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Abstract. A new class of finite elements is described for dealing with mesh gradation. The approach
employs the moving least square (MLS) scheme to devise a class of elements with an arbitrary number of
nodal points on the parental domain. This approach generally leads to elements with rational shape
functions, which significantly extends the function space of the conventional finite element method. With
a special choice of the nodal points and the base functions, the method results in useful elements with
polynomial shape functions for which the C1 continuity breaks down across the boundaries between the
subdomains comprising one element. Among those, (4 + n)-noded MLS based finite elements possess the
generality to be connected with an arbitrary number of linear elements at a side of a given element. It
enables us to connect one finite element with a few finite elements without complex remeshing. The
effectiveness of the new elements is demonstrated via appropriate numerical examples.

Keywords: MLS-based finite elements; moving least square approximation; mesh gradation; stress
concentration.

1. Introduction 

When steep stress gradients or singularities exist due to the configuration of geometry or local

concentrated loads, finite element mesh should be refined locally. Such mesh refinement often leads

to highly distorted elements or meshes consisting of excessive number of nodes to maintain the

quality of mesh. In addition, one of the major difficulties is to maintain the element connectivity,

which is required for compatible meshes. It is far from being trivial to meet the connectivity of

elements for complex domains, such as, nonmatching meshes, contact problems and mesh gradation.

For example, when a group of mesh designers construct a large scale finite element model like an

airplane, each of the mesh designers models his own part, and later all parts are joined together to

construct the entire structure. In such a circumstance, it requires a tremendous amount of labor to

construct meshes meeting the element connectivity along the interface of two neighboring parts.

To resolve this, Gupta (1978) developed a two dimensional transition element to join one bilinear

element to two bilinear elements at the edge of elements for mesh gradation. Choi and Lee (1993,

1996) succeeded in developing three dimensional transition solid elements and Choi and Park
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(1989, 1997) also developed transition plate elements, and utilized them for adaptive mesh

refinement. These approaches seem to be quite reasonable for fulfilling the compatibility without

any ambiguity but it does not possess a generality to handle elements more than two at the side of

element. To resolve this issue, various techniques, such as two or three layer approaches with

Lagrange multipliers or penalty function parameters (Farhat and Roux 1991, Aminpour et al. 1995,

1998, Quiroz and Beckers 1995, Pantano and Averill 2002, Park et al. 2002) and Interface Element

Method (Kim 2002) are proposed. In the two or three layer approaches, constraints are added to

meet compatibility at the interfaces. In IEM (Interface Element Method), nonmatching finite

element zones are treated as meshfree domain, and nodes are appropriately added to fulfill the mesh

compatibility. However, the above-mentioned schemes are partially successful in dealing with

dissimilar meshes in that their practical applications for three dimensional problems are not

available. 

For the simplification of IEM, Cho et al. (2005) suggested Improved Interface Element Method by

constructing a new class of master element with variable number of nodes via MLS approximation.

With this idea, MLS-based variable node elements for handling a number of nonmatching meshes

(Cho and Im 2006) and propagating cracks (Cho and Im 2006) were also proposed. This element-

based approach is so simple that we can implement the present algorithm into any existing finite

element codes in a straightforward manner. Despite this outstanding feature, rational type shape

functions from MLS-approximations are still an impediment to application for various problems due

to the difficulty in numerical integration. Even a high order Gaussian integration such as 6 × 6

involves an error as large as one percent. Recently, Lim et al. (2006) developed modified MLS

variable node elements the so-called MLS-based finite elements in the two and three-dimensional

framework such as (4 + n)-noded elements, (9 + 2n)-noded elements, (8 + 2m + 2n + mn)-noded

elements and so forth. Although their shape functions are generated from MLS-approximation, they

reduce to the polynomial type by making a careful choice of the bases and by controlling the

domain of influence of each node. Applications for various nonmatching mesh problems turn out to

be successful even with lower order Gaussian integration, such as 2 × 2 per each subdomain for

bilinear polynomial bases. This is in a striking contrast with the MLS-variable node elements

reported in references (Cho et al. 2005, Cho and Im 2006). Particularly, the new MLS-based finite

elements are tractable to -approach for treating the incompressibility constraints occurring in

elastic-plastic deformations. 

In this paper, we focus on exhibiting another applications of (4 + n)-noded elements for mesh

gradation, which did not discussed in the previous works. (4 + n)-noded MLS-based finite elements

possess the generality to handle an arbitrary number of bilinear elements on its side and provide the

convenience for modeling of zone of high stress concentration, allowing outstanding mesh gradation

between fine mesh and coarse mesh. 

