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Nonlinear dynamic response of MDOF systems by the 
method of harmonic differential quadrature (HDQ)

Ömer Civalek†

Akdeniz University, Civil Engineering Department, Division of Mechanics, 07200, Antalya, Turkiye

(Received April 12, 2005, Accepted August 18, 2006)

Abstract. A harmonic type differential quadrature approach for nonlinear dynamic analysis of multi-
degree-of-freedom systems has been developed. A series of numerical examples is conducted to assess the
performance of the HDQ method in linear and nonlinear dynamic analysis problems. Results are
compared with the existing solutions available from other analytical and numerical methods. In all cases,
the results obtained are quite accurate. 
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1. Introduction

An important part of engineering applications is the analysis and prediction of the dynamic
behavior of structures. The analysis of the response of structures to dynamic loads is a difficult
work, especially if the response is nonlinear. For most practical problems, nonlinear analysis can be
carried out only by numerical analysis techniques. In their well-known book, Dynamics of
Structures, Clough and Penzien (1975) stated that the most powerful and practical method for
nonlinear analysis is the step-by-step integration procedure. In this technique, the process is
continued step-by-step from the known initial instant to any desired time approximating the
nonlinear behavior as a sequence of successively converting to the linear systems. Furthermore,
many other algorithms such as, Newmark, Houbolt, Wilson, and Runge-Kutta methods are available
for the numerical integration (Newmark 1959, Houbolt 1965, Bathe and Wilson 1973, Runge 1895,
Kutta 1901). Each of these numerical approaches employes difference equivalents to develop
recurrence relations which may be used in step-by-step computation to obtain the dynamic response
of a structure. In general, the critical parameter in each of these techniques is the largest value of
the time step that may be used to provide sufficiently accurate results, as this is directly related to
the computational time of the analysis. The use of temporal finite elements, i.e., finite elements in
the time domain, with displacements and their derivatives as nodal parameters has been suggested
by, among others, Zienkiewicz (1977). A very detailed mathematical treatment is given in the book
by Wood (1990), by Chopra (1995) and Bathe (1982). A survey of explicit and implicit methods
and recent developments of the computational structural dynamics are given by Dokainish and
Subbaraj (1989, 1989a), Bert and Stricklin (1988), Zienkiewicz and Lewis (1973), and Senjanovic
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(1984). DQ method is recently proposed to solve some initial value problems in the time domain.
Shu et al. (2002) developed block-marching technique in both the spatial and temporal directions by
DQ method for time-dependent problems. Recently, Fung (2001, 2001a, 2002), Tanaka and Chen
(2001, 2001a) and Wu and Liu (2000) stated that the DQ method is unconditionally stable higher-
order time steps integration algorithms. Unconditionally stable Hermittian time finite elements and
time step integration methods with complex time step are proposed by Fung (1996, 1998). 

In this paper, an improved version of DQ method, called the HDQ method, is used to study the
linear and nonlinear dynamic response of structures. Since the dynamic response of a structure may
be expanded into the harmonic series, it seems that the best approximation of the response may be
obtained also by the harmonic test function in the DQ approach. The problem to be considered in
this paper is limited to structures with linear inertia and damping but with nonlinear spring forces. 

2. Differential quadrature (DQ) method

The basic idea of the DQ method is that the derivative of a function, with respect to a space
variable at a given sampling point, is approximated as a weighted linear sum of the sampling points
in the domain of that variable (Bert et al. 1987). As with other numerical analysis techniques, such
as finite element or finite difference methods, the DQM also transforms the given differential
equation into a set of analogous algebraic equations in terms of the unknown function values at the
reselected sampling points in the field domain. Considering a function f (x) with N grid points, we
have 

; (1)

where xj are the co-ordinates of grid points in the variable domain. f (xj) and  are the function
values at grid points and related weighting coefficients, respectively. To determine the weighting
coefficients for the first order derivative (r = 1), the function f (x) is represented by a test function,
such as polynomial: 

(2)

