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Abstract. The effect of cable loosening on the nonlinear parametric vibrations of inclined cables is
discussed in this paper. In order to overcome the small-sag limitation in calculating loosening for inclined
cables, it is necessary to first derive equations of motion for an inclined cable. Using these equations and
the finite difference method, the effect of cable loosening on the nonlinear parametric response of inclined
cables under periodic support excitation is evaluated. A new technique that takes into account flexural
rigidity and damping is proposed as a solution to solve the problem of divergence. The regions of
inclined cables that undergo compression are also indicated.
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1. Introduction

In conventional nonlinear vibration analysis of cables, the equations of motion are formulated

based on two assumptions: that the cable is a continuum resisting only axial forces and that the

same laws as apply to truss members are applicable. In other words, the cables are assumed to be

able to resist both tensile and compressive axial forces (Irvine 1981, Yamaguchi et al. 1979,

Yamaguchi 1997). However, this assumption is invalid when the sum of the initial and deflection-

induced additional horizontal tensions results in compression, since actual cables have no resistance
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to compressive forces. This situation may be easily observed in the nonlinear vibration of cables

under the influence of wind-rain action (Matsumoto et al. 1995, Honda et al. 1995), wind uplift,

strong earthquakes, etc. This means it is necessary to evaluate the effect of cable loosening when

dealing with the nonlinear vibration of cables. An analysis taking into account cable loosening has

been carried out on the stay cables of a cable-stayed bridge subjected to strong ground motions (Wu

et al. 2003). The nonlinear loosening effect has also been found in the hangers used for the main

cables of cable suspension bridges (Lazer et al. 1990, Peterson 1990, Sepe et al. 2001). Cable

loosening has been noted in low-tension single cables such as power and signal transmission lines,

underwater cables and mooring lines used for offshore applications (Leonard et al. 1972,

Triantafyllou et al. 1992). The nonlinear dynamic response and vibration of low-tension cables has

been evaluated by introducing a small flexural rigidity to avoid the singularity at the point when

cable tension becomes zero (Burgess 1993, Triantafyllou et al. 1994, Sun et al. 1998). Low-tension

cable dynamics have been solved by the finite difference method using a modified box scheme

(Koh et al. 1999).

There appear to be few published papers in which both loosening and the mass of taut cables with

small sags that include cable extension are taken into account. Against this background, the authors

proposed a new technique for evaluating cable loosening and also examined the effect of loosening

on the nonlinear vibration of horizontal cables with small sags (Wu et al. 2003, Wu et al. 2004).

The conventional nonlinear equations of motion of a cable formulated as a continuum were

discretized using an explicit form of the finite difference method on the assumption that the cable

has no compressive resistance. The problem of divergence was solved by a newly proposed

technique that takes into account flexural rigidity and damping, two physical properties of a cable.

Finally, the authors discussed the effect of cable loosening on the response and looked at the regions

in which compressive forces are generated from nonlinear forced vibrations and parametric

vibrations, focusing on horizontal cables with small sags. An investigation of nonlinear forced

response (Wu et al. 2003) showed that loosening can easily occur in a cable with a sag-to-span ratio

corresponding to the region in which there is a mode transition from lower mode to higher mode

under periodic vertical loading. Research into nonlinear parametric response (Wu et al. 2004)

revealed that cables with a specific sag-to-span ratio easily become loose. Within the range of cable

loosening, the principal unstable region is larger than the second unstable region.

This paper discusses the effect of loosening on the nonlinear parametric vibrations of inclined

cables. When a cable is inclined, there are additional properties that differ from those of a horizontal

cable (Yamaguchi et al. 1979, Triantafyllou 1984). The crossover of natural frequencies of a

symmetric mode toward the natural frequencies of an antisymmetric mode never occurs and the

corresponding modes are neither symmetric nor antisymmetric. Therefore, in order to calculate

loosening for an inclined cable without a small-sag limitation, it is necessary to first derive

equations of motion for an inclined cable. Using these equations and then applying the proposed

method, it is possible to evaluate the effect of loosening on the nonlinear parametric response of

inclined cables under periodic support excitation. In order to evaluate both the common and

differing properties of inclined cables and horizontal cables expressed in the cited research (Wu et al.

