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Time-dependent analysis of launched bridges
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Abstract. The time-dependent analysis of prestressed concrete bridges built adopting the incremental
launching technique is presented. After summarizing the well known results derived from the elastic
analysis, the problem is approached in the visco-elastic domain taking into account the effects consequent
to the complex load history affecting the structure. In particular, the effects produced by prestressing
applied both in the launching phase and after it and by application of imposed displacements and of
delayed restraints during the launching phases are carefully investigated through a refined analytical
procedure. The reliability of the proposed algorithm is tested by means of comparisons with reference
cases for which exact solutions are known. A case study of general interest is then discussed in detail.
This case study demonstrates that a purely elastic approach represents a too crude approximation, which is
unable to describe the specific character of the problem.
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1. Introduction

The procedure of incremental launching for prestressed concrete bridges was developed in the

sixties when jacking operations and the construction of sliding supports able to minimize friction

forces became possible. The incremental launching technique can be profitably used for bridges

with straight axis and nearly constant spans ranging between 40 m and 70 m (Leonhardt 1973,

Grant 1975, Baur 1977). Nevertheless, bridges with circular axis of small curvature in the horizontal

plane have been recently constructed (Favre and Laurencet 1999).

In order to justify the extra cost due to the need of special launching devices, the adoption of this

construction system can be recommended when the number of the spans is quite large. This

condition, together with other prerequisites (i.e., the constancy of the transverse section and an

optimum value of the length/weight ratio for the spans) gives to launched bridges a typical

configuration.
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The constructional process starts with the concreting of the first segment (15~30 m long) by using

a formwork base placed beyond an abutment. The subsequent operations consist in the launching of

the bridge step by step when new segments are added to the bridge tail (see Fig. 1). Therefore, the

structure is affected by rheological inhomogeneity along its axis and the structural scheme

continuously varies during the launching phases. Special care has to be devoted to the correct

evaluation of the transverse displacements and of their variation during these phases as they

influence the geometric tolerance and affect the final configuration of the bridge, the moment

distribution and the values of the support reactions.

In the last three decades many theoretical works have been devoted to the investigation of the

structural behaviour of launched bridges, and many practical aspects have been solved in order to

control the bridge behaviour during the construction process. The most important problems are

related to the state of stress and deformation affecting the two spans located behind the advancing

edge of the bridge. When the head of the bridge reaches a support, the span located beyond the

support behaves as a cantilever which can exhibit a length equal to the one of the bridge spans in

the final configuration. For bridges with constant central spans the negative moment acting in the

cantilever can attain a value many times larger in comparison with the one affecting the internal

spans, which exhibit the statical behaviour of a continuous beam. Feasible choices to reduce the

bending moment in the cantilever consist in reducing their length by introducing provisional

supports or stays (see for instance Rosignoli 1998, 1999, 2000, Göhler and Pearson 2000, Hewson

2003, Sasmal et al. 2004). A second option consists in reducing the weight of the cantilever span by

adding a steel nose. The first option induces a significant increase of the construction cost.

Fig. 1 Construction phases
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Moreover, the insertion of provisional stays presents substantial difficulties as a consequence of the

uncertainties connected to the stays prestressing, to thermal effects and to possible mankind errors.

For these reasons, the most popular solution for reducing the bending moment in the cantilever

consists in applying a light metallic nose at the bridge head.

A large part of the theoretical studies have been oriented to the analysis of the structural system

including the prestressed concrete bridge deck and its metallic nose. The most interesting results

achieved in these studies regard the structural optimization in terms of bending moment and

transverse displacement distribution. Optimization can be obtained by prescribing feasible values for

the ratios between the weight, the length and the flexural stiffness of the nose and the cantilevered

part. Another problem studied in depth regards the definition of the most feasible profile of the

prestressing tendons. Owing to the alternate presence of negative and positive bending moments in

the transverse sections of the bridge deck during the launching process, the most feasible

prestressing in this phase is a centric one. In this way no transverse displacements are induced by

prestressing. In the final configuration, in which the structural behaviour is that of a continuous

beam, an additional prestressing tendon with variable profile, capable of maximizing the

prestressing effects, has to be provided.

The analyses performed in the aforementioned studies assume a linear elastic behaviour for the

materials. This approach is generally sufficient for steel bridges and for composite steel-concrete

bridges in which the concrete slab is cast when the steel beams have reached their final

configuration.

When prestressed concrete bridges are dealt with, however, the elastic analysis represents only a

rough approximation because the delayed deformation of concrete strongly affects the structural

behaviour both in the construction phases and in the final configuration. The most outstanding

problems related to creep and shrinkage of concrete in launched bridges are the rheological

inhomogeneity of the structure, the introduction of delayed restraints, the time development of stress

redistribution in the transverse sections and the time variation of the state of deformation of the

structure, as discussed by Ghali and Favre (1986).

In the present study the complex problem now briefly discussed is investigated and solved in the

linear visco-elastic domain. The analysis develops through three basic steps. The first step regards

the formulation of the sectional analysis, assuming as unknowns the parameters of the plane section

deformation, when internal actions (variable in time) are applied. The second step regards structural

analysis devoted to deduce the compatibility equations by means of the principle of virtual work.

Finally, the resulting system of equations is solved. The constitutive laws of the various segments of

the bridge deck are expressed in integral form, according to Mc Henry Principle of Superposition

(Mc Henry 1943), so that the problem is governed by a set of Volterra integral equations. Therefore,

a complex numerical algorithm is adopted to evaluate the structural behaviour of the bridge during

the construction phases and under service loads.

Some applications to simple problems (for which exact solution is known) are firstly discussed in

order to evaluate the accuracy of the proposed numerical algorithms. The analysis of an eight span

prestressed concrete box girder bridge is then discussed in detail. This case study allows the marked

influence exerted by the delayed deformation of concrete on the structural response of prestressed

concrete launched bridges to be pointed out.
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2. Assumptions

The analytical formulation adopts the following assumptions:

1. any bridge deck cross-section consists of steel elements and one single concrete casting that is

the only visco-elastic material inside that cross-section;

2. when dealing with a composite steel-concrete bridge deck (i.e., stiffened plate prestressed

composite sections, see for instance Rosignoli 1998), the local effects of longitudinal slip at the

interface between steel and concrete due to deformation of the shear connectors is neglected;

3. reinforcing bars and steel tendons are perfectly bonded to the surrounding concrete. This means

that external prestressing is not taken into account;

4. prestressing is carried out in two phases: launch prestressing (usually centroidal) is carried out

during incremental launch, whereas service prestressing is carried out upon completion of the

launch;

5. a linear visco-elastic constitutive law is adopted for concrete. This assumption means that

concrete is not cracked both during launch and under service loads; 

6. the deck axis is straight and the vertical axis y of every cross section is an axis of symmetry

(see Fig. 2);

7. the long-term loads and prestressing act in the symmetry plane y-z;

8. the bridge has spans of variable length, whereas the monolithic segments have constant length

(constant launching span).

3. Cross-sectional analysis

Mola (1986) carried out the analysis of the heterogeneous cross-section by means of the solving

kernels matrix algorithm and of the equilibrium method. An application of this approach was

worked out in Mola and Pisani (1993). Following the same logic the equilibrium method will be

adopted in the following to take into account the time evolution of stresses and strains due to

internal actions and prestressing.

3.1 Compatibility equations

Owing to the hypothesis that the y-z plane is a plane of symmetry of the cross section, Bernoulli-

Fig. 2 Convention showing sense in which stress, strain and load components are considered positive
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Navier assumption may be expressed as:

(1)

where:

(2)

 is the longitudinal strain measured in the origin of the x and y axes, and  is the

curvature in the y-z plane (see Fig. 2).

The vectors:

(3)

fix the ordinate of the i-th reinforcing bar (subscript s) and of the j-th prestressing tendon (subscript p).

From the hypotheses of perfect bond (assumptions 2 and 3) it follows that:

(4)

where subscript c stands for concrete and subscript a refers to rolled steel (in composite steel-

concrete cross sections and in the launching nose).

In the fourth of Eqs. (4)  is the non-compatible strain between the prestressing tendon and

the surrounding concrete imposed by stressing, and  is the strain increase that develops

in the concrete at the level of the j-th prestressing tendon between time tpj
− immediately before

stressing and the actual time t:

(5)

In matrix notation Eq. (5) becomes:

(6)

The adoption of the prestrain  (see Eibl 1995) to take into account prestressing needs a

clarification: when dealing with post-tensioning, this non-compatible strain is the sum of the

elongation of the tendon and the shortening of the surrounding concrete, that is:

(7)

The elongation of the tendon at stressing  (i.e., the strain in the tendon immediately

ε x y z t, , ,( ) εz z t,( ) χ z t,( )+ y⋅ ρ Tψ z t,( )= =

ρT 1  y ; ψ z t,( ) εz z t,( )  χ z t,( ) T
= =

εz z t,( ) χ z t,( )

ρ
si

T 1  ysi= ; ρ
pj

T 1  ypj=

εc y z t, ,( ) ρTψ z t,( )=

εa y z t, ,( ) ρTψ z t,( )=

εsi z t,( ) ρ
si

T ψ z t,( )=

εpj z t,( ) ε* ypj z t, ,( ) ε pj z( )+=

ε pj z( )
ε* ypj z t, ,( )

ε* ypj z t, ,( ) ε ypj z t, ,( ) ε ypj z tpj
–, ,( )–=

εpj z t,( ) ρ
pj

T ψ * z t,( ) ε pj z( )+ ρ
pj

T ψ z t,( ) ψ z tpj
–,( )–[ ] ε pj z( )+= =

ε pj z( )

ε pj z( ) ε j-th tendon z( ) ε c ypj z,( )–=

ε j-th tendon z( )
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before grouting) can be easily evaluated once that the stress resultant at the stressing jack is known

and the friction losses along the tendon up to the cross-section under consideration has been

computed. The relaxation of the prestressing steel is usually included in this term.

Because of the lack of bond between the tendons and the concrete substructure before grouting, in

this phase the tendons can be replaced by an equivalent load (see for instance Libby 1984). Term

 is the elastic strain caused in the concrete substructure, in the cross-section under

consideration, at y = ypj by this equivalent load.

3.2 Equilibrium equations

The equilibrium equations of the cross-section under consideration are:

(8)

with  vector of the internal actions.

3.3 Constitutive laws

Because of the assumption (5), the constitutive laws of the materials involved in the analysis can

be written as follows:

(9)

(10)

where  is the creep function of concrete, t0 is its age at first loading, t is its actual age, 

is the shrinkage strain and  where τ is the integration variable.

The progress of the construction phases because of incremental launching together with the

rheological behaviour of concrete demand the adoption of a time-scale. The time-scale adopted in

Eq. (9) is the age of concrete. To simplify the computations, the age of concrete inside each

monolithic segment of the bridge deck will therefore be adopted all over section 3 to describe the

evolution of internal actions, stresses and strain in every cross-section inside that monolithic

segment.

3.4  Instantaneous change  of vector 

Every instantaneous change of the internal action in the cross section at time tk because of a phase

of launch, because of the application of the service prestressing, or because of an increase of the

ε c ypj z,( )

σc y z t, ,( ) ρ Acd⋅ ⋅
Ac

 

∫ σa y z t, ,( ) ρ Aad⋅ ⋅
Aa

 

∫ Σi Asi σsi z t,( ) ρ
si

⋅⋅+ +

Σ+ j Apj σpj z t,( ) ρ
pj

M z t,( )=⋅⋅

M
T

z t,( ) N z t,( )  My z t,( )=

εc y z t, ,( ) σc y z t0, ,( ) J t t0,( ) d
τ
σc y z τ, ,( ) J t τ,( )⋅

t
0

t

∫ εsh z t,( )+ +⋅=

σa x y z t, , ,( ) εa x y z t, , ,( ) Ea⋅=

σsi z t,( ) εsi z t,( ) Es⋅=

σpj z t,( ) εpj z t,( ) Ep⋅=

J t t0,( ) εsh z t,( )

d
τ
σc y z τ, ,( )

∂σc y z τ, ,( )
∂τ

--------------------------- τd=

ψ∆ ψ
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dead load, forces us to compute the corresponding change  of vector

.

In this case Eq. (9) becomes:

(11)

where Ec(tk) is the Young modulus of concrete at age tk.

Substituting Eqs. (11) and (10) into Eq. (8) and then Eqs. (4) and (1) in the outcome one obtains:

(12)

where

(13)

is the stiffness matrix of the concrete part of the cross-section,

(14)

is the stiffness matrix of the steel part of the cross section (that takes into account both the tendons

that are stressed at time tk and all the tendons stressed in former times), and

(15)

is the vector that determines the internal action equivalent to prestressing due only to the tendons

that are stressed at time tk.

Vector  stands for the vector of the internal actions due to the external loads and to the

reaction of the constraints. This means that  includes also the bending moment that results

from the deformation of the structure during prestressing.

It is important to point out that  depends on the overall instantaneous behaviour of the

redundant structure and therefore it is an unknown.

3.5 Delayed variation  of vector 

Mc Henry superposition principle applies because of assumption 5. Therefore, vector 

(i.e., the vector that describes the strain all over the cross-section by means of Eqs. (1) and (4))

consists in two stepwise functions, the instantaneous change  and continuous variation 

between the events of elastic instantaneous nature:

(16)

The time-intervals between these instantaneous events (i.e., the interval between time tr and time

tr + 1 in Eq. (16)) will be named phases because they correspond to the construction phases.

Superscript - means the instant immediately before the instantaneous change. In Eq. (16), the actual

time t is inside the k-th phase.

∆kψ z( ) ψ z tk,( ) ψ– z tk
–,( )=

ψ z t,( )

σc y z tk, ,( )∆ Ec tk( ) εc y z tk, ,( )∆⋅=

B
c

z tk,( ) B s

k( )
z( )+[ ] ∆kψ z( )⋅ ∆k M z( ) ∆ Pk z( )+=

B
c

z tk,( ) Ec tk( ) ρ ρ
T
dAc z( )

Ac z( )∫=

B s

k( )
z( ) Ea ρ ρ

T⋅ dAa z( )
Aa z( )∫ EsΣi Asi ρ

si
ρ

si

T⋅ ⋅ EpΣj

k( )
Apj ρ

pj
ρ
pj

T⋅ ⋅+ +=

P∆ k z( ) EpΣnApn ρ
pn

εpn z( )–=

∆k M z( )
∆k M z( )

∆k M z( )

δψ ψ

ψ z t,( )

ψ∆ δψ

ψ z t,( ) ∆rψ z( ) δrψ z tr 1+

–

,( )+[ ] ∆kψ z( ) δkψ z t,( )+ +

r 1=

k 1–

∑= tk t tk 1+
< <
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If a prestressing tendon has been stressed at time tpj = tn, that is at the beginning of the n-th phase,

from Eq. (6) it follows that

(17)

Substituting Eq. (16) into Eq. (17) one obtains:

 (18)

Because of Eqs. (16), (17) and (18), the compatibility equations in the k-th phase become:

(19)

Moreover, because of Eq. (9), the stress variation in the r-th phase contributes to the strain

variation at time t in the k-th phase ( ) according to the following expression (see

Fig. 3):

(20)

ψ * z t,( ) ψ z t,( ) ψ z tn
–,( )–=

ψ * z t,( ) ∆rψ z( ) δrψ z tr 1+

–,( )+[ ] ∆kψ z( ) δkψ z t,( )+ +

r 1=

k 1–

∑ ∆rψ z( ) δrψ z tr 1+

–,( )+[ ]
r 1=

n 1–

∑–=

∆rψ z( ) δrψ z tr 1+

–,( )+[ ] ∆kψ z( ) δkψ z t,( )+ +

r n=

k 1–

∑=

εc y z t, ,( ) εc y z tk, ,( )– ρ T δkψ z t,( )⋅=

εa y z t, ,( ) εa y z tk, ,( )– ρ T δkψ z t,( )⋅=

tk t tk 1+
< <

εsi z t,( ) εsi z tk,( )– ρ
si

T δkψ z t,( )⋅=

εpj z t,( ) εpj z tk,( )– ρ
pj

T δkψ z t,( )⋅=

tk t tk 1+
< < ; k r≥

δkεc y z t, ,( ) εc y z t, ,( ) εc y z tk, ,( )  =–=

∆rσc y z,( ) J t tr,( ) J tk tr,( )–[ ] d
τ
σc y z τ, ,( )

tr

tr 1+

∫ J t τ,( ) J tk τ,( )–[ ]⋅+⋅
⎩ ⎭
⎨ ⎬
⎧ ⎫

 +

r 1=

k 1–

∑=

 ∆kσc y z,( ) J t tk,( ) J tk tk,( )–[ ]⋅ d
τ
σc y z τ, ,( ) J t τ,( ) εsh z t,( ) εsh z tk,( )–[ ]+⋅

tk

t

∫+ +

Fig. 3 Time evolution of the stress in concrete
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Substituting Eq. (20) in the first of Eqs. (19) one obtains:

(21)

where:

(22)

Replacing the first of Eqs. (4) in Eq. (11), pre-multiplying both members of the latter by

 and then integrating over area Ac(z) gives a new expression for the first

term of the right-hand member of Eq. (21):

 (23)

The partial derivative of the equilibrium Eq. (8) with respect to time τ is:

(24)

This equation, together with the constitutive laws of reinforcing bars, tendons and rolled steel, and

with the compatibility equations allows the third term of the right-hand member of Eq. (21) to be

written as follows:

(25)

Similarly, the second term of the right-hand member of Eq. (21) becomes:

(26)

 

A z( ) δkψ z t,( )⋅ ∆rσc y z,( )
Ac z( )∫ J t tr,( ) J tk tr,( )–[ ] ρ Ac z( )d⋅ ⋅ ⋅

⎩ ⎭
⎨ ⎬
⎧ ⎫

r 1=

k

∑ +=

d
τ
σc y z τ, ,( )

tr

tr 1+

∫Ac z( )∫ J t τ,( ) J tk τ,( )–[ ] ρ Ac z( )d⋅ ⋅ ⋅
⎩ ⎭
⎨ ⎬
⎧ ⎫

+

r 1=

k 1–

∑+

 d
τ
σc y z τ, ,( )

tk

t

∫Ac z( )∫ J t τ,( ) ρ Ac z( )  +d⋅ ⋅ ⋅+

 εsh z t,( ) εsh z tk,( )–[ ]
Ac z( )∫ ρ Ac z( ) d⋅ ⋅+

A z( ) ρ ρ
T

Acd z( )
Ac z( )∫

1  y

y  y
2

Acd z( ) Ac z( )  Syc z( )

Syc z( )  Iyyc z( )
B

c
z t,( ) 1

Ec t( )
------------⋅= =

Ac z( )∫= =

J t tr,( ) J tk tr,( )–[ ] ρ⋅

∆rσc y z,( )
Ac z( )∫ J t tr,( ) J tk tr,( )–[ ] ρ Ac z( )d⋅ ⋅ ⋅ Ec tr( ) A z( ) ∆rψ z( ) J t tr,( ) J tk tr,( )–[ ]⋅ ⋅ ⋅=

d
τ
σc y z τ, ,( ) ρ Ac z( )d⋅ ⋅

Ac z( )∫ d
τ
σa y z τ, ,( ) ρ Aa z( )  +d⋅ ⋅

Aa z( )∫+

 Σidτ
σsi z τ,( )Asi ρsi

Σj

k( )
d

τ
σpj z τ,( )Apjρpj

+ + d M z τ,( )=

d
τ
σc y z τ, ,( ) J t τ,( ) ρ Ac z( )d⋅ ⋅ ⋅

tk

t

∫Ac z( )∫ J t τ,( ) d
τ
σc y z τ, ,( ) ρ Ac z( )d⋅ ⋅

Ac z( )∫tk

t

∫= =

J t τ,( ) d M z τ,( ) ρ d
τ
σa y z τ, ,( ) Aa z( )d⋅ ⋅

Aa z( )∫– Σi ρ
si

σsi z τ,( )d Asi⋅ ⋅–  +⋅
tk

t

∫=

Σj

k( )
ρ
pj

σpj z τ,( )d Apj⋅ ⋅– ]  =

J t τ,( ) d M z τ,( ) B
s

k( )
z( )– J t τ,( ) dψ z τ,( )⋅

tk

t

∫⋅ ⋅
tk

t

∫= tk t tk 1+
; tk τ t< << <

d
τ
σc y z τ, ,( ) J t τ,( ) J tk τ,( )–[ ] ρ Ac z( )d⋅ ⋅ ⋅

tr

tr 1+

∫Ac z( )∫ = tk t tk 1+
< <

J t τ,( ) J tk τ,( )–[ ] d M z τ,( ) B
s

r( )
z( )– J t τ,( ) J tk τ,( )–[ ] dψ z τ,( )⋅

tr

tr 1+

∫⋅
tr

tr 1+

∫= tr τ tr 1+
< <
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Therefore, Eq. (21) may be written as follows:

(27)

where

(28)

Eq. (27) is a system of two Volterra integral equations. The unknowns are the terms of vector

 that describes the strain variation in the k-th phase.

It is important to point out that Eq. (27) takes into account the instantaneous changes 

through  (because of Eq. (12)):

(29)

The solution of Eq. (27) can be achieved only by means of numerical integration, due to the

complexity of the creep function of concrete. The method adopted is a Gauss quadrature formula

(see Pisani 1994) with two sampling points inside each time-step. This method allows more refined

results in comparison with the ones obtainable by assuming the trapezoidal rule (Bazant 1975).

The k-th phase (between time tk and time tk+1) is subdivided in time-steps, according to the

following rule (see CEB 1984):

 (30)

where δ t0 and m are prescribed values (usually m = 8, δt0 = 0.1 days). Subscript s stands for the s-th

time-step (inside the k-th phase). NSk is the total number of time-steps inside the k-th phase. Times

ts, k and ts+1, k are respectively the lower and upper bound of the s-th time-step (in particular t1,k = tk).

Adopting this method, at time t = ts, k the integral in the second term of the left-hand member of

Eq. (27) may be written as follows:

(31)

where ag and Wg are respectively the abscissa (in the reference time-step from −1 to 1) and the

weight factor of the g-th sampling point for Gaussian integration.

B
c

z t,( )

Ec t( )
------------------δkψ z t,( ) Bs

k( )
z( )+ J t τ,( )dψ z τ,( )

tk

t
∫⋅ B

c
z tr,( ) ∆rψ z( ) J t tr,( ) J tk tr,( )–[ ]⋅ ⋅{ }

r 1=

k

∑  +=

B
s

r( )
z( ) J t τ,( ) J tk τ,( )–[ ]dψ z τ,( )

tr

tr 1+∫⋅
r 1=

k 1–

∑– J t τ,( ) J tk τ,( )–[ ]d M z τ,( )  +
tr

tr 1+∫
r 1=

k 1–

∑+

 J t τ,( ) d M z τ,( )⋅
tk

t
∫ D

sh
z t,( ) D

sh
z tk,( )–[ ]+ +

D
sh

z t,( ) εsh z t,( ) ρ Ac z( )d⋅
Ac z( )∫⋅ εsh z t,( ) Ac z( )  Syc z( ) T⋅= =

δkψ z t,( ) δkεz z t,( )   δkχy z t,( ) T
=

∆r M z( )
∆rψ z( )

∆rψ z( ) B c
z( ) B s

r( )
z( )+[ ]

1–

∆r M z( ) ∆ Pr z( )+[ ]⋅=

ts 1+ k, ts k, t1 k,–( ) 10
m

t1 k,+×= s 2 … NSk, ,=

t2 k, t1 k,– δt0=

J ts k, τ,( )dψ z τ,( )
t
1 k,

ts k,

∫
δkψ z tn 1+ k,,( ) δkψ z tn k,,( )–

2
------------------------------------------------------------------- Wg J ts k, tng k,,( )⋅[ ]

g 1=

2

∑⋅
⎩ ⎭
⎨ ⎬
⎧ ⎫

n 1=

s 1–

∑=

tng k,
1

2
--- ag tn 1+ k, tn k,–( ) tn 1+ k, tn k,+ +[ ]=

⎩
⎪
⎪
⎨
⎪
⎪
⎧
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Substituting Eq. (31) into Eq. (27) finally gives:

(32)

This equation determines  when the values ,

s −1 are known. The history of  (that is of the strain inside the cross section) will therefore

be determined by means of an incremental process that starts at time of first loading by computing

 (according to Eq. (12)) and goes on by progressively determining ,

, up to  (by means of Eq. (32)), then computes , and so on.

Once that  is known, stresses in the steel elements can be easily determined by means

of their constitutive laws:

 (33)

whereas the use of the constitutive law of concrete to determine the stress distribution in the

concrete part would require the knowledge of the relaxation function whose analytical expression is

generally unknown (and therefore should be evaluated by means of the solution of another Volterra

integral equation). Nevertheless, this problem can be overcome because of assumptions 1 and 5.

Because of assumption 5, the stress in concrete is a linear function of ordinate y. Therefore, when

the stresses in steel are known the equilibrium Eq. (24)  becomes:

(34)
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that, when rewritten in terms of finite increments, gives:

(35)

4. Structural analysis

As already stated, term  in Eqs. (32) and (35) (related to the delayed variation )

and term  in Eq. (29) (related to the instantaneous change ) are unknowns owing to the

redundancy of the structure. Structural analysis is therefore needed to determine these values.

Before discussing this topic a remark is necessary. The time-scale t previously adopted is the age

of concrete in a cross section. When dealing with the overall behaviour of the bridge this time-scale

does not apply any more because the age of the segments of the bridge is not the same. Therefore

an absolute time-scale T, that is a time scale related to the construction phases, is necessary to

determine the ages  of each d-th segment of the bridge deck at absolute time Ts, k (see Fig. 4). In

the following, superscript d will be dropped to simplify the equations.

The redundant bending moments will be determined through the compatibility method (see for

instance Mola 1993, 1999).

4.1 Relation between unknown redundant bending moments and internal actions

A straight beam continuous over Qk spans is the static scheme adopted to perform structural

analysis of the bridge deck. If Lq is the length of the q-th span and z is its longitudinal local axis

(with origin in the left end of the span, see Fig. 5), the distribution of the bending moment inside

the span is

δkσc y z ts k,, ,( ) ρT
A

1–
z( ) δk M z ts k,,( ) δk M z ts 1– k,,( )–[ ]{⋅ +=

B s
k( )

z( ) δkψ z ts k,,( ) δkψ z ts 1– k,,( )–[ ] }⋅ δkσc y z ts 1– k,, ,( )+–

δk M z ts k,,( ) δψ

∆r M z( ) ∆ψ

ts k,

d

Fig. 4 Relation between the absolute time-scale T and local time scales t d
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(36)

where  is the vector of the unknown redundant bending moments at

the left and right end of the span, 

 (37)

and  is the vector of the internal actions (axial force and bending moment) due to the

external loads in a simply supported beam of length Lq. If the external load p(z, T) is orthogonal to

the beam axis, we immediately write

 (38)

The partial derivative of Eq. (36), made with respect to time T is 

(39)

where vector  is the vector that contains all the unknown redundant bending moments of the

structure and 

(40)

If the external load p(z, T) is constant all over the k-th phase, then . Moreover,

when replacing  with an interpolation formula (namely a finite difference), Eq. (39)

becomes:
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(41)

Finally, substituting Eq. (41) into Eq. (32) one obtains

(42)

where

(43)

In Eq. (42), term  is replaced by , i.e., the unknown variation of the

redundant bending moments at time Ts, k. In the last of Eqs. (43)  is written as a function

of the local time-scale of the cross-section because it is the bending moment inside that cross

section at previous time tn, k, when that section probably was located in another position inside the

structure.
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4.2 Compatibility equations

When applying the compatibility approach to the Qk − 1 redundant bending moments, the

compatibility conditions can be written as follows

(44)

where  stands for the rotation of the right end (subscript 2) of the q-th span, and 

is the rotation of left end (subscript 1) of the (q + 1)-th span. The principle of virtual work allows

these rotations to be written as a function of the curvatures over the q-th and (q + 1)-th spans:

(45)

and therefore Eq. (44) becomes:

(46)

To evaluate the integrals in Eq. (46) the trapezoidal rule is applied. This is because this rule (and

generally speaking all Newton-Côtes integration formulas) allows equidistant sampling points to be

adopted. Each monolithic segment will therefore be subdivided into sub-segments of equal length

∆z. The method herein discussed evaluates the stress and strain evolution inside all the midspan

sections (named sampling sections) of each sub-segment of every monolithic segment of the bridge

deck.

When adopting the trapezoidal rule, each term at the left side of Eq. (46) becomes:

+ (47)

where γ = 1 and η = q or γ = 2 and η = q + 1, depending on the term computed.  is assigned

in Eq. (45). Fη is the total number of sampling sections inside the η-th span at time T.

Note that ∆z0, η represents the distance between the left end of the η-th span and the first sampling

section inside the span, and ∆zL, η stands for the distance between the last sampling section before

the right end of the span and the nearest bearing. This because usually ∆z is not a submultiple of

the length of each span, but only of the length of the bridge (see Fig. 5). In this case a linear

extrapolation made from the curvature in the two sampling sections of the span closest to its end
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allows the curvature over the bearing to be evaluated.

Curvature  is written as a function of local age t of the section that actually is at abscissa

zh. Eq. (47) can be written in matrix form, that is

(48)

and

(49)

(50)

If  is the vector of the unknown terms  inside the q-th span, i.e.,

 (51)

when replacing Eq. (47) into Eq. (46), written in incremental form, one obtains

(52)

Eq. (52), because of the third of Eqs. (43), becomes

(53)
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5. Overall analysis

The overall analysis of the structure consists in combining cross-section analysis with structural

analysis.
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Ỹ

1 q, Ts k,( ) C̃
1 q 1+,

T
Ỹ

1 q 1+, Ts k,( )⋅+⋅ 0= q 1 … Qk 1–, ,=



Time-dependent analysis of launched bridges 757

5.1 Computation of the delayed variations  and 

At time Ts, k (s-th time-step inside the k-th phase) Eq. (42) can be written for every sampling section

already cast, and Eq. (54) can be written for every redundant bending moment of the bridge deck.

The solving system is the coupling of the equilibrium Eq. (42) and of the compatibility Eq. (54):

(55)

where Qk is number of spans already casted at actual time Ts, k. The unknowns are terms 

of each sampling sections and the redundant bending moments  (see the third and forth

of Eqs. (43), as well as Eq. (53)).
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where

(60)

Terms  in Eq. (60) have already been assigned in the second of Eqs. (43):

(61)

where terms  are computed in Eq. (40).

Matrix  is equal to

(62)

where terms  are the vectors already assigned in Eqs. (49) and (50). The number of rows in

matrix  is equal to the actual number of redundant bending moments in the structure.

Finally

 (63)

where vectors  are those already shown in the last of Eqs. (43).

Obviously, during launching phases the number of unknowns grows together with the structure.

In this analysis the launching nose is the first segment of the bridge deck. The only difference

with respect to the other segments is that this segment has a distinct length and is a steel structure.

Therefore it can be taken into account by means of the equations already stated.

5.2 Computation of the instantaneous variations  and  at the beginning of the
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The instantaneous changes  and  are caused by:
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Ã
2

zh q, ts k,,( ) M
X

q( )
zh q,( )–

g 1=

2

∑ Wg

J ts k, tng k,,( )
2

---------------------------⋅⋅=

q 1 … Qk, ,=

M
X

q( )
zh q,( )

D̃
3

D̃
3

C̃
2 1,

T
  C̃

1 2,

T
  0   0   …  0   0

0   C̃
2 2,

T
  C̃

1 3,

T
  0   …  0   0

0   0   C̃
2 3,

T
  C̃

1 4,

T
  …  0   0

…  …  …  …  …  …  …

0   0   0   0   …  C̃
1 Qk 1–,

T
  0

0   0   0   0   …  C̃
2 Qk 1–,

T
  C̃

1 Qk,

T

=

C̃
γ η,

D̃
3

G̃
q

ts k,( ) F̃
T

z1 q, ts k,,( ) F̃
T

z2 q, ts k,,( ) … F̃
T

zFq q, ts k,,( )[ ]
T

= q 1 … Qk, ,=

F̃
T

zh q, ts k,,( )

∆kψ ∆kX

∆k ψ ∆k X



Time-dependent analysis of launched bridges 759

In all these cases the system to be solved consists of the equilibrium equations of all the sampling

sections and of the compatibility equations that are necessary to perform the structural analysis.

Nevertheless, in this case Eq. (32) is replaced by Eq. (12), making the system much simpler.

Case b) refers to the condition  whereas cases a) and c) imply that . When

dealing with case a) it has to be pointed out that the structure changes: a new monolithic segment is

added and the deck (that is all the sampling sections already cast) slides forward. In this case the

superposition principle does not apply.

If time  is the instant immediately before launch, then vectors  and  are

known. In particular, vector  is the sum of the elastic response  plus the

effect of the delayed behaviour of concrete  (its effect is similar to that of a thermal

strain), i.e.,

(64)

The effect of launch is instantaneous and can be interpreted as the release of the deck already cast

from the supports followed by its placing over the bearings in the new position. Therefore (see Eq.

(12))

(65)

 

At time tk immediately after launch Eq. (64) can be written as follows:

 (66)

Therefore Eq. (12) becomes

(67)

that is

(68)

where  is known.

Note that this computation can be repeated more than once while the deck is sliding toward its

new position (a sampling section moves from  to ), so that stresses and strains can be

accurately evaluated during launch.

To conclude, when dealing with case c) Eq. (12) has to be replaced by Eqs. (65), (66) and (68).

5.3 Computation of the displacements

The computation of the transverse displacement v of the structure could be performed by means

of a direct double numerical integration of the curvatures in all the sampling sections, by means of

shape functions, by means of the adoption of the finite difference method or by means of the
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application of the principle of virtual work. The principle of virtual work is the method adopted

because it involves a simple and recurrent equation for every sampling section already cast, at any

time step. The integral over z axis is performed by means of the trapezoidal rule.

6. Examples

The first example is a comparison of two elastic solutions. This example shows the efficiency of

the trapezoidal rule to perform integration over the deck longitudinal axis. The structure is a two

span beam, prestressed with a straight tendon whose eccentricity with respect to the centre of

gravity of the cross section is yp. In Fig. 6 the exact solution for the instantaneous redundant

bending moment over the central support (that is ) is compared with the outcome of

the proposed algorithm. When adopting 20 sampling sections per span, the error is only 0.12%.

The second example compares two visco-elastic solutions. This example tests the reliability of the

X 3

2
---EpApε pyp=

Fig. 6 Variation of the error gathered with the number of sampling sections

Fig. 7 Comparison of the bending moments along
the beam 

Fig. 8 Displacements along the beam
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Gauss formula to perform the Volterra integrals. The homogeneous visco-elastic beam, cast in one

single phase, is shown in Fig. 7. Because of the first theorem of linear visco-elasticity, stresses

inside the beam do not change whereas transverse displacements v vary according to v (z, t)

= v (z, t0) · .

Fig. 7 shows that the bending moments computed by the computer program at time t = 100000

days are exactly the same of the elastic solution. It was assumed that ϕ (100000, t0) = 2.075. The

calculated displacement shown in Fig. 8 satisfies the requirements of the first theorem of linear

viscoelasticity.

The third and last example deals with a launched bridge. The bridge involves six inner spans with

length L = 37.5 m and two side spans with L = 30 m for a total length LT = 285 m. The launching

nose is 30.25 m long. The bridge has been built with segments 37.5 m long, each one launched six

days after casting. The casting operations have been scheduled every seven days as one day was

required for placing the steel cage and preparing the formwork.

The basic data for concrete are: characteristic cylindrical compressive strength fck = 50 MPa;

elastic modulus at 28 days Ec28 = 38.6 GPa; final creep coefficient ϕ (∞, 6) = 1.65 according to the

CEB-FIP Model Code 90 (CEB 1991). Regarding steel we have: characteristic tensile strength

fptk = 1800 MPa; characteristic tensile stress at 0.1% of residual deformation fpk(0.1) = 1620 MPa;

elastic modulus Ep = 195 GPa.

The prestressing steel ratio for the straight tendons is 0.27% while for the service prestressing

tendons the steel ratio is 0.17%.

In Fig. 9 the bending moment X1 is reported versus time. The abrupt changes are related to the

instant of launch, while the smooth lines describe the structural relaxation. Furthermore, the values

of the bending moment are higher in comparison with the elastic ones. This behaviour can be

explained by remembering that during launching the vertical displacement of the metallic nose

increases in time owing to concrete creep. Consequently, the imposed displacement that is applied

to the bridge front edge when the steel nose reaches the support is higher in comparison with the

1 ϕ t t0,( )+[ ] vel z( ) 1 ϕ t t0,( )+[ ]⋅=

Fig. 9 Bending moment X1 during the concreting
phases

Fig. 10 Redundant bending moments in the service
stage 
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one which would be applied when considering an elastic behaviour of the structure. The

instantaneous bending moments induced in the continuous beam are therefore higher than those

computed discarding creep of concrete. Even though these moments reduce their values according

to concrete relaxation, they remain higher than the elastic ones.

Fig. 10 is related to the long term behaviour of the bridge in its final configuration including the

effects of the service prestressing, applied at T = 57 days, and the ones connected to the permanent

overloading (load due to blanket, sidewalks, parapets and railings), applied at T = 59 days. It can be

observed that the elastic behaviour does not vary in time and exhibits bending moments which are

about 6% and 11% lower than the ones evaluated taking into account creep effects. 

The application of the service prestressing modifies the distribution of the bending moments by

introducing parasitic effects. The time variation of these effects is produced by two distinct factors,

namely the reduction of the prestressing force in the cables and the variation of the moment

distribution consequent to the rheological nonhomogeneity of the continuous beam. The reduction of

the prestressing force induces a reduction of the parasitic effects whereas the rheological

nonhomogeneity increases them.

Fig. 10 shows that the redundant moments (induced by the service prestressing together with all

the previous history) are reducing in time, so we can conclude that the reduction of the prestressing

force governs the structural response.

Finally, it can be observed that in the service stage (that is for T > 59 days), the relative increase

of moment X1 is higher in comparison with the analogous of moment X7. In particular it results

X1(∝)/X1(59) > 1, X7(∝)/X7(59) < 1. Moreover, for 59 ≤ T ≤ ~200 days X7 decreases with time

increase. The same behaviour affects X1 in the restricted interval 59 ≤ T ≤ ~100. The elastic increase

of the bending moments X7 induced by the permanent overloading is nearly equal to that of X1, as it

is influenced only by the nonhomogeneous distribution of the elastic modulus. On the contrary, the

increase in time of the bending moments due to creep is rather marked. Therefore, the reduction

generated by the relaxation under application of the imposed displacement when the metallic nose

reaches the last support (which is more pronounced for X7 than for X1 because the front spans of the

bridge are more aged) is overcome after a certain time interval. This aspect is clearly shown in

Fig. 11 Transverse displacements envelope during the launching phases
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Fig. 10 where the curves describing the development in time of moments X1 and X7 increase. 

Displacements larger than those related to the final configuration are present during the

construction process as shown by Fig. 11, in which the envelope of the transverse displacements

during the construction process has been reported. It can be observed that the maximum

displacements are downwards and are about three times larger than the upwards ones. The deflexion

of the nose edge is initially upwards when the bridge is composed by only one span and it rapidly

goes down reaching its maximum downwards value when the nose edge is near the third support.

The envelope of the alternate deflections maintains its basic properties in every span except for

the last in which the presence of the previous spans reduces the related displacements.

7. Conclusions

The launching technique represents a feasible method for the construction of prestressed concrete

bridges and nowadays it has been successfully applied in many outstanding cases.

When adopting this construction method, prestressing can be conveniently calibrated, because of

its subdivision in two different steps. In the first step the most feasible choice consists in

introducing an axial centric prestressing by means of straight cables. In the second step, when the

bridge has reached its final configuration, additional curved cables can be tensioned in order to

counteract the bending moments due to permanent overloading and to variable loads. 

The elastic analysis of launched bridges shows that in the construction phases particular care has

to be devoted in computing the stresses in the two spans behind the advancing front of the bridge.

Nevertheless, the construction process has no practical influence on the structural response in the

service stage, so that the main problem regards the correct dimensioning of the metallic nose in

terms of relative length, weight and stiffness.

When approaching the design of launched bridges in a more refined way the elastic analysis

reveals itself unable to correctly predict the structural behaviour, as during the launching process not

negligible delayed deformations due to concrete creep take place. Consequently, the vertical

displacements imposed to the advancing edge of the beam when it reaches a support are higher than

the ones that can be computed by means of an elastic analysis. As the most part of the creep

deformations are not reversible, the imposed displacements are inelastic in a large extent and so the

initial value of the bending moments related to them is relaxed in time, remaining however higher

than the value computed assuming an elastic behaviour of the structure. After completion of the

bridge deck, the time variation of its moment distribution is connected to the rheological

nonhomogeneity of the structure and to the variation of the effects due to service prestressing. 

The most important effects due to creep develop in the launching phase, for which a refined

analysis of the sequence of loads and imposed displacements has to be performed. The procedure

discussed in the paper allows the problem to be correctly solved and the outcomes show that not

negligible inaccuracies can be introduced if the analysis is limited to the elastic domain.

It is noteworthy to observe that the sequence of loads, imposed deformations, prestressing and

distribution of the rheological nonhomogeneities configure a very complex time-dependent problem

which cannot be satisfactory investigated by recurring to the simplified methods of creep structural

analysis. Therefore, the proposed procedure, even though quite complex from the computational

point of view, represents the only way of reaching reliable results.
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