Substituting Eq. (2) into Eq. (1) for the first order derivative, one obtains

(3)

which represents N sets of N linear algebraic equations. A recently approach the original differential
quadrature approximation called the Harmonic differential quadrature (HDQ) has been proposed by
Striz et al. (1995) and Shu and Xue (1997). Unlike the differential quadrature that uses the
polynomial functions, such as Lagrange interpolated, and Legendre polynomials as the test
functions, harmonic differential quadrature uses harmonic or trigonometric functions as the test
functions. As the name of the test function suggested, this method is called the HDQ method. The
HDQ method has been successfully applied to solve various types of engineering problems,
including the static, buckling and free vibration analysis of beams (Civalek 2004, Civalek and Ülker
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2004a, 2004b), the three-dimensional static and vibration analysis plate problems by Liew and his
co-workers (1998, 1999, 1999a, 2001). The harmonic test function hk(x) used in the HDQ method is
defined as (Shu and Xue 1997):

(4)

For simplicity, the following new variables are introduced 

(5)

Thus, the weighting coefficients are given in the following formulas
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The weighting coefficients of the first-order and second-order derivatives  for i = j are given as

, p = 1 or 2 ; and for  (11)

A decisive factor to the accuracy of the all type differential quadrature solutions is the choice of the
sampling or grid points. It should be mentioned that in the differential quadrature solutions, the
sampling points in the various coordinate directions may be different in number as well as in their
type. A natural, an often convenient, choice for sampling points is that of equally spaced point. It
was also reported (Bert and Malik 1996, Liew et al. 1996, 2002, Du et al. 1996, Civalek 2002) that
the Chebyshev-Gauss-Lobatto or non-equally sampling grid (NE-SG) points for spatial and temporal
discretization as;

(12a)

(12b)

performed consistently better than the equally spaced. The equally sampling gird (E-SG) points are
given for spatial and temporal discretization as;

 (13a)

(13b)

3. Method for solving the equation of motion

In this study, we investigated the linear and nonlinear dynamic response of discrete-parameter
systems, such as SDOF systems and MDOF systems by the method of HDQ. For simplicity, a
SDOF system is considered in detail first, and the extension to MDOF systems is then discussed
and the related formulations are given. Lower case letters are used for all matrices in the SDOF
case, which are replaced by upper case equivalents when treating MDOF systems.

3.1 Single-degree-of-freedom (SDOF) systems 

The differential equation of motion of a typical Single-Degree-Of-Freedom (SDOF) system is

(14)

where m, c and k are the mass, damping coefficient and stiffness of the system, , and u are
acceleration, velocity and displacement, f (t) is a prescribed external force. In this equation a dot
superscript denotes differentiation with respect to time t. In the linear systems, these coefficients
namely, m, c, and k are the constant. However, in many important engineering applications k is a
function of u and the problem is nonlinear. If any structure modeled as a SDOF system is allowed
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to yield plastically, then the restoring force exerted is likely to be of the form shown in Fig. 1. 
There is a portion of the curve in which linear elastic behavior occurs, whereupon, for any further

deformation, plastic yielding takes place. When the structure is unloaded, the behavior is again
elastic until further reverse loading produces compressive plastic yielding (Chopra 1995). In this
Figure Rt and Rc are the respective values of the forces that produce yielding in tension and
compression and k is the elastic stiffness of the structure. In this case the governing equation of
motion and the initial conditions are given

; u(0) = u0 and (15,16)

Thus the force fs corresponding to displacements u are not single-valued and depend on the history
of the displacements. This force is defined for each part of the curve as below;

After some rearrangements, we obtain 

 (17a)

(17b)

where τ = t/T, T is the time length of solution domain. The time domain t ⊂ [0, T] is normalized to
τ ⊂ [0, 1] and then divided into N − 1 sections. Applying the HDQ approximation to (12) at each
discrete point on the grid, we have (Civalek 2003);
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; (18)

and applying the HDQ approximation to the initial conditions

(19a,19b)

Eq. (18) is given in matrix form as (Civalek 2003)

(20)

In order to introduce the given initial conditions into Eq. (20), Eq. (19) are used to solve u(τ1) in
terms of the variables u(τ2), u(τ3), ..., u(τN). The expressions for u(τ1) in terms of the variables u(τ2),
u(τ3), ..., u(τN) are then substituted into Eq. (20) to eliminates the variables u(τ1) only the discredited
equations at the time points j = 2, 3, 4, ..., N are to be used in Eq. (15). Thus, N − 1 analog equations
of the governing differential equation at N − 1 sampling points τ2, τ3, ..., τN can be written as 

