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Experimental study on identification of stiffness change 
in a concrete frame experiencing damage and retrofit
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Abstract. This paper describes an experimental study on structural health monitoring of a 1:3-scaled
one-story concrete frame subjected to seismic damage and retrofit. The structure is tested on a shaking
table by exerting successively enhanced earthquake excitations until severe damage, and then retrofitted
using fiber-reinforced polymers (FRP). The modal properties of the tested structure at trifling, moderate,
severe damage and strengthening stages are measured by subjecting it to a small-amplitude white-noise
excitation after each earthquake attack. Making use of the measured global modal frequencies and a
validated finite element model of the tested structure, a neural network method is developed to
quantitatively identify the stiffness reduction due to damage and the stiffness enhancement due to
strengthening. The identification results are compared with ‘true’ damage severities that are defined and
determined based on visual inspection and local impact testing. It is shown that by the use of FRP
retrofit, the stiffness of the severely damaged structure can be recovered to the level as in the trifling
damage stage.

Keywords: concrete frame; shaking table test; seismic damage; retrofit; structural stiffness identification;
neural network.

1. Introduction

Civil structures suffer from damage over their service life due to attacks from natural hazards such

as earthquakes, fires, hurricanes, long-term fatigue and corrosion. For critical structures such as

hospitals, power stations, major bridges, it is imperative that their health be assessed immediately

after a major hazardous event. Knowledge of damage is the basis for decision making on whether

retrofitting, partial replacement or demolition is necessary after severe hazards. Recent natural

hazards such as Niigata Earthquake in Japan in 2004 and Kashmir Earthquake in Pakistan in 2005

have highlighted the need for real-time damage assessment of civil structures with widespread

societal implications. From the perspective of both structural safety and serviceability, the detection

of structural damage is the starting point for enhanced performance of buildings and bridges after

long-term usage.
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Assessing damage to building structures during earthquakes has been widely studied by defining

various damage indices (Park and Ang 1985, Stephens and Yao 1987, DiPasquale et al. 1990,

Cabanas et al. 1997, Ghobarah et al. 1999, Cosenza and Manfredi 2000, Elenas and Meskouris

2001). These investigations were focused on overall structural damage evaluation by means of

nonlinear seismic response analysis without directly using measurement data. With the advances in

sensor and computer technologies, increasing research interests have been given on damage

identification by the use of measurement data of structural dynamic response and modal properties

(Hassiotis and Jeong 1995, Koh et al. 1995, Skjærbæk et al. 1998, Escobar et al. 2001, Huang et al.

2003, Ge and Lui 2005). The premise underlying the vibration-based damage identification

approach is that structural damage in terms of stiffness reduction will result in change of modal

properties (natural frequencies, modal shapes and modal damping). By detecting the change in

measured modal parameters, the element-level damage of a structure can be assessed by applying a

system identification algorithm. Among system identification algorithms available, neural network

technique, because of its powerful learning capacity and high tolerance to incomplete and partially

inaccurate data, has been shown promising for structural damage detection (Wu et al. 1992, Elkordy

et al. 1994, Zhao et al. 1998, Kim et al. 2000, Yun et al. 2001, Ni et al. 2002).

This paper presents an experimental investigation of identifying stiffness change in a concrete

frame due to seismic damage and post-earthquake retrofit by using a neural network approach. A

1:3-scaled one-story concrete frame was tested on a shaking table by exerting successively enhanced

earthquake excitations to generate trifling, moderate, and severe damage, respectively, and then

retrofitted using the fiber-reinforced polymer (FRP) technique. After experiencing the earthquake

excitations at each level, the structure was subjected to a white-noise random excitation of low

intensity at its base to generate ambient vibration, and the excitation and response during the

ambient vibration were measured for modal parameter identification. Free vibration tests were also

conducted. A back-propagation (BP) neural network with appropriate configuration is trained using

simulated data from a validated finite element model, and then the measured modal frequencies are

fed into the trained neural network to identify the stiffness change in each structural member caused

by seismic damage and retrofit. Because the true damage severities are unknown for the tested

structure, separate impact testing has been conducted on individual structural members at each

damage/strengthening stage, from which the member local modal parameters were obtained and

used to assess the ‘real’ damage extent for comparison with the identified results by the neural

network approach making use of global modal data.

