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Mode localization and frequency loci veering in 
a disordered coupled beam system
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Abstract. Vibration mode localization and frequency loci veering in disordered coupled beam system
are studied in this paper using finite element analysis. Two beams coupled with transverse and rotational
springs are examined. Small disorders in the physical parameters such as Young’s modulus, mass density
or span length of the substructure are introduced in the investigation of the mode localization and
frequency loci veering phenomena. The effect of disorder in the elastic support on the mode localization
phenomenon is also discussed. It is found that an asymmetric disorder in the weakly coupled system will
lead to the occurrence of mode localization and frequency loci phenomena. 
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1. Introduction

In structural analysis, it is common to make the assumption that the structures are perfectly

periodic, or completely symmetric. However, a dynamic model may be far from the assumed

prototype due to small disorders in the structure, such as mistuned parameters, geometrical

irregularities and manufacturing errors. It is known that when the degrees of freedom of a nominally

periodic structure are weakly coupled and there are some small disorders in the structure, then the

free vibration modes will typically be spatially localized, resulting in confined regions of the

structure where the vibration energy is concentrated. This is the so called vibration mode

localization phenomenon (Anderson 1958, Hodges 1982, Pierre and Dowel 1987, Pierre et al. 1987,

Pierre 1988, Cai et al. 1995, Kang and Tan 1999, Kim and Lee 2000, Huang and Kuang 2001, Xie

and Chen 2002, Huang and Kuang 2005, Jacques and Potier-Ferry 2005). Besides, two frequency

loci approach each other and do not cross but veer away from each other with high local curvature.

This is known as frequency loci veering phenomenon (Kuttle and Sigillito 1981, Pierre 1988, Chen

and Ginsberg 1992, Liu et al. 1995, Yang 1997, Chan and Liu 2000, Lacarbonara et al. 2005).

These two phenomena have attracted much attention the areas of mechanical and aeronautic

engineering in the past thirty years. 
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The mode localization phenomenon was first investigated in the field of solid state physics by

Anderson (1958), who showed that in a randomly disordered linear chain of particles, the wave

function of the chain can exhibit spatially confined modes of motion. One of the earliest studies of

the phenomenon of localization in the field of structural dynamics was made by Hodges (1982).

Pierre and Dowell (1987) studied localization phenomena for a chain of coupled oscillators. Pierre

et al. (1988) applied a modified perturbation method to study the mode localization and verified the

existence of localized modes by carrying out an experiment on a disordered dual-span Euler-

Bernoulli beam. Chen and Ginsberg (1992) investigated the relationship between mode localization

and eigenvalue loci veering of nearly periodic structures by applying a perturbation method to a

general eigenvalue problem and found that small disorder results in strong mode localization in the

eigenvalue veering zone. A comprehensive survey on mode localization phenomenon in practical

engineering structures was given by Bendikisen (2000). Xie and Chen (2002) studied the vibration

mode localization in rib-stiffened plates with randomly misplaced stiffener in one direction. 

There are also many articles in the literature on mode localization phenomenon in non-linear

systems (Chao and Shaw 1997, King and Layne 1998, Jiang and Vakakis 2003). Vakakis and

Cetinkaya (1993) carried out a study on the free vibrations of n-degree-of-freedom nonlinear

systems with cyclic symmetry and week coupling between substructures. It was shown that

nonlinear mode localization occurs in the perfectly symmetric, weakly coupled structures. In

contrast to linear mode localization, which exists only in the presence of substructure ‘mistuning’.

Vakakis et al. (1993) examined the nonlinear localized modes of an n-DOF nonlinear cyclic system

by the averaging method of multiple scales. In addition, the transition from mode localization to

mode nonlocalization in a nonlinear periodic system is analytically studied for the first time. An

investigation on mode localization in a distributed system of coupled flexible beams with geometric

nonlinearities was conducted by King and Vakakis (1995a). King and Vakakis (1995b) investigated

the forced periodic and transient responses of a cyclic system with nonlinear mode localization. The

effects of the nonlinear localized mode on the forced responses were studied. 

Mode localization and frequency loci veering have been studied by some researchers using the

perturbation method (Chen and Ginsberg 1992, Chan and Liu 2000). The purpose of this paper is to

investigate the vibration mode localization and frequency loci veering phenomena using the finite

element analysis. Several disorder cases are included: a disorder in the Young’s modulus, a disorder

in the mass density, a disorder in the span length of a substructure, and also, a disorder in the elastic

support. The sensitivities of these parameters on mode localization are compared and discussed. 

2. Equation of motion of the coupled beam system

Fig. 1 shows the dual-span coupled beam system under study. Two Euler-Bernoulli beams are

Fig. 1 The dual-span coupled beam system
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coupled with a transverse spring and a rotational in the middle span and clamped at the two ends.