2004), this paper looks at cables with small sags. The influence of inclination angle on cable

loosening is evaluated and the regions that generate compressive forces in inclined cables are

shown.
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2. Equations of motion for an inclined cable

A cable with a uniform cross section and uniform weigh per unit length hanging between two

points and inclined at an angle θ is analyzed, as shown in Fig. 1. Throughout this paper, the

longitudinal and transverse directions (x*, z*) of the corresponding string are denoted the local

coordinate system.

In the local coordinate system (x*, z*) of the inclined cable, the following equations are obtained

by removing the self-weight term in the equations of motion:

 (1)

(2)

where ∆T is the additional tension generated,  is the initial

tension obtained from the initial horizontal tension H, u* is the longitudinal displacement in the x*

direction, w* is the transverse displacement in the z* direction,  and  are the loads

in the x* and z* directions, s is the coordinate along the cable, m is the mass per unit length of the

cable and t is time.

The additional tension ∆T can be obtained from 

 (3)

where E is Young’s modulus and A is the cross-sectional area of the cable.

By making Eqs. (1), (2) and (3) non-dimensional by means of Hsecθ, the length L between

supports and the first natural circular frequency ω0 of the inclined taut string, the following

equations are obtained:
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Fig. 1 Geometry of an inclined cable
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 (5)

 (6)

where  is the non-dimensional additional tension, β = mgL/8Hsecθ, 

and  are the non-dimensional displacements in the x* and z* directions, τ = ω0t is the

non-dimensional time,  is the first natural circular frequency of an inclined taut

string, k2 = EA/Hsecθ is the ratio of axial stiffness to longitudinal tension of the cable, H is the

initial horizontal tension of the inclined cable,  is the first natural non-dimensional

circular frequency of the inclined cable, ω1 is the first natural circular frequency of the inclined

cable, g is the gravitational acceleration, , , and = s/L.

For comparison, if Eqs. (4) and (5) are rewritten in the global co-ordinate system, the results

coincide with the Yamaguchi equations (Yamaguchi 1997).

3. Analytical conditions and numerical analysis method

3.1 Analytical conditions

Fig. 2 shows the small-sag ( f = βL) horizontal cable is discussed in this paper. The inclination

angle θ is changed in order to maintain the same span length L. The profile of the inclined cable

varies with inclination angle θ.

The nonlinear parametric vibration of the cable is discussed. Parametric excitation is provided by

displacement of the longitudinal support, , at the upper end, as shown in Fig. 2. Loads

 and  are zero. Support excitation is given by the longitudinal displacement u* at
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Fig. 2 Analytical model and longitudinal excitation at upper end
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the upper end of the inclined cable, as described by the following equation:

 (7)

where  is the non-dimensional support excitation,  is the non-dimensional

amplitude of the support excitation and  is the non-dimensional circular frequency of the

parametric excitation. 

Parametric vibrations of the cable are known to be most likely to appear in the region of cable

lowest frequency (Takahashi 1991, Lilien et al. 1994). Therefore, frequency  is assumed to be the

lowest frequency  or twice the lowest frequency . When  is used, the excitation

corresponds to parametric excitation of the second unstable region. When  is used, it

corresponds to that of the principal unstable region (Wu et al. 2004).

3.2 Numerical analysis method

When considering cable loosening in nonlinear vibration analysis, if the value of total tension is

less than zero, it is considered to be zero. This is described by the following equation:

 (8)

In the case of an inclined cable, loosening must be evaluated at every point along the length since

the total tension is different at every point.

There is a possibility of cable loosening appearing when vibration components of higher modes

with discontinuous angles occur (Wu et al. 2003). In order to take into account the effect of all

cable modes, the direct integration method is used to solve Eqs. (4), (5) and (6) while evaluating

Eq. (8). An explicit form of the finite difference method is employed (Ames 1992).

The time interval for numerical analysis should be defined so as to satisfy the stability condition

of the scheme that is used. Parameter β is set to less than 1/8 for small-sag cables. The ratio of

axial stiffness to horizontal tension, k 2, is set to 900. The cable is divided into 100 elements. In

other words, the non-dimensional length, , is 0.01. In order to satisfy the stability conditions,

the time interval, ∆τ, must be less than ; in the case considered here, 1.0 × 10 
–5 is used.