2. Shaking table tests

A one-story concrete frame shown in Fig. 1, which is 1:3 scaled down from a real structure, is

fabricated for shaking table tests. It is 2.3 m long, 1.4 m wide and 1.9 m high. The two columns in

the frame have the same cross section of 100 mm by 100 mm, and the three walls have the same

cross section of 300 mm by 50 mm. The thickness of the upper and bottom slabs is 150 mm. The

central wall is perpendicular to other two walls on one side. The bottom slab of the tested structure

is fixed on the shaking table, and the upper slab is supported by the two columns and the three

walls. A 0.75-ton mass block is laid on each corner of the upper slab to simulate the load

transformed from upper floor in the prototype structure. Fig. 2 shows the arrangement of

reinforcement for the column cross-section (only longitudinal reinforcement has been considered
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because of the limited cross-section size) and for the wall middle-plane. There is no reinforcement

for the upper and bottom slabs. The percentage of total longitudinal reinforcement satisfies the

requirement prescribed in the Hong Kong design code (Buildings Department 2004). The concrete

grade is C35.

Fig. 1 Tested frame

Fig. 2 Arrangement of reinforcement for columns and walls
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The structure was tested on a 3 m by 3 m shaking table with successively enhanced earthquake

excitations (modulated Northbridge Earthquake with increasing magnitude). Accordingly, the

structure incurred trifling, moderate and severe damage respectively at different test stages. The

seismic damage mainly manifests itself as cracks in the columns and the walls and at connections

between the slabs and the columns and between the slabs and the walls as shown in Fig. 3. The

number and size of the cracks increase with the increase of earthquake intensity. According to a

roughly estimated relationship between the damage severity (in terms of observed size and number

of cracks) and the peak value of the earthquake acceleration excitation, three levels of earthquake

excitation and damage extent are defined: the trifling damage corresponds to the earthquake

excitations with peak acceleration from 0.05 to 0.20 g, the moderate damage corresponds to the

earthquake excitations with peak acceleration from 0.20 to 0.40 g, and the severe damage

corresponds to the earthquake excitations with peak acceleration from 0.40 to 0.90 g. Fig. 4

illustrates an exerted earthquake excitation and the corresponding response of the tested structure at

the central point of the upper slab during the shaking table tests.

Fig. 3 Visual inspection of damage after three levels of earthquake excitations

Fig. 4 Time history of earthquake excitation and structural response
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After experiencing each level of earthquake excitations, a visual inspection is carefully conducted

on every column and wall to check the presence and evolution of cracks. Then an experimental

modal test is carried out on the structure to acquire the global modal properties, followed by

imposing a hammer impact on every structural member to obtain the local modal properties for the

purpose of verification. As shown in Fig. 5, three accelerometers (denoted as ‘+’) are positioned at

the bottom slab for excitation measurement while other three accelerometers (denoted by arrows)

are deployed at the upper slab for response measurement. The oriented direction of the

accelerometers at the upper slab is designated by the arrows in Fig. 5 (one in parallel to X-axis is in

horizontal ‘ ’ direction and two in parallel to Y-axis are in horizontal ‘ ’ direction), and the

accelerometers at the bottom slab are oriented in the same direction as their counterparts at the

upper slab. Moreover, when conducting local impact testing on a specific member (column and

wall), an accelerometer is installed at the middle of the member to capture the local dynamic

properties. In each modal test, the following procedure is complied with:

i. The structure is subjected to small-amplitude (about 0.01 g) white-noise excitation with a

frequency range of 1 Hz ~15 Hz by the shaking table;

  

Fig. 5 Schematic of excitation and sensor locations

Fig. 6 White-noise random excitation and response
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ii. The structure is subjected to hammer impacts at the locations 1, 2, 3 and 4 (refer to Fig. 5) of

the upper slab respectively to produce global free vibration;

iii. A hammer impact is imposed transversely on the center of each column and wall in turn to

excite member local vibration.

Fig. 6 illustrates the white-noise excitation and the response at the central point of the upper slab

after the structure incurred trifling damage. Fig. 7 shows the free vibration response of the structure

at the same point when a hammer impact is acted on the location 2. The above test procedure is

repeated to obtain the global and local dynamic properties of the structure at trifling, moderate and

severe damage stages. After suffering from severe damage, the structure is retrofitted using FRP as

shown in Fig. 8, and then the above test procedure is conducted again.

The five test stages and the corresponding visual inspection results of structural health status are

summarized in Table 1, where N/A denotes no damage; C1, C2, W1, W2, and W3 denote column 1,

column 2, wall 1, wall 2, and wall 3, respectively; T, M, and B denote the top, middle and bottom

portions of a column or wall, respectively.

3. Processing of measurement data

The global modal properties of the tested structure at the five stages are identified from: (i)

spectral analysis using only the measured acceleration responses under white-noise excitation which

simulate the post-earthquake ambient vibration measurement, (ii) frequency response functions

Fig. 7 Free vibration response under hammer impact Fig. 8 FRP-retrofitted structure

Table 1 Description of damage/strengthening cases

Case Health status Location of new cracks

1 No damage N/A

2 Trifling damage C1 (T, M & B), C2 (M & B), W1 (T & B)

3 Moderate damage C1 (B), C2 (T & B), W1 (T & B), W2 (T & B), W3 (T)

4 Severe damage C1 (T), C2 (T), W1 (T, M & B), W2 (T & B), W3 (T & B)

5 Retrofit by FRP All cracks repaired
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obtained using both the white-noise excitation and response measurements, and (iii) free decay

vibration responses obtained by hammer impact, respectively. It is found that the identified modal

frequencies obtained by the three approaches are identical, whereas the modal vectors (mode

shapes) and damping ratios identified from different approaches are highly inconsistent. It is

therefore decided to use only the measured modal frequencies for damage diagnosis. The modal

identification results show that the first global mode is a torsional mode, and the second and third

global modes correspond to translational motions in the two horizontal directions respectively. The

measured frequencies of the first three global modes are summarized in Table 2 and their variation

with successive damage and strengthening is illustrated in Fig. 9.

The above measured global modal frequencies will be used to identify the change of structural

stiffness caused by seismic damage and retrofit by means of a neural network approach. Although a

careful visual inspection on the cracks has been made at each stage, quantification of the real

damage is not available. In order to verify the identification results, local impact testing has been

conducted on each column and wall in turn to obtain the local vibration frequency of individual

structural members. With the measured local frequency, we can evaluate the member stiffness loss

by regarding each member (column or wall) as a beam with fixed ends, and then presume it as

nominal ‘real’ damage for verification of the global identification results. The rth bending frequency

of a beam can be expressed as

Table 2 Measured global modal frequencies

Case
Frequency (Hz)

1st 2nd 3rd

1 4.692 7.625 12.904

2 3.910 5.865 11.730

3 2.447 4.895 10.769

4 1.951 4.877 6.828

5 3.901 5.852 8.778

Fig. 9 Measured frequencies versus damage/strengthening case
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(1)

where βr is a coefficient relevant to boundary condition and mode order; L, m and EI are length,

mass density and bending stiffness of the member, respectively. Assuming that the length, mass and

boundary condition remain the same before and after damage, it is known from Eq. (1) that the

reduction of the bending stiffness is proportional to the difference of , and therefore can be

estimated using the measured pre- and post-damage local frequency fr. The first bending frequency

and the stiffness loss of each structural member evaluated from the local impact testing are

summarized in Table 3.

4. Finite element modeling

A neural network approach will be explored to identify the structural damage from the measured

global frequencies before and after damage. A three-dimensional finite element model (FEM) of the

tested structure is developed by means of the commercial software package ABAQUS to produce

analytical data for the training of a feed-forward neural network with back-propagation algorithm.

The developed FEM involves 32 nodes and 27 elements, in which the upper and bottom slabs are

modeled as rigid-body elements; each column or wall is modeled by three Timoshenko beam

elements; and the four mass blocks at the corners of the upper slab are represented by mass

elements. The Timoshenko beam elements take into consideration the flexural rigidity, shear rigidity

and torsional rigidity in formulating the stiffness matrix; as a result, the effect of damage on the

flexural, shear and torsional properties of structural members can be explicitly represented in the

FEM.
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Table 3 Identified local frequency and member stiffness loss

Case

Local frequency (Hz) and percentage stiffness loss (%)