The outline of the paper is as follows. We provide a brief review of the MLS method, and this is

followed by the formulation of the MLS-based finite elements. In Section 3, we show that a special

choice in the present scheme leads to useful (4 + n)-noded finite elements with polynomial shape

functions. Next we provide some numerical examples to demonstrate the effectiveness and accuracy

of this methodology. All numerical examples show that the MLS-based elements are extremely

useful in capturing high stress concentration like a hole or a corner using mesh gradation. Finally,

we wrap up the paper with some concluding remarks.

B
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2. Moving Least Square (MLS) method and MLS-based finite elements

In this section, we briefly describe the MLS method (Lancaster 1981), and then explain how to

construct the shape functions of MLS-based finite elements. Let  be a two-dimensional vector

field, and  its two components, interchangeably denoted by . The independent

variable ξ indicates the master coordinate , interchangeably indicated by  whenever it

is convenient. Suppose we want a MLS approximation  for  in terms of NB base-

polynomials, where  denotes the center of a circle within which this approximation is taken. Then

 is given as 

 

  (1)

where  is the 2 × NB matrix of the unknown coefficients depending on , and  is a

NB × 1 column matrix of the shifted polynomial basis i.e.,

 (2)

The shifted polynomial basis enables us to remove the numerical stability problem from the

nonshifted polynomial basis (Jin et al. 2001). The functional to be minimized in the least square

sense is given as 

(3)

where I = 1~NP indicates a particle or a nodal point, and wI and uI are the weight function and the

nodal value of  associated with the particle “I ”, respectively. By minimizing this functional,

we obtain the following equation for :

(4)
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Plugging  from Eq. (4) into (1), we have 

(5)

Taking the moving process  in Eq. (5), we reach the following equation 

(6)

where uI is the nodal vector of the node “I”, which is the I-th column vector of UT, and the shape

function  is given as

  (7)

where 

With the complete linear polynomial being included in , the MLS-based shape function

(7) satisfies the following conditions due to its polynomial reproducing property (Liu et al. 1995). 

 Partition of unity:  (8)

 

Linear completeness: (9)
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 to the physical domain , we choose an isoparametric mapping. Then, we have

 

(10a)

(10b)

where  and . 

We now discuss the suitability of the above  for a shape function of finite element methods.

Firstly, the existence of  may be addressed from Eq. (7), which shows that the moment matrix

 should be invertible for the existence of . A slightly enforced form of this condition

appears in the form of the so-called “theorem for admissible particle distributions” (Han and Meng

2001), which states the following requirement for the case of one-dimensional domain :

every internal point of the domain should be covered at least by distinct NB particles or nodal

points, which means that within the domain of influence of an arbitrary internal point, distinct active

NB nodes should exist. This theorem was extended, by Han and Meng (2001), to the case of the

multi-dimensional domain wherein only linear polynomials are employed for the bases. The key

element is that the matrices P and W  or the distribution of the nodal points and the weight

function matrix should be chosen such that the moment matrix M  may be invertible and well-

conditioned. In this context, to assure the validity of a given particle distribution and weight

function matrix for multi-dimensional domains with the higher order polynomials for the bases, we
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discussion. 
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meshes of 4-noded plane elements. The entire element domain consists of two subdomains, D1 and

D2, as shown in Fig. 1. We let each support of the weight functions w3, w4 and w5 cover the whole

element domain, while the support of w1 is restricted to D1 and the support of w2 to D2. Then

Rank(W) is equal to 4 on each of the two subdomains D1 and D2, and this is greater than NB,

which is 3. 

We presume that a bell type function, which vanishes smoothly on its support boundary, is

employed for every weight function. The behavior of each weight function is plotted in Fig. 2. Note

that each weight function is zero at all nodes except for its own node so that every point on the

element boundary is covered by the two weight functions of the two nodes between which the point

Fig. 1 A master element of a 5-noded MLS-based element

Fig. 2 Domains of influence of a 5-noded MLS-based element
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lies. For example, point “A”  is covered by w1 and w5, while point “B”

 is covered by w1 and w4. In such circumstances, each shape function given

by Eq. (7) vanishes smoothly on the part of the element boundary where the corresponding weight

function smoothly goes to zero. Thus, shape function  disappears along all element edges not

meeting with node “I ”, and Condition 1 is fulfilled. 

To explain Condition 2, we now examine the behavior of the shape functions when we approach a

part of the element boundary from the element interior, say the boundary  and η = −1.

For convenience, by RankB(W) and NBB, hereafter we denote the rank of the weight function

matrix W(ξ) and the number of the active base polynomials on the element boundary, respectively.

As the element boundary η = −1 is approached, the base polynomials reduce to (1, ξ), and,

therefore, we obtain NBB=2. As far as every point on the boundary  and η = −1 is

covered by w1 and w5, we have the condition RankB(W)=NBB=2, and then the shape function

(I = 1 and 5) reduces to a point interpolation, given as a linear function of ξ in the limit on

this boundary. The same argument applies to the boundary  and η = −1, and the remaining

element boundary. As one approaches the boundary from the interior, every limit point on the

boundary lies between two nodes, and in the limit the unknown variable uα at this point is linearly

interpolated by the values of these two nodes (see Cho et al. (2005) for proof via explicit

calculation). From this and Condition 1, we see that each shape function meets the Kronecker delta

condition. However, the expression of  in the element interior is a complex rational

function, which becomes a linear function in the limit on the element boundary. This element was

successfully employed for treating nonmatching meshes composed of 4-noded bilinear elements, but

one drawback was that higher order Gaussian integration, i.e., 6 × 6 integration on each of D1 and

D2, was used to pass the patch test. In the next subsection we will suggest an improved element,

which will help to surmount this shortcoming. 

2.2 MLS-based elements with Rank(W) equal to NB

Although the MLS-based shape function  discussed in the previous subsection, though it

satisfies “Conditions 1 and 2” on the boundary nodes, it is not the conventional polynomial

interpolation, as it is in the nature of the moving least square approximation in the interior of the

domain. In the element interior, the shape function  belongs to a class of rational function.

The examples of this type of variable-node elements was introduced in Cho et al. (2005) and Cho

and Im (2006) together with some applications for nonmatching meshes and crack propagation.

However, the shortcoming of these elements is that they require an integration order as high as

6 × 6 Gaussian integration since  are of the rational function type. 

In this subsection, we explore the suitability of the case Rank(W)=NB for finite element shape

function. If Rank(W)=NB pointwise and a proper choice of the polynomial bases is made, the shape

function  becomes a point interpolation over the entire domain and it reduces to a polynomial

that has nothing to do with the choice of the form of the weight function. This observation is

straightforward from the first equality of Eq. (6). However, this does not imply that the resulting

element for Rank(W)=NB is simply nothing but the existing conventional finite elements. Even in

the case of the equality, the present approach results in a new class of finite elements, which we can

endow with variable number of nodes by properly choosing the support of the weight function of

each element node. The restriction of the support of each weight function only to some part of the

element domain, not taking the entire domain for each of the supports, means that we let the
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element be comprised of subdomains, each of which is covered by a different set of weight

functions. 

This also implies the relaxation of the C1 continuity along the intersubdomain boundaries. Note

that C1 continuity is not required in the pointwise sense on the element domain as long as the

discontinuity of derivatives is taken into account in the numerical integration. Note that the

continuity of traction or the equilibrium across the surface wherein this breaks down is imposed in

the weak form sense in finite element methods. 

Consider the two-dimensional parental domain again in Fig. 1. We maintain the same nodes 1

through 5 and the same subdomains D1 and D2 as in Fig. 1, but for the basis we choose the

polynomials up to the bilinear term

 (11)

 

on each of the two subdomains. Then we have Rank (W)=NB=4 on each of the subdomains, and

the expression (7) for the shape functions now reduces to a typical point interpolation:

 

  (12)
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and the matrix P is constructed separately on each of the subdomains, D1 and D2, consistent with

the definition of  above. Compared with the MLS-based elements of Fig. 1 in the previous

subsection, we need to take note of the following differences:

Remark 1: Condition 2 or the Kronecker delta condition is trivially satisfied in the present case

because of the property of point interpolation.

Remark 2: Condition 1 may be violated, so that the interelement compatibility may not hold.

Remark 3: Discontinuity in shape function may occur across the boundary between the two

subdomains, which corresponds to ξ = 0 in the present example.

All the above differences are linked with point interpolation, in which the smoothing role of the

weight function is negated. In point interpolation, the weight function matrix W(ξ) may be thought

of as an identity matrix on its support, but suddenly collapsing to zero matrix outside its support, so

that it has the property like the step function (Liu et al. 2004). Despite the advantage that the

Kronecker delta condition is fully satisfied, failure to meet Condition 1 and the discontinuity across

the intersubdomain boundary may severely restrict the usefulness of the present class of the

elements. However, we will show that some choice of the node distribution and the basis function

leads to an extremely useful and efficient element.

We will now focus again on the element of Fig. 3 to examine Condition 1 and check the

continuity across the intersubdomain boundary. The presence of the bilinear term, ξη, in p makes it

possible for  to vanish along the boundary edges not containing node I in this element, as

opposed to the previous case in Fig. 2. This may be confirmed numerically, particularly if NB is a
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large number. Furthermore, we can numerically verify the continuity of  across the

intersubdomain boundary ξ = 0.

