-02 79.968%

3S4L 5 × 5 4.9938E-05 100.000% 4.0930E-03 100.000% 8.7172E-02 80.223%

e eng e eng e eng
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curved-edge distortions than the third order serendipity element. Although non-satisfaction of the

completeness requirements leads to poorer performance under geometric distortions of the element,

the additional interior nodes of enriched quadrilateral elements can improve the accuracy even under

element distortions.
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