(21)

where  and  are yielded by removing the related coefficients of the original DQM weighting
coefficients matrices Aij and Bij in Eq. (21). These new modified weighting coefficients matrices 
and  are (N − 1) × (N − 1) dimension. It is noticed that the known initial conditions specified in
Eq. (20) have been built into the modified weighting coefficients matrices  and . This scheme
is an analogy with the before developed technique in applying boundary conditions for the DQM
solution of high-order boundary value problems presented by Wang and Bert (1993). The more
detailed information for the imposition of the boundary conditions for the DQ method can be found
in (Wang and Bert 1993, Fung 2003). Recently, Fung (2001, 2001a, 2002, 2002a, 2003a) and
Tanaka and Chen (2001, 2001a) had proposed several methods to incorporate the initial conditions
by modifying the elements in the weighting coefficient matrices. Eq. (21) can be written as
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Solving the algebraic Eq. (22), the displacement uj ( j = 2, 3, …, N) at various grid points can be
obtained. After the displacements are found, the velocities and accelerations can be obtained as
(Civalek 2003):

(23a)

(23b)

In Eq. (23a), u0 is given and . Thus, the first equation in Eq. (23a) is given by (Fung
2002)

(24)

By using Eq. (24), uN can be given as
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Hence, using Eq. (25),  in Eq. (23a) and  in Eq. (23b) can be expressed in
terms of  after eliminating uN.
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(28)

where  are  the displacement, velocity and acceleration vectors of each mass,  is
the resisting force, which may be a function of displacement. Upon normalization of (28) we have

(29)

where τ = t/T, T is the time length of solution domain. The time domain t ⊂ [0, T ] is normalized to
τ ⊂ [0, 1]. Applying the DQ approximation to (29) at each discrete time on the grid, we have
(Civalek 2003):

(30)

This equation can be written in matrix form as
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and applying the DQ approximation to the initial conditions;
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1, 2, ..., R) for each of considered time step {τj ( j = 0, 1, 2, ..., N)}. This displacement vector is
given as
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After the displacements are found, the velocities and accelerations can be obtained by (Civalek
2003):
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4. Numerical applications and results

To demonstrate the effectiveness, characteristics and merits of HDQ in the analysis of structural
dynamics, several application problems are presented. Four examples are presented in this section.
The first one dealing with a simple problem for which detailed results are available shows the
validity of the present formulation. After this, some linear and nonlinear numerical examples for
SDOF and MDOF systems are presented and compared with the results reported in the literature to
demonstrate the accuracy, stability, and efficiency of the proposed method. For simplicity, all
variables and computing parameters are assumed dimensionless in the following examples. In order
to evaluate the proposed method, the error of the solution may be defined as the relative
discrepancies between the proposed and exact (or numerical) solution. The results presented in this
section attempt to illustrate the effect of time step on the numerical accuracy. During the study, N is
taken as 15. For this purpose, the relative percentage error is defined as

(35)

Example 1: Analysis of a single-degree-of-freedom (Fig. 2) system was performed to verify
predicted rates-of-convergence of the HDQ algorithm presented herein. This simple example will
study the forced vibration of a SDOF system with the following parameters: m = 2, c = 0, k = 16,
and F0 = 5.

The initial displacement and velocity of the system are assumed to be zero. The calculated
displacement, velocity and acceleration response of this system are shown in Fig. 3(a) and Fig. 3(b)
(for ∆t = 0.2) using HDQ method. For comparison purposes, results obtained by some other
numerical integration methods with ∆t = 0.1 are also shown in the figures. It can be seen that for
larger time steps the HDQ method gives more precise results than the Newmark’s and Wilson’s
method. It was found that as the step sizes increases, the relative error also increases. This can be
seen clearly in Figs. 4(a) and 4(b), which show the relative error of deflection versus ∆t for equally
sampling grid (E-SG) points and for non-equally sampling grid (NE-SG) points. From Fig. 4, we
can see that the optimal convergence could be achieved with the NE-SG of ∆t = 0.25. For E-SG
points, the reasonable accurate results are obtained for ∆t = 0.125. The Wilson method is the least
efficient. Wilson method requires considerably smaller time steps to achieve low error. 

%Error Exact or numerical( ) value HDQ solution value–

Exact or numerical( ) value
-------------------------------------------------------------------------------------------------------------------------⎝ ⎠

⎛ ⎞ 100×=

Fig. 2 SDOF system and applied constant step load
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Example 2: Non-linear elastic SDOF system: In order to demonstrate the computation procedure
and to measure the accuracy and the range of applicability of the proposed method, the forced
vibration response of a non-linear SDOF system given by Clough and Penzien (1975), shown in
Fig. 5, to the loading history indicated has been calculated. This system has the following
properties: m = 0.1, c = 0. 2, k = 5, and the initial conditions are;  and .
Nonlinear load-displacement curve is given in Fig. 6.