In order to prevent higher mode vibrations of the cable with discontinuous angles, flexural rigidity

and damping, actual properties possessed by cables, are considered in this paper. The effect of

flexural rigidity on vibration of the cable becomes significant in the case of higher modes that

change the curvature of the cable. This is the reason for taking flexural rigidity into consideration in

the present analysis (Wu et al. 2003, 2004).

When the effects of flexural rigidity and damping are included, Eqs. (4) and (5) become the

following non-dimensional equations:
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 (9)

 (10)

where  is the ratio of the flexural rigidity to axial stiffness and h is the damping

constant.

In the analysis described here, the flexural rigidity parameter is assumed to be linear and without

relation to excitation amplitude. At large values of support excitation amplitude, this parameter

would need to be reset. This paper, however, discusses the characteristics of occurrence of cable

loosening for inclined cables and support excitation displacement is not very large. So parameters d

and h, which are needed to solve the divergence problem, are set to δ = 10–7 and h = 0.001,

respectively (Wu et al. 2003, 2004).
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Fig. 3 Effect of δ on natural frequency and time history for inclined cables with inclination angle θ = 30o
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Fig. 3 shows the effect of flexural rigidly parameter δ on natural frequency and time history when

δ is 10–7. For the natural frequencies shown in Fig. 3(a), the effect of flexural rigidity on the lower

frequencies is very small. As regards the time history, shown in Fig. 3(b), responses using δ = 10−7

do not readily diverge and can be calculated even if compressive forces appear in the cable.

Therefore, the flexural rigidly parameter δ is set to 10−7 in the discussion that follows.

4. Parametric responses in the second unstable region

Figs. 4, 5, 6 and 7 show the nonlinear parametric responses of the second unstable region

( ) when the cable is subjected to support excitation at the upper end ( = 0.000338).Ω ω 1= X
*

Fig. 4 Time history of transverse displacement in the second unstable region (β = 0.04, = 0.000338)X
*
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Figs. 4 and 5 are the time histories of transverse displacement and total tension at the center of the

inclined cable. Fig. 6 gives the space shapes of the three cables. The corresponding maximum

transverse displacement and total tension during nonlinear parametric vibration are shown in Fig. 7.

Notations a, b and c correspond to the maximum, zero, and minimum displacements at the center of

the horizontal span.

Fig. 4 demonstrates that the effect of loosening on the response of an inclined cable under

parametric excitation in the second unstable region is small because the regions that undergo

compression are narrow. This is also true for horizontal cables (Wu et al. 2003, 2004). However, the

loosening appears at a different point in an inclined cable than in a horizontal cable. The initial

tension of an inclined cable decreases from the upper end to the lower end and the minimum initial

tension appears at the lower end of the inclined cable (see Fig. 7). Therefore, in the case of inclined

Fig. 5 Time history of total tension in the second unstable region (β = 0.04, = 0.000338)X
*
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cables with small sags, the compressive force is arises at the lower end of the cable and loosening

appears first at the lower end.

Figs. 8 and 9 show the time histories, space shapes, and maximum responses when the parametric

excitation is about 1.5 times the amplitude of that used to generate Figs. 4-7. Comparing Fig. 8(a)

with Fig. 6(b), the cable has a higher-order modal shape in the compressive force region and

maintains space shapes that do not easily generate compressive forces when loosening appears. This

is also characteristic of horizontal cables (Wu et al. 2003, 2004).

Fig. 8(c) shows the frequency spectrum of transverse displacement. The non-dimensional

frequency corresponds to the ratio of the calculated frequency to the first frequency of the inclined

cable, ω1/2π. The predominant frequency with cable loosening taken into consideration is lower

Fig. 6 Space shape in the second unstable region (β = 0.04, = 0.000338)X
*
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than that when there is no loosening. Since axial stiffness decreases after a cable loosens, the

predominant frequency falls and displacement increases. This figure showing the frequency

spectrum of cable displacement further demonstrates that no other modes are involved in the

resonance via other auto-parametric energy transfers.

Fig. 9(b) illustrates how loosening affects the negative transverse displacement of an inclined

cable and how the effect of cable loosening on transverse displacement changes with position.

Loosening affects the negative maximum transverse response, but has scarcely any effect on the

positive maximum transverse response. These are also characteristics of horizontal cables (Wu et al.

2004).