Column 1 Column 2 Wall 1 Wall 2 Wall 3

fC1 ∆kC1 fC2 ∆kC2 fW1 ∆kW1 fW2 ∆kW2 fW3 ∆kW3

1 147.3 0.00 154.1 0.00 87.8 0.00 220.6 0.00 242.3 0.00

2 124.2 28.94 133.9 24.51 64.5 46.01 189.5 26.21 206.5 27.38

3 96.5 57.07 99.4 58.40 59.2 54.47 124.6 68.12 132.0 70.32

4 88.8 63.68 82.0 71.69 48.8 69.13 103.2 78.13 106.8 80.56

5 123.9 29.26 124.8 34.37 78.0 20.99 193.3 23.25 207.2 26.86

Table 4 Comparison of measured and analytical frequencies

Mode
Measured results

(Hz)
FEM results 

(Hz)
Relative difference 

(%)

1st 4.692 4.693 0.021

2nd 7.625 7.635 0.131

3rd 12.904 12.807 −0.752
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The FEM is calibrated and refined using the measured first three global modal frequencies of the

intact structure (Case 1). The model refinement is accomplished by adjusting the Young’s modulus

to achieve the best fit between the measured and predicted frequencies. Table 4 shows a comparison

of the measured and analytical frequencies for the first three modes after the model refinement. It is

seen that the maximum relative difference is 0.752%, which is even lower than 1%. So the

validated FEM captures the global modal properties of the tested structure well and is appropriate

for damage simulation. The mode shapes were also calibrated by using the measured modal data.

The first three analytical modes are evaluated to be a torsional mode and two bending modes along

the horizontal axes respectively, identical with the measured mode shapes. Fig. 10 illustrates the

analytically obtained mode shapes of the first three modes of the intact structure. With the validated

FEM, we can simulate a series of damage scenarios analytically to produce training samples of the

neural network.

5. Damage identification using neural network

With the measured global modal data and the developed FEM, a neural network is configured to

perform the identification of damage extent at each stage. The neural network is used to map the

relation between the modal properties (input) and the structural health status (output). The calculated

modal parameters from the FEM with simulated damage scenarios are used to train the neural

network, and the measured modal data for true damage scenarios will be fed into the trained neural

network for damage identification.

5.1 Damage modeling and neural network configuration

As mentioned earlier, the seismic damage of the tested structure appears mainly as cracks in the

structural members. While some researchers have addressed crack detection by formulating crack

elements or indices in compliance with fracture mechanics concepts (Qian et al. 1990, Liang et al.

1992, Hjelmstad and Shin 1996, Morassi 2001, Kim and Stubbs 2003), the present study aims to

evaluate the member stiffness change due to seismic damage and retrofit. It is therefore assumed

that: (i) the cracks presented in a column or wall will lead to the loss of member bending and

torsional stiffness regardless of crack locations; (ii) the stiffness loss can be expressed equivalently

Fig. 10 Analytical mode shapes obtained by FEM
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as a reduction in cross-sectional area of structural members along the member length; and (iii) the

damage results in a proportional reduction of the two dimensions in cross section. Based on these

assumptions, the damage modeling, as illustrated in Fig. 11, is described as

For the ith structural member (column or wall), the area of member cross section is defined as

li × hi. After damage, the cross-sectional area is reduced to αili × αihi.

Because we assume that material properties remain unchanged after damage, stiffness reduction of

the ith member caused by damage is only a function of the parameter αi. Consequently, the damage

detection is intended to identify the value of αi at each stage.

A feed-forward neural network with back-propagation training algorithm is configured for damage

identification. A total of five frequency-derived parameters DFT, DFX, DFY, DFX/DFT, and DFY/DFT

are adopted to constitute the input vector, and therefore the network has five input nodes. Here DFT,

DFX and DFY are the change ratios of the torsional, X-direction bending and Y-direction bending

global frequencies before and after damage, defined by

(2)

where  and  are the global modal frequency of the structure before and after damage; the

subscript i is taken as X, Y and T which denotes X-direction bending mode, Y-direction bending

mode and torsional mode, respectively. Although the reduction of stiffness is directly proportional to

the difference of the square of modal frequencies before and after damage, here we use the relative

difference of modal frequencies as input to the neural network because this parameter is more

tolerant of modeling error than the difference of the square of modal frequencies when using FEM-

generated modal frequencies as training samples.

Because only global modal frequencies exclusive of modal vectors are used for damage detection,

it is difficult to distinguish between the two symmetrically located side columns and distinguish

between the two symmetrically located side walls. So the five members are grouped into three sets:

side columns (column 1 and column 2), central wall (wall 1), and side walls (wall 2 and wall 3). As

a result, only three parameters, α1, α2 and α3, are issued as target output of the neural network to be

identified.