The dynamic response calculated with the proposed method for time intervals, ∆t = 0.20 is plotted
in Fig. 7 in dashed lines. The results obtained using Newmark’s average acceleration method for
∆t = 0.1 also shown in this figures. It is seen that the HDQ results are in good agreement with the
results of Clough and Penzien and the Newmark’s results. When the present HDQ solution is
compared with the step-by-step integration solution (Clough and Penzien 1975), the greatest
deviation is 5.7% for E-SG points using ∆t = 0.5. However, this deviation is 4.82% for NE-SG
points of the same time interval (i.e. ∆t = 0.5). It is observed that the Chebyshev-Gauss-Lobatto
(NE-SG) grid points have the most rapid converging speed in this figure. 

u 0( ) 0= u· 0( ) 0=

Fig. 3 Calculated responses for SDOF system: (a) Displacement, (b) Velocity

Fig. 4 Variation of %Errors with time steps for displacements: (a) (NE-SG), (b) (E-SG)



Nonlinear dynamic response of MDOF systems by the method of HDQ 211

For small value of ∆t, the HDQ solutions with the stretched Chebyshev-Gauss-Lobatto grids are
much more accurate than those with the conventional equally spaced sampling grid points. This
means that the equally spaced grid points are not reliable in the HDQ solution of dynamic
problems. The results in Fig. 8 that, to obtain accurate HDQ solutions for dynamic problems, the
equally sampling grid points are not suitable for large value of ∆t. So, for large value of time step
∆t, we have to use non-equally sampling (NE-SG) grid stretching to get accurate and efficient HDQ
results.
Example 3: Linear Dynamic response of a 2-DOF system. Consider a two-degree-of-freedom
system governed by 

with initial conditions

2  0

0  1

U
··
1

U
··
2

⎩ ⎭
⎨ ⎬
⎧ ⎫ 2  0

0  1

U1

U2⎩ ⎭
⎨ ⎬
⎧ ⎫

+
0

10⎩ ⎭
⎨ ⎬
⎧ ⎫

=

U1 0( )

U2 0( )⎩ ⎭
⎨ ⎬
⎧ ⎫ 0

0⎩ ⎭
⎨ ⎬
⎧ ⎫

and
U
·
1 0( )

U
·
2 0( )⎩ ⎭

⎨ ⎬
⎧ ⎫ 0

0⎩ ⎭
⎨ ⎬
⎧ ⎫

==

Fig. 5 SDOF system and load history 

Fig. 6 Non-linear stiffness Fig. 7 Displacement response for nonlinear SDOF
system
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Analytical solutions of the problem as well as the results obtained by the most commonly used
integration methods are given by Bathe (1982). All the numerical solutions are obtained by using
the time step of 0.3 s for HDQ method. The results are shown in Figs. 9 and 10. 

For comparison purposes, some results produced by Bathe (1982) for ∆t = 0.28 and the exact
solutions are also shown in the figures. The results obtained from HDQ are in excellent agreement
with the exact solutions. The percentage errors of the displacements for displacements of first mass
are displayed in Fig. 11. The results in Fig. 11 that, the error increases as the time step is increased.
The Houbolt, central differences and Wilson methods are the least efficient; they require
considerably smaller time steps to obtain the reasonable accurate results. The HDQ and Newmark
methods give very similar results. However, it can be also seen that for larger time step the HDQ
method gives more accurate results than the Newmark’s average acceleration method. 
Example 4: As the last example, consider a non-linear dynamic response of a two-degree-of-
freedom spring-mass system. Non-linear governing equation of motion of this system is given by
(Sun et al. 1991) in matrix form as

Fig. 8 Error in the displacements at various values
of ∆t for E-SG and NE-SG points 

Fig. 9 Displacement time-history for a 2-DOF
system (first mass)

Fig. 10 Displacement time-history for a 2-DOF
system (second mass)

Fig. 11 Error in displacement (first mass) at various
values of ∆t for example 3
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The above matrix equation describes the motion of a two-degree-of-freedom system with mass (m2)
connected to the ground by the linear elastic spring k2 and mass (m1) connected to mass (m2) by a
non-linear elastic spring with restoring force

With initial conditions

As with the other examples, all variables and computing parameters are assumed dimensionless for
simplicity. The calculated responses of this nonlinear system are shown in Figs. 12 and 13 for ∆t =
0.05. For comparison purposes, results produced by Sun et al. (1991) with ∆t = 0.03 are also shown
in the figures. The results obtained from HDQ are in excellent agreement with the results of Sun et

al. (1991). The results given in this figure agree well, even though the time steps used in the
proposed method are much larger than those for Sun’s post-correction integration solution.