Fig. 10 shows the relationship between the minimum amplitude  of the support excitation that

generates compressive forces in the cable and inclination angle θ in the second unstable region for

the three different cables. The corresponding first natural non-dimensional frequencies of the same

cables are shown in Fig. 11.

When the inclination angle θ = 0o~30o, cable loosening readily occurs small support excitation

X
*

Fig. 7 Maximum response in the second unstable region (β = 0.04, = 0.000338)X
*
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amplitudes and the effect of parameter β is small. When the inclination angle θ > 30o, the minimum

amplitude of support excitation increases, except when parameter β = 0.04 and the inclination angle

θ = 30o~65o, as the inclination angle becomes large and the effect of parameter β becomes

conspicuous. This means that it is harder to induce loosening in inclined cables with large angles

than in horizontal cables.

The effect of inclination angle for the parameter β = 0.04 cable differs from the other cables. This

may be explained by the fact that the modal shape of the inclined cable varies with the magnitude

of inclination angle, as shown as Fig. 11.

Fig. 8 Time history in the second unstable region (θ = 30o, β = 0.04, = 0.000557)X
*
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Fig. 9 Space shape and maximum response in the second unstable region (θ = 30o,β = 0.04, = 0.000557)X
*

Fig. 10 Relationship between minimal amplitude of support excitation and inclination angle in the second
unstable region
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Fig. 11 First natural non-dimensional frequency of inclined cables

Fig. 12 Time history of transverse displacement in the principal unstable region (β = 0.04, = 0.000338)X
*
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5. Parametric responses in the principal unstable region

Figs. 12, 13, 14, and 15 show the nonlinear parametric responses of the principal unstable region

( ) when the cable is subjected to the support excitation at the upper end ( = 0.000338).

Figs. 16 and 17 are the time histories, space shapes, and maximum responses when the amplitude of

support excitation = 0.000557. Comparing Fig. 13(b) with Fig. 16(a), the cable maintains space

shapes that do not readily generate compressive forces when loosening occurs, which is the same as

the result in the second unstable region.

Loosening affects the negative maximum response but scarcely affects the positive maximum

response, as shown in Figs. 15 and 17(b). The results are similar to those obtained for the second

unstable region.

The relationship between the minimum amplitude  of parametric excitation that generates

Ω 2ω 1= X
*

X
*

X
*

Fig. 13 Time history of total tension in the principal unstable region (β = 0.04, = 0.000338)X
*
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compressive forces in the cable and inclination angle θ in the principal unstable region is shown in

Fig. 18.

Comparing Fig. 10 with Fig. 18, the minimum amplitudes of support excitation in the principal

unstable region are higher than those in the second unstable region for inclination angles in the

range θ = 0o~20o. Unlike in the second unstable region, the minimum amplitude of excitation in the

principal unstable region decreases when the inclination angle θ = 20o~60o, except when β = 0.04.

The minimum amplitude of excitation increases thereafter and approaches the same value as in the

second unstable region when inclination angle θ increases.

Fig. 14 Space shape in the principal unstable region (β = 0.04, = 0.000338)X
*
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Fig. 15 Maximum response in the principal unstable region (β = 0.04, = 0.000338)X
*

Fig. 16 Time history in the principal unstable region (θ = 30o, β = 0.04, = 0.000557)X
*
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Fig. 17 Space shape and maximum response in the principal unstable region (θ = 30o, β = 0.04, =
0.000557)

X
*

Fig. 18 Relationship between minimum amplitude of support excitation and inclination angle in the principal
unstable region
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6. Conclusions

This paper examined the effect of cable loosening on the nonlinear parametric vibration of

inclined cables subjected to periodic support excitation. In order to calculate the loosening of

inclined cables without a small-sag limitation, it was necessary to first derive new equations of

motion for an inclined cable. Regarding the effect of loosening on the nonlinear parametric

vibrations of inclined cables with small sags, the main findings are as follows:

1. The total tension in an inclined cable during nonlinear parametric vibration is not constant and

cable loosening arises first at the lower end.

2. The minimum level of support excitation that generates a compressive force in the cable varies

with the inclination angle. The influence of inclination angle depends on the initial profile of

the cable.

3. Cable loosening affects the negative maximum transverse response but scarcely affects the

positive maximum transverse response.

4. Cable loosening readily occurs in a cable with a small inclination angle under small amplitudes

of parametric excitation in the second unstable region.
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