The number of hidden layers and the number of hidden nodes are determined by trial and error.

With the finite element model of the tested structure, damage scenarios present at various members

are simulated to produce training samples which are used to train a set of neural networks with

different hidden layers and hidden nodes. Then the trained neural networks are tested by feeding
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Fig. 11 Modeling of member damage
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them with simulated data from new damage scenarios, and the best hidden configuration is

determined from the neural network which produces the most accurate identification for the

simulated data. Fig. 12 shows the topology of such obtained neural network with the best

configuration, which consists of two hidden layers with eight and six nodes each. Thus, a four-layer

neural network with the configuration of 5-8-6-3 is constructed for damage identification with the

use of measured global modal frequencies.

5.2 Neural network training and identification results

The configured four-layer neural network is trained by using back-propagation algorithm. The

training samples are generated using analytical modal data from the validated finite element model

by changing the values of α1, α2 and α3. To make the training samples as closely as possible with

the true damage cases, the values of α1, α2 and α3 are varied from 0.68 to 0.98 at an interval of

0.02 to generate training patterns. In addition, proper combinations of α1, α2 and α3 are also

considered to generate the training samples representing multi-damage cases. A total of 98 training

samples have been generated to train the neural network.

Then the measured global modal frequencies at each stage (including the intact case and the

strengthening case) are taken as the testing samples for damage identification. By presenting the

measured frequencies at each stage into the trained neural network, the output indicates the

identified stiffness reduction coefficients. Table 5 shows the identification results for all five cases.

In this table the ‘real’ stiffness losses assessed by local impact testing are also provided for

comparison. It should be noted that the global identification method can only indicate the average

stiffness loss of columns 1 and 2 and walls 2 and 3. Even so, the identification results coincide

fairly well with both the visual inspection results shown in Table 1 and the ‘real’ stiffness losses

identified by local impact testing. More importantly, the identification results provide a quantitative

evaluation of the stiffness enhancement after retrofit. From Table 5, it is seen that making use of

FRP retrofit, the stiffness of the severely damaged structure is recovered to the level as in the

trifling damage stage, indicating the effectiveness of strengthening by the FRP technique.

Fig. 12 Four-layer neural network configuration
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6. Conclusions

This paper presents a shaking table experimental study on post-earthquake damage identification

and structural retrofit assessment of a concrete frame structure. By modeling the structural damage

and strengthening in terms of stiffness change, the health monitoring is issued to identify the

equivalent stiffness reduction coefficients of structural members. The identification is conducted by

using the measured global modal properties and an appropriately configured neural network. In this

study, only the first three global modal frequencies are used for damage assessment. Because true

damage severities are unknown for the tested structure, separate impact testing has also been

conducted on individual structural members, from which the member local modal parameters are

obtained and used to assess the ‘real’ damage for comparison with the identified results from the

global testing. With the identification results, it is verified that the seismic damage occurs in both

columns and walls and the damage extent increases gradually from case 1 to case 4. The proposed

method also provides a feasible approach to quantitatively evaluating the effectiveness of structural

Table 5 Identification results

Case
Structural 
member

‘Real’ stiffness 
loss (%)

Identified stiffness 
loss (%)

1

Column 1 0.0 2.43

Column 2 0.0 2.43

Wall 1 0.0 0.59

Wall 2 0.0 0.74

Wall 3 0.0 0.74

2

Column 1 28.94 32.8

Column 2 24.51 32.8

Wall 1 46.01 39.9

Wall 2 26.21 34.46

Wall 3 27.38 34.46

3

Column 1 57.07 64.05

Column 2 58.40 64.05

Wall 1 54.47 52.90

Wall 2 68.12 72.21

Wall 3 70.32 72.21

4

Column 1 63.68 71.75

Column 2 71.69 71.75

Wall 1 69.13 65.02

Wall 2 78.13 71.73

Wall 3 80.56 71.73

5

Column 1 29.26 31.89

Column 2 34.37 31.89

Wall 1 20.99 41.90

Wall 2 23.25 36.16

Wall 3 26.86 36.16



Experimental study on identification of stiffness change in a concrete frame 51

retrofit. The identification results indicate that the FRP retrofit recovers the stiffness of the severely

damaged structure to the level as in the trifling damage stage.
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