It is known that the range of parameters arise in comparing the numerical efficiency of various
techniques, including number of degrees of freedom, band width of matrices, number of time steps,
and required accuracy. For this purpose, let consider the numerical solution of the problem given by
example 3. The proposed method was compared with the finite difference, Wilson-θ and
Newmark’s method. The solution times for proposed and Newmark’s method can be given by 

where tHDQ and are the times to generate the stiffness and mass matrices, t is the time per
time step, and Ni and Nj are the number of time steps in HDQ and Newmark’s methods
respectively. The ratio of time steps for comparable accuracy and ratio of computer times for

m1  0

0  m2

u··1

u··2⎩ ⎭
⎨ ⎬
⎧ ⎫ k1  k1–

k1  – k1 k2+

u1

u2⎩ ⎭
⎨ ⎬
⎧ ⎫ 1–

1⎩ ⎭
⎨ ⎬
⎧ ⎫

ε u1 u2–( )3+ +
Fcos ω t( )

0⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Fs k1 u1 u2–( ) ε u1 u2–( )3+=

u1 0( )

u2 0( )⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

0.6667⎩ ⎭
⎨ ⎬
⎧ ⎫

= and
u· 1 0( )

u· 2 0( )⎩ ⎭
⎨ ⎬
⎧ ⎫ 0

0⎩ ⎭
⎨ ⎬
⎧ ⎫

=

tHDQ tHDQ tNi and tNewmark+ tNewmark tNj+= =

tNewmark

Fig. 12 Calculated displacement for unequally
sampling grid distributions-first mass

Fig. 13 Calculated displacement for unequally
sampling grid distributions-second mass
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proposed and Newmark’s methods are listed in Table 1. It is proposed that ∆tNewmark/T ≤ 1/10 value
is suitable for MDOF system (Wood 1990), where T is the highest frequency which is considered is
important. It is shown that for similar accuracy, a time step 3.65 times greater than Newmark’s
method for ∆tNewmark /T = 1/10. 

In order to evaluate these methods, the error of the solution can be given as the mean value of the
relative discrepancies between the numerical methods and exact solution. This error term is given by

 

The first time step is excluded from the analysis since the small response at this step causes large
relative errors (Senjanovij 1984). Maximum value of E is obtained for Houbolt followed by Wilson-
θ, Central difference and Newmark. In order to verify the stability of the solutions obtained by
considered methods, which are all unconditionally stable except the finite differences, the same
example (example 3) is solved for different ∆t/ti and the error results are given in Fig. 14. Where ti

is the CPU times for each method.

E
1
20
------

uij uij–

ui j

-----------------
j 2=

12

∑
i 1=

2

∑=

Table 1 Time-step ratios for comparable accuracy

∆tNewmark /T

0.01 12.45
0.02 8.36
0.03 6.90
0.04 5.86
0.05 5.02
0.06 5.87
0.07 4.83
0.08 4.11
0.09 3.97
0.1 3.65

0.125 2.49

tHDQ/tNewmark

Fig. 14 % Error for different [(∆t/ti)*1000] ratios
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It is shown that the result was determined more rapidly using the HDQ method than using
Newmark’s or other numerical schemes. In addition, as less time steps are required for similar
accuracy, the time-stepping procedure requires less computational effort than others.

5. Conclusions

A harmonic type DQ method was introduced to study the linear and nonlinear dynamic response
of SDOF and MDOF systems. The method of HDQ that was using the paper proposes a very
simple algebraic formula to determine the connections weighting coefficients required by DQ
approximation without restricting the choice of mesh grids. The known initial conditions are easily
incorporated in the HDQ as well as the other type DQ. The discretizing and programming
procedures are straightforward and easy. It is also concluded that the results obtained with non-
equally sampling grid points are more accurate than the values calculated by equally sampling grid
points. The simple examples presented here demonstrate that the HDQ method gives accurately
acceptable results for a variety of linear problems and nonlinear hysteric systems. Furthermore,
results for examples are given demonstrating good agreement with solutions generated from other
numerical approaches.
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