Since point interpolation results in polynomial shape functions, the use of the 2 × 2 Gaussian

integration is sufficient on each of the two subdomains of this MLS-based element (see Fig. 3). This

is a significant advantage of the present type of elements (Rank(W)=NB) over the previous case

(Rank(W)>NB). It turns out that the element in Fig. 3 will pass the patch test exactly with such a

simple integration. This aspect enables straightforward applications of the current type of MLS-

based elements for a class of problems involving an implicit constraint, such as the plastic

incompressibility. That is, the well-known  approach is applicable as easily as in the conventional

finite elements.

3. (4 + n)-noded MLS-based elements 

In this section, we illustrate (4 + n)-noded MLS-based finite elements which can treat an arbitrary

number of nodes at the element edges for mesh gradation. Every boundary segment of element

composed of two neighbor nodes represents the linear interpolation. Some of elements show the

polynomial type shape function integrable by simple 2 × 2 Gaussian integration in element interior.

In Fig. 3, we already explained how to construct a 5-noded MLS-based element with bilinear

interpolation function. The extension of this to a generic (4 + n)-noded element (n = 1, 2, 3…) is

straightforward. We simply choose  for the polynomial basis. Taking n = 3 for

instance, as shown in Fig. 4, we have four subdomains, D1, D2, D3, and D4. The active nodes on

each of the subdomains are as indicated in Fig. 4. One can confirm that Condition 1 is fulfilled, and

that all shape functions are continuous across each of the intersubdomain boundaries

. For numerical integration, simple 2 × 2 Gauss integration are sufficient. 

φI ξ( )

B

p 1 ξ η ξη, , ,[ ]T=

ξ 0.5– 0.0 0.5, ,=

Fig. 3 Master element of the 5-noded MLS-based element and its integration points
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4. Numerical examples

To demonstrate the performance of (4 + n)-noded elements, some numerical benchmark problems

are treated in this section. For checking a convergence of the elements, we conduct a series of patch

test for (4 + n)-noded elements. Second, we deal with a cantilever beam problem with mesh

refinement for capturing stress gradient on the corner. As a final example, we solve an infinite plate

problem including a hole with element subdivision. In these examples, we employ our in-house

code, but the present elements may be easily inserted into any commercial codes, using a special

tool provided, for example, UEL in the case of ABAQUS.

Fig. 4 A (4 + n)-noded MLS-based element with linear interpolation on one of the boundary edges and active
nodes per subdomain for n = 3 

Fig. 5 Geometry and boundary conditions of the patch test for (4 + n)-noded elements
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4.1 Patch test

For linear MLS-based elements, we construct a finite element mesh containing a skewed zone, as

shown in Fig. 5. We model the inner region Ω2 as 4-noded bilinear elements and the outer region

Ω1 as MLS (4 + n)-noded elements. We impose uniform stress distribution along the right boundary

of the patch and apply appropriate boundary conditions to eliminate rigid body motion, as shown in

Fig. 5. Both of the material properties are E1 = E2 = 106 Pa and v1 = v2 = 0.25, and plane stress

condition is assumed. We conduct a series of patch test for a different number of 4 noded-elements

by taking subdivision of Ω2 region. The contours of σ11 are plotted in Figs. 6(a)~6(c). As seen in

these Figs. 6(a)~6(c), the patch test is passed clearly and no dependency on the number of elements

is observed.

4.2 A cantilever beam with a tip load 

As our second example, a cantilever beam is selected to investigate the performance of (4 + n)-

noded elements. The exact displacement is given as the reference (Timoshenko and Goodier 1970).

where, I = D3/12, D = 2c = 10.0 m, L = 20.0 m, E1 = E2 = 106 Pa and v1 = v2 = 0.25. The vertical

traction P(=2.5 × 104 N) is applied at the left end of beam in Fig. 7 and plane stress condition is

assumed. 

Fig. 6 The σ11 contour plot of patch test with a various number of elements: (a) 1st adaptation result, (b) 2nd
adaptation result, (c) 3rd adaptation result 
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We take the sequential refinement of Ω2 for capturing the high stress gradient on the corner of

plate as seen in Figs. 8(b) and 8(c). For treating nonmatching meshes from element subdivision, we

replace elements adjacent to Ω2 in Ω1 by (4 + n)-noded elements. We calculate the relative error in

energy norm in Ω2 comprised of 4-noded bilinear elements and the maximum stress value on the

u
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Fig. 7 Problem description of a cantilever under a tip load

Fig. 8 The σ11 contour plot of a cantilever problem: (a) Initial mesh result (45 nodes), (b) 1st adaptation result
(75 nodes), (c) 2nd adaptation result (183 nodes) (d) 2nd reference result (561 nodes)
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corner ‘A’ by L2 projection (Hinton et al. 1974) to compare with the results of reference meshes. To

obtain the reference solutions, we make subdivision one time (reference mesh 1) and two times

(reference mesh 2, Fig. 8(d)) on the original coarse matching mesh (Fig. 8(a)). As summarized in

Table 1, the results of proposed scheme have an excellent agreement with the results of the

reference mesh although the nodes less than the half of the nodes of the reference mesh are used to

construct finite element model.

4.3 An infinite plate with a hole under tension

For the last example, we choose an infinite plate including a hole. The radius of a hole is 0.3. We

only use a quarter model by imposing a proper boundary condition as depicted in Fig. 9. To capture

high stress concentration, we take subdivision on Ω2 and replace, by (4 + n)-noded elements, these

elements that are located on the inner region of Ω1 and neighboring Ω2. The plane is subjected to a

uniform tension σ0 = 1 in the horizontal direction. The dimensions and material properties are 1 × 1

square plate with a hole (see Fig. 9), and both of Young’s modulus and Poisson ratio are 106 Pa and

0.3, respectively, and plane strain condition is assumed. To realize the infinite state in a finite body,

we calculate the exact nodal forces by integrating exact stress distribution given in the reference

(Timoshenko and Goodier 1970) with 12 order Gaussian integration along the boundary and impose

them on the outer boundary. 

Table 1 Comparison of the maximum σ11 stress and relative error in energy norm between 
reference meshes and adaptation meshes 

Maximum σ11 stress
at Point “A” 

σexact = 30000 (Pa)

Relative error 
in energy norm at Ω2

Coarse mesh (45 nodes) 28218.2 0.1753

Adaptation mesh 1 (75 nodes) 29282.7 8.945 × 10−2

Reference mesh 1 (153 nodes) 29307.6 8.875 × 10−2

Adaptation mesh 2 (183 nodes) 29705.5 4.576 × 10−2

Reference mesh 2 (561 nodes) 29710.3 4.454 × 10−2

Fig. 9 Geometry and boundary conditions of an infinite plate including a hole 
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Fig. 10 The σ11 contour plot of an infinite plate with a hole: (a) Initial mesh result (63 nodes), (b) 1st
adaptation result (121 nodes), (c) 2nd adaptation result (333 nodes), (d) 2nd reference result (825
nodes)

Table 2 Comparison of the maximum σ11 stress and relative error in energy norm between 
reference meshes and adaptation meshes 

Maximum σ11 stress at nearest 
Gauss point around ‘A’

Relative error 
in energy norm at Ω2

Coarse mesh (63 nodes) 2.663 0.152

Adaptation mesh 1 (121 nodes) 2.862 8.35 × 10−2

Reference mesh 1 (221 nodes) 2.875 8.33 × 10−2

Adaptation mesh 2 (333 nodes) 2.935 4.53 × 10−2

Reference mesh 2 (825 nodes) 2.953 4.46 × 10−2



(4+n)-noded Moving Least Square(MLS)-based finite elements for mesh gradation 105

The stress contour of σ11 are described in Fig. 10 and the numerical values of relative error norm

and the maximum σ11 stress which is obtained at the nearest gauss point around ‘A’, are

summarized in Table 2. Compared to the results of reference mesh, they show almost the same

accuracy within 0.5% which seems to be affected by less number of degree of freedoms at the

interface, not the limitation of proposed scheme. 

5. Conclusions 

In this paper, we present a new class of finite elements, based on the MLS method. In this class

of elements, the space of the trial functions is significantly expanded compared with the

conventional finite elements in that rational type shape functions are utilized for master elements.

Moreover, they turn to polynomial type interpolation wherein Rank(W) is equal to NB by adjusting

the domain of influence of individual nodes although they lead to rational type approximation in

general. With this idea, (4 + n)-noded finite elements which place an arbitrary number of nodes on

edge are presented for connecting coarse mesh zone with fine mesh zone. To demonstrate the

effectiveness and accuracy of the (4 + n)-noded MLS-based elements, we have shown several

numerical examples for capturing of high stress concentration using mesh gradation. They

demonstrate that (4 + n)-noded elements can be an effective tool to model complex structures

consisting of two difference sizes of mesh by allowing proper mesh gradation. In addition to this,

this element has a great potential in complex problems such as nonmatching contact problems,

discontinuity propagations and so on. 
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