The equation of motion of free vibration of the original system and the corresponding boundary

conditions can be expressed as follows

For Beam A, we have

  (1)

and the corresponding boundary conditions are:

 (2a)

(2b)

(2c)

For Beam B, we have

  (3)

and the corresponding boundary conditions are:

(4a)

(4b)

(4c)

where ρA01 and ρA02 are the mass per unit length of the original left and right beam respectively,

EI01 and EI02 are the flexural rigidities of the original left and right beam respectively, l01 and l02 are

the lengths of the left and right beam respectively, ks0 and kr0 are the coefficients of the coupling

transverse and rotational spring of the original system respectively, c is the viscous damping of the

beam. It is assumed after small perturbation, these system parameters are changed as
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(6b)

(7a)

(7b)

where ε ( <<1) is the perturbation parameter in different system parameters. The natural

frequencies and modes shapes of the perturbed system can be obtained from the classical matrix

perturbation method. However, in the present study, the natural frequencies and mode shapes of the

original and perturbed systems are calculated using the finite element method. 

ρA x2( ) ρA02 1 ε+( )=

ks ks0 1 ε+( )=

kr kr0 1 ε+( )=

ε

Fig. 2 The first 8 mode shapes of the original system
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3. Numerical example

3.1 A dual-span coupled clamped beam system 

As shown in Fig. 1, a dual-span coupled clamped beam system is studied. The physical

parameters of the original system are: EI01 = EI02 = 175 N·m2, m01 = m02 = 0.78 kg/m, l01 = l02 = 5.0 m,

ks0 = 0.001EI01 N/m, kr0 = 0.0001EI01 Nm/rad. In the finite element model of the system, each beam

is discretized into 20 elements and altogether 40 elements. Table 1 shows the first 8 natural

frequencies and Fig. 2 shows the first 8 mode shapes of the system. From this figure, one can see,

without disorder, mode localization phenomenon does not occur in the coupled system. To

investigate the phenomena of mode localization and frequency loci veering, the following study

cases are carried out with the system.

Case 1 Disorder due to the Young’s modulus of the right beam

In this case, the disorder in the Young’s modulus of the right beam is considered. There is a 4%

reduction in the Young’s modulus of this beam, and the other parameters of the system remain

unchanged. The first 8 natural frequencies are also shown in Table 1. From this table, one can see,

the changes in the natural frequencies are small. Fig. 3 shows the first 8 mode shapes of the

disordered system. Obviously, the mode localization phenomenon occurs from the first mode and

the higher the mode, the stronger the phenomenon. The first 8 frequency loci of the disordered

system are shown in Fig. 4. From this figure, one can see in subplot (a)-subplot (d), as the

perturbation ε increases from −0.1 to 0, each pair of two loci approach progressively, it seems that

the two curves cross at ε = 0, however, a closer view will find they do not cross but veer away from

each other as ε increases further from 0 to 0.1. This shows the mode localization and frequency loci

veering phenomena occur at the same time. 

Case 2 Disorder due to the mass density of the left beam

In this case, the disorder in the mass density of the left beam is simulated. It is assumed that there

is a 4% reduction in the Young’s modulus of this beam, and the other parameters of the system

remain unchanged. The first 8 natural frequencies are also shown in Table 1. Fig. 5 shows the first

Table 1 The first 8 natural frequencies of the dual-span system

Mode no.

The original system The disordered system (ε = −0.04)

Clamped
Elastic 
support

Disorder in 
EI

Disorder in 
ρA

Disorder in 
length

Disorder in 
support

1 2.1075 0.5273 2.0826 2.1050 2.1480 0.5270

2 2.1199 0.7988 2.1034 2.2471 2.3566 0.7985

3 13.2036 4.2543 12.9453 13.2118 13.2120 4.1922

4 13.2205 4.2756 13.2123 13.4848 14.3349 4.2665

5 36.9678 14.4877 36.2235 36.9703 36.9703 14.4614

6 36.9728 14.5018 36.9703 37.7327 40.1149 14.4962

7 72.4439 37.5620 70.9812 72.4448 72.4448 37.5526

8 72.4456 37.5668 72.4448 73.9386 78.6073 37.5648
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Fig. 3 The first 8 mode shapes of the disordered system with perturbation in EI 

Fig. 4 The first 8 frequency loci veering of the disordered system with perturbation in EI
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Fig. 5 The first 8 mode shapes of the disordered system with perturbation in mass density

Fig. 6 The first 8 frequency loci veering of the disordered system with perturbation in mass density
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Fig. 7 The first 8 mode shapes of the disordered system with perturbation in length of substructure

Fig. 8 The first 8 frequency loci veering of the disordered system with perturbation in length of substructure
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8 mode shapes of the disordered system. The first 8 frequency loci of the disordