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Abstract. In this paper the buckling and post-buckling behavior of slender bars under self-weight are
studied. In order to study the post-buckling behavior of the bar, a geometrically exact formulation for the
non-linear analysis of uni-directional structural elements is presented, considering arbitrary load
distribution and boundary conditions. From this formulation one obtains a set of first-order coupled non-
linear equations which, together with the boundary conditions at the bar ends, form a two-point boundary
value problem. This problem is solved by the simultaneous use of the Runge-Kutta integration scheme
and the Newton-Raphson method. By virtue of a continuation algorithm, accurate solutions can be
obtained for a variety of stability problems exhibiting either limit point or bifurcational-type buckling.
Using this formulation, a detailed parametric analysis is conducted in order to study the buckling and
post-buckling behavior of slender bars under self-weight, including the influence of boundary conditions
on the stability and large deflection behavior of the bar. In order to evaluate the quality and accuracy of
the results, an experimental analysis was conducted considering a clamped-free thin-walled metal bar. As
this kind of structure presents a high index of slenderness, its answers could be affected by the
introduction of conventional sensors. In this paper, an experimental methodology was developed, allowing
the measurement of static or dynamic displacements without making contact with the structure, using
digital image processing techniques. The proposed experimental procedure can be used to a wide class of
problems involving large deflections and deformations. The experimental buckling and post-buckling
behavior compared favorably with the theoretical and numerical results.
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1. Introduction

A survey of recent structures reveals a continuing trend towards longer and taller structures. Also

structural elements are becoming lighter and thinner. Paradigmatic examples are flexible pipelines

(risers) used in deep and ultra-deep offshore oil exploitation that may reach lengths of hundreds of

meters. Their high slenderness ratio causes axial stiffness to be several orders of magnitude larger

than the bending stiffness. This increases the importance of self-weight on the non-linear behavior

and stability of these structures. In spite of its technical importance, the buckling and post-buckling

behavior of columns under self-weight has not received the proper attention in the past. The linear

stability analysis of clamped-free columns under self-weight was first analyzed by Greenhill (1881)

who solved the linear equilibrium equation in terms of Bessel functions and determined the critical

length. The derivation and solution of this problem can be found in Timoshenko and Gere (1961).

Among the first large deflection analyses for this problem are the works of Frisch-Fay (1961),

Schmidt and DaDeppo (1970), and Rao and Raju (1977), who studied the post-buckling of a

uniform column subjected to a uniform axial-load using the Galerkin method. More recent studies

of the problem include the works of Teng and Yao (2000), Maretic and Atanackovic (2001)

Magnusson et al. (2001) and Lee (2001). These studies concentrated on the determination of critical

loads and the post-buckling behavior of clamped-free columns. Tapered columns were analyzed by

Li (2000) and Stuart (2001). The postbuckling and vibration of softening columns under self-weight

was analyzed recently by Virgin and Plaut (2004). This problem had already been explored by

Wang (1996).

The geometrically non-linear behavior and stability of uni-dimensional structural elements

undergoing large deflections has been a topic of considerable interest in recent years due to its

fundamental relevance to non-linear mechanics. This kind of problem finds applications in, for

example, off-shore engineering, aerospace industry, suspension bridges, manufacture of robotic

manipulators, construction of self erecting structures and manufacturing processes. For a few

problems involving simple geometries and loading, mathematical solutions in terms of elliptic

integrals are possible (Seide 1984). For more general problems, however, the use of numerical

techniques is usually necessary.

This paper is concerned with a consistent one-dimensional treatment of the plane deformations of

an initially straight or curved elastic thin-walled column under self weight that may experience large

deflections and rotations along the post-buckling path (Antman 1995). Within the context of the

assumptions of an extensible Bernoulli-Euler beam theory and using the standard methods of

continuum mechanics, a geometrically exact set of first order non-linear equations in a Lagrangian

framework is derived for a general curved-beam element. In order to obtain the equilibrium

configurations, these equations are solved by the shooting method, which has been successfully used

in the past for the numerical solution of non-linear boundary value problems (Keller 1968, Press et al.

1986). Here, the governing set of first-order differential equations is integrated numerically using

the fourth-order Runge-Kutta method and the error in the boundary conditions is minimized by the

Newton-Raphson algorithm. Equivalent formulations have been used in the past, but they are

usually restricted to specific geometries and loading (Wolde-Tinsae and Foadian 1989, Lee et al.

1993).

In the analysis of slender one-dimensional structural elements, loss of stability and bifurcation are

common phenomena and solution procedures that deal effectively with this class of problem are

necessary. In structural mechanics, continuation methods have led to effective algorithms for
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stability problems. In this paper, based on the seminal ideas of the continuation and homotopy

methods (Lory 1980), some numerical procedures are derived and implemented to follow arbitrary

non-linear equilibrium paths and identify turning and bifurcation points. The advantages of the

present methodology are convenience for the designer and highly accurate numerical results. It

could also be employed as a benchmark for other numerical methods and mechanical models.

Using these numerical tools, a detailed parametric analysis of the behavior of columns under self

weight is conducted showing the variation of displacements and internal stress resultants along the

pre- and post-buckling paths for different sets of boundary conditions.

In the experimental analysis of large deflections of very slender structures (involving small or

large deformations) conventional measuring devices are usually not applicable, in particular those

involving contact between the sensor and the structure. In some problems they may cause

appreciable changes in mass and stiffness properties. They can also interact with the structure,

leading to complex non-linear coupling. So, reliable non-contact techniques are preferable in such

cases. A procedure appropriate for large deflection/large deformation problems is the use of image

processing techniques (Pamplona et al. 2001, Jurjo et al. 2005, Pamplona et al. 2006). Here a

detailed and precise experimental procedure is presented which can be effectively used in a large

class of structural problems. Here this methodology is employed to analyze experimentally the

buckling and post-buckling behavior of a thin-walled sheet of brass under self weight. The

experimental results compare favorably with the results of the large-deflection analysis.

2. Large deflection analysis

Figs. 1 and 2 show the adopted co-ordinate systems as well as the undeformed configuration Co

and the deformed configuration Cn of an initially curved Euler-Bernoulli beam. In Figs. 1 and 2, the

functions  and  of the curvilinear co-ordinate s represent the Cartesian

components of the position of a typical point P along the undeformed centroidal axis, u(s) and w(s)

are, respectively, the displacements in the x- and y-directions of point P due to deformation and t is

the coordinate normal to the centroidal axis. In addition, θ0 and θ are the slopes between the tangent

to the beam curve and the y-axis and ds and ds* are the length of an element in the undeformed and

deformed configurations, respectively. Also, in Fig. 1 V and H are the vertical and horizontal forces,

M is the bending moment and ps and pt are the load intensities per unit of deformed beam curve

length in the tangential and normal directions respectively. A deformed element of a beam is shown

in Fig. 2.

x x s( )= y y s( )=

Fig. 1 Co-ordinate system and deformation of a typical point on centroidal axis
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From Fig. 1, the following basic set of geometric relations describing the undeformed

configuration of a beam element can be written

(1)

As illustrated in Fig. 2, the deformed configuration can be described by the following kinematic

relations

(2)

where  is the axial strain.

From the equilibrium of forces and moments, the following relations are derived.

(3)

The normal and shear forces on any cross section are given by (see Fig. 1)

(4)

If the forces qx and qy per unit length of the undeformed centerline in the x and y directions are

specified, then the forces ps and pt can be computed from

(5)

dx/ sd sinθ0; dy/ sd cosθ0=–=

u/ sdd 1 e+( )sinθ sinθ0–[ ]; w/ sdd 1 e+( )cosθ cosθ0–[ ]=–=

e s*d sd–( )/ sd=

H/ sdd 1 e+( ) ptcosθ pssinθ–[ ]=

V/ sdd 1 e+( ) ptsinθ pscosθ+[ ]=

M/ sdd H 1 e+( )cosθ V 1 e+( )sinθ+=

N Hsinθ Vcosθ–= ; Q Hcosθ V+ sinθ=

pt qxcosθ qysinθ ; ps qycosθ q– xsinθ=+=

Fig. 2 Equilibrium of a beam element
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The derivatives of the loads, , i = t,s, can be used as extra equations in the

analysis.

The membrane stress resultant N and the bending stress resultant M are obtained in the usual way

by integrating the stress over the cross section of the beam. Upon considering the quantities e, dθo /

ds, dθ /ds to be small relative to unity, one can write for a linearly elastic material that

(6)

where E is the Young’s modulus, A* and I * are the effective sectional properties of area and

moment of inertia for the initially curved beam, R(s)0 is the initial radius of curvature and κ is the

bending curvature that is defined as

(7)

If R(s)0 >> t, the approximations  can be used to simplify the analysis.

From Eqs. (6) and (7), one obtains the differential equation

(8)

Eqs. (2), (3) and (8) form a set of six coupled non-linear ordinary differential equations having as

independent variable the axial co-ordinate. These equations can be used to study non-linear in-plane

deformation (including axial strain), buckling and post-buckling behavior of any straight or curved

beam under in-plane loading conditions in the elastic range.

Solutions of the foregoing system must satisfy the following boundary conditions at the two

boundaries 

(9)

where = prescribed value.

For curved beams of any shape it is usually more convenient to describe the undeformed

centroidal arch as a function of the co-ordinate x. Using the differential relationship for the arc

length , and the following relations

; (10)

Eqs. (2), (3) and (8) can be easily written in terms of x.

2.1 Numerical method for the two-point boundary value problem

Only the basic ideas of the numerical methodology will be outlined, since the main procedures of

pi/ sdd p s( )=

N
R s( )0

R s( )0 t–

---------------------EedA EeA*
=

A

∫= ; M t
2 R s( )0

R s( )0 t–

---------------------EκdA EκI*=

A

∫=

κ θ/ sdd θ0/ sdd–( )–=

A* A≅ I * I≅,

θ/ sdd 1/R s( )0( ) M/EI*( )–[ ]=

s s1;  s s2==( )

H H or u u= =

V V or w w= =

M M or θ θ= =

X( )

ds( )
2

dx( )
2

df x( )( )
2

+=( )

sd x 1 df x( )/ xd( )
2

+[ ]
1/2

d–= θ s( )0 arctg df x( )/ xd[ ]
1–

{ }=

1/R s( )0 d
2
f x( )/ x

2
d[ ]/ 1 df x( )/ xd( )

2
+[ ]

1/2

–=
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the method can be found in the literature (Keller 1968, Press et al. 1986). The problem described by

Eqs. (2), (3) and (8) and boundary conditions (9) is a non-linear two-point boundary value problem

with three specified boundary conditions at each boundary. The shooting method reduces the

solution of a boundary value problem (BVP) to the iterative solution of an initial value problem

(IVP) (Keller 1968). This approach involves a trial-and-error procedure. At the starting point values

are assumed for all variables and then the ODEs are solved by numerical integration, arriving at the

other boundary. Unless the computed solution agrees with the known boundary conditions at this

boundary, the initial conditions are adjusted and the process is repeated until the assumed initial

conditions yield, within specified tolerances, a solution that agrees with the known boundary

conditions.

So at s = s1 only three variables among those shown in (9) are known. For the selection of the

remaining three initial values, the shooting procedure will be used in combination with a root-

finding technique. The procedure is as follows.

Eqs. (2), (3) and (8) can be written for integration purposes as

(11)

where .

Assume that three of the functions yi are prescribed at s = s1 and that three are prescribed at

s = s2. Therefore there are three freely specifiable starting values. Assume that these values are

components of a vector S. The set of functions prescribed at s1 will be denoted U1 and those

prescribed at s2 by U2. Given a particular trial vector  and U1 the ODEs can be integrated from s1

to s2 as an IVP. Now, at s = s2 a vector , which measures the discrepancy between the

prescribed values U2 and the values obtained at the end point , is calculated. The components of

F vanish if and only if all boundary conditions at s2 are satisfied.

Now the Newton-Raphson method will be used to find the starting values si that zeros the

discrepancies fi at the other boundary. A correction vector ∆S can be found by solving the system of

linear equations

(12)

and an improved approximation is found by adding the correction back

(13)

It is not possible to compute the components  of the Jacobian matrix J analytically.

Rather, each column of J requires a separate integration of the six ODEs, followed by the

evaluation of the derivatives

(14)

Unless one starts quite far from the true values of S, it has been observed during the calculations

that only two or three iterative cycles are usually required for convergence.

The procedure summarized above enables one to obtain a particular equilibrium configuration. In

order to study the non-linear behavior and possible loss of stability of slender bars, the non-linear

Yd / sd AY s( ) P+=

Y
T

s( ) y1 … y6, ,{ } u w θ H V M, , , , ,{ }= =

S

F U 2 U2–=

U 2

J S∆ F=

S i 1+ S i S∆+=

jik ∂Fi/∂sk=

∂Fi/∂sk Fi s1 … sk sk∆+ …, , ,( ) Fi s1 … sk …, , ,( )–[ ]/ sk∆ ; k≅ 1 3,=
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equilibrium paths should be obtained. For this continuation algorithms must be used in the analysis

(Lory 1980). A continuation algorithm for stability analysis must include the capability of changing

the control variables whenever necessary, here in addition to the load parameter, the non-

homogeneous prescribed values and the free values at s1 as well as the non-homogeneous prescribed

values at s2 which vary along the path with the load are used as control variables. To follow a given

equilibrium path a control variable is chosen and when convergence fails due, for example, a limit

point, a new variable is selected and this process is repeated until the desired path is obtained. The

new variable is the one with the smoothest variation in the previous computations. This is an

important difference of the present algorithm to those found in literature (Press et al. 1986).

3. Experimental methodology

In order to evaluate the quality and accuracy of the results, an experimental analysis was

conducted considering a clamped-free thin-walled metal bar. As this kind of structure presents a

high index of slenderness, its answers could be affected by the introduction of conventional sensors.

In this paper, an experimental methodology was developed, allowing the measurement of static or

dynamic displacements without making contact with the structure, using digital image processing

techniques. This methodology uses only adhesive markers of negligible mass, facilitating the

instrumentation for the experiment.

The experimental methodology here developed is divided into three stages: 

(i) In the first stage, the image is captured by an analogical video camera.

(ii) In the second stage, the analogical image is converted to a digital image.

(iii) In the third stage, which is the most important one, the digital image is processed, with the

objective of preparing it for the calibration and the reconstruction processes.

Using this methodology, it was possible to develop a computational vision system based on the

programming language LabVIEW (version 6.1-National Instruments), which received the name

Image-Sensor Program (ISP).

In the ISP, the processing routine consists of cutting the interest area of the image, decreasing the

processing time and the noises outside the analysis area, limit it, turn gray level images into binary

ones to enhance the interest points, and later, to identify the coordinates (u, v) of these points. 

The computation of coordinates u and v of the points of interest in the image is made by

transforming these points into small regions of interest, known in image processing as ROI

(Regions of Interest). The ROI is characterized by a register (data set) that contains the contour

coordinates of a determined region.

The interest points can be converted into ROIs by launching a “mask” onto the binary image. In

the binary image only the interest points are in white color and the background is in black color.

Thus, the mask identifies each one of the regions, looking for the border coordinates between black

and white pixels. With the coordinates of the border it is possible to determine the central

coordinates of each one of the regions. One of the main advantages of this process is that it can be

performed with a great efficiency and low computational cost. Another advantage is associated with

the small amount of information which has to be stored for each one of the images acquired along

the time, which is an advantage, particularly in dynamics.

In order to allow the use of this system also in real time, the acquisition and processing routines

in the ISP are executed in parallel. Thus, while the acquisition routine waits and digitizes an image,
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the processing routine segments (threshold), identifies and calculates the coordinates (u, v) of the

interest points in the last digitized image.

The calibration is performed by identifying the coordinates u and v of the selected calibration

points in the image by inserting their respective real coordinates (x and y), which are previously

known. This process is done by the calibration routine in the ISP. After this selection, the values of

the image coordinates are inserted automatically in a collection box by the ISP. The real coordinates

are typed in this same box.

To obtain the transformation matrix, which correlates the real and the image coordinates, it is

necessary to apply a suitable calibration method. There are several methods of calibration; the most

used are: Direct Linear Transformation (DLT) (Abdel-Aziz and Karara 1971, Chen et al. 1994) and

Tsai (1986). The method chosen for this study was the standard DLT, by virtue of the minimum

level of distortions caused by the lenses of the video camera.

3.1 Calibration method

The DLT method is based on the underlying ideas of analytic photogrammetry, which has as its

main objective to provide information about position, orientation and dimensions of objects in the

space from the stereoscopic registers of its projections. The analytic photogrammetry is mainly

based on the so called “Basic Equation of the Photogrammetry” or “Collinearity Equation”

(Haralick and Shapiro 1993). This equation shows that, for any position of the camera in the space

at the moment of the image capture, the luminous ray reflected by the point (x, y, z) describes a

straight line passing through the position of the optical center of the camera. If the movements of a

structure occur in a plane, as in the present case, the equation can be written only in terms of the x

and y coordinates.

The “Collinearity Equation” that expresses the relation between the image coordinates (u, v) and

its respective real ones (x, y) in the plane, are

xL1 +yL2 + L3 − uxL7 − uyL8 = u

 (15)
xL4 +yL5 + L6 − vxL7 − vyL8 = v 

Coefficients L1 to L8 are the DLT calibration parameters, which correlate the real coordinates of a

point in the plane (x, y) with its respective image coordinates (u, v). As shown in Eq. (15), each real

point and its respective point in the image generates a pair of equations. In order to obtain the

coefficients “Li” it is necessary to expand this equation to n points:

(16)

As the number of unknowns is equal to 8 (DLT parameters), at least 4 calibration points (8

equations) are necessary to obtain coefficients “Li”. To minimize the error it is possible to use more

than 4 calibration points. In this case the system of linear equations obtained cannot be directly

x1  y1  1  0  0  0  u1x1  – u1 y1

0  0  0  x1  y1  1  v1x1  – v1 y1–

              

xn  yn  1  0  0  0  unxn  – un yn–

0  0  0  xn  yn  1  vnxn  – vn yn–

L1

L2

L7

L8

u1

v1

un

vn

=
… … …
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resolved, since it is over-determined.

This problem can, however, be solved using the least-squares method, minimizing the errors. The

application of the least-squares method to Eq. (16) leads to

A2n x 8 . L8 x 1 = B2n x 1 (17)

Multiplying both sides of Eq. (17) by the transposed of matrix A will result in:

C8x8 . L8x1 = D8x1  (18)

The calibration coefficients are obtained by solving Eq. (18). However, Eq. (15) cannot directly be

used for the reconstruction. Manipulating again Eq. (15), the coordinates (x, y) are obtained from

the following equation:

(19)

This system has a unique solution using just one camera. However, the errors in the coordinate

values can be minimized if several cameras are used. In this case, the coordinates (x, y) are obtained

from:

(20)

The solution of Eq. (20) can also be obtained by applying the least-squares method. For this,

Eq. (20) can be re-written as:

E2mx2 . R3x1 = F2mx1 (21)

where m is the number of cameras.

Eq. (21) results in an over-determined system, which can be solved by applying again the least-

square method, i.e., by multiplying Eq. (21) by the transpose of matrix E, resulting in:

G2x2 . R2x1 = H2x1  (22)

3.2 Experimental apparatus

For the dynamic experimental analysis of a clamped-free slender column under self-weight, a

special device was developed, as shown in Fig. 3. This apparatus is composed of the following

items:

L1

1( )
u

1( )
L7

1( )
–   L2

1( )
u

1( )
L8

1( )
–

L4

1( )
v

1( )
L7

1( )
–   L5

1( )
v

1( )
L8

1( )
–

x

y

u
1( )

L3

1( )
–

v
1( )

L6

1( )
–

=

L1

1( )
u

1( )
L7

1( )
–   L2

1( )
u

1( )
L8

1( )
–   

L4

1( )
v

1( )
L7

1( )
–   L5

1( )
v

1( )
L8

1( )
–   

    

L1

m( )
u

m( )
L7

m( )
–   L2

m( )
u

m( )
L8

m( )
–   

L4

m( )
v

m( )
L7

m( )
–   L5

m( )
v

m( )
L8

m( )
–   

x

y

u
1( )

L3

1( )
–

v
1( )

L6

1( )
–

u
m( )

L3

m( )
–

v
m( )

L6

m( )
–

=
… … …
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(a) Two analogical video camera with NTSC system and CCD of ¼ inch, with a total of 811(H) ×

508 (V) CCD pixels. These cameras present a scanning system of 525 lines with 60 frames/

second, resolution of 470 TV Lines, electronic shutter with 1/120000 seconds, manual and

automatic focus, Cannon lenses with 22X of optical zoom and 220X of digital zoom and focal

distance varying from 3.7 to 85.1 mm;

(b) A personal computer with the ISP and the monochromatic frame grabber (PCI-1409/National

Instruments);

(c) A special illumination system composed of light bulbs without oscillation, with the purpose of

keeping a uniform illumination on the object to be analyzed;

(d) A metallic sheet of brass representing a slender column with width b = 9.0 cm; thickness h =

0.45 mm; load per unit length (self-weight) q = 3.43 N/m; Young’s Modulus E = 123257 MPa

(mean values of the experimental results); and variable length (30 − 70 cm).

For this experimental analysis, a black color background, illustrated in Fig. 3, was used in order to

minimize the noises. Other advantage of this strategy is to facilitate the image processing and,

mainly, to eliminate the shades projected on the background by the column.

In this analysis, to represent the interest points, small white color rectangular adhesives of

negligible mass were used as markers. These adhesives were placed along the length of the columns

and on the background, in order to perform the calibration process. As can be seen in Fig. 3, eight

calibration points were used.

Fig. 3 Experimental apparatus used in the analysis

Table 1 Buckling loads for selected sets of boundary conditions 

Clamped-free column

Simply supported

Clamped-simply supported

Clamped-clamped

qL( )
cr

7.83 EI/L
2

=

qL( )
cr

18.57 EI/L
2

=

qL( )
cr

33.03 EI/L
2

=

qL( )
cr

49.44 EI/L
2

=
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4. Results and discussion

Timoshenko and Gere (1961) solved the problem of a clamped-free column under self-weight in

terms of Bessel functions. The critical load is shown in the first line of Table 1. Jurjo (2001)

obtained the critical load of a heavy column under different sets of boundary conditions using the

Rayleigh-Ritz method and symbolic algebra. The results are shown in Table 1. Considering that the

Fig. 4 Clamped-free column. Comparison between numerical and experimental results

Fig. 5 Post-buckling path of a clamped-free column. Comparison between numerical and experimental results
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axial load per unit length q is constant, the problem is to find the critical length, Lcr , of the column

and the influence of an increasing length on the post-buckling behavior of the column.

The theoretical critical length for the clamped-free column used in the experiments is lcr = 56.44 cm,

which agrees with the experimental result. The comparison of the experimentally obtained deformed

shapes with the numerical results is shown in Fig. 4, for selected bar lengths. The maximum

deflection as a function of the beam length is plotted in Fig. 5, where the experimental results are

compared with the post-buckling path obtained numerically. As observed, there is a reasonable

agreement between the experimental and numerical results. The small difference near the critical

Fig. 6 Clamped-free column. Variation of normal forces for increasing bar lengths

Fig. 7 Clamped-free column. Variation of shear forces for increasing bar length



Large deflection behavior and stability of slender bars under self weight 721

load is typical of columns and is due to small geometric imperfections.

Figs. 6 to 8 illustrate the variation of the stress resultants (normal and shear forces and bending

moment) along the bar axis for increasing column length. They are rarely shown in the literature in

spite of being the most important variables in design. As observed in Fig. 6, for , the normal

force varies linearly. After buckling, as the length increases, the beam deforms and the compressive

force decreases along the upper part of the beam and increases slightly near the support. After a

certain critical length (here l = 0.65 cm) an increasing portion of the column is under tension while

l lcr≤

Fig. 8 Clamped-free column. Variation of bending moments for increasing bar length

Fig. 9 Clamped-free column. Variation of the rotation for increasing bar length
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the compression still increases, as expected, since the length is increasing, near the support. As the

column deforms, shear forces and bending moments, which are zero before buckling, increase

steadily in a non-linear manner, as shown in Figs. 7 and 8. While shear is always zero at both ends,

reaching a maximum value along the lower half of the bar, the bending moment increases

exponentially reaching the maximum value at the support. In general the internal forces are so

Fig. 10 Simply supported column. Deformed column and post-buckling path

Fig. 11 Clamped-simply supported column. Deformed column and post-buckling path
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nonlinear that any linear approximation is meaningless. The complex variation of stress resultants

along the beam emphasizes the importance of a detailed non-linear large deflection analysis of long

slender bars under self-weight. The variation of the rotation θ is shown in Fig. 9. All these results

are obtained directly from the integration procedure. This is one of the advantages of the present

formulation over more traditional displacement formulations were stresses are derived from an

approximate displacement field and have consequently a lower degree of accuracy.

Figs. 10 to 12 show (a) the deformed shapes and (b) the post-buckling path of a column for three

different sets of boundary conditions. In all cases analyzed in this paper, the column exhibits a

supercritical bifurcation and a symmetric stable post-buckling path with a high degree of effective

stiffness, much higher than the classical Euler column under end point load. Although the boundary

conditions have a noticeable influence on the critical load and on the stress distribution, their

influence on the shape of the post-buckling solution is small. It is interesting to notice that for

columns buckling under self-weight, even for lengths slightly higher than the critical one, large

deflections are already present.

4. Conclusions

In this paper the non-linear behavior and instability of columns under self weight was analyzed in

detail. Particular attention was given to the large deflection post-buckling behavior of the bar. In

order to study this problem, general non-linear differential equations governing the behavior of thin

prismatic bars of arbitrary initial shape and subjected to arbitrary loading and boundary conditions

have been derived. A numerical methodology based on the underlying ideas of the shooting and

continuation method is proposed, in which the boundary conditions and control variables can be

changed whenever desired. This enables one to obtain complex equilibrium paths exhibiting

Fig. 12 Clamped-clamped column. Deformed column and post-buckling path
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bifurcation and limit points and, consequently, study the equilibrium and stability characteristics of a

variety of important engineering problems. To verify the numerical results, an experimental analysis

of a thin clamped-free bar under self-weight was conducted. A detailed and precise experimental

procedure appropriate for large deflection/large deformation problems based on image processing

techniques is presented which can be effectively used in a large class of structural problems, in

particular, problems where conventional experimental techniques may have an effect on the results.

It is shown that the numerical and experimental results are in good agreement. The results also

show the influence of self-weight and large deflections on the load carrying capacity and internal

force distribution of columns with different sets of boundary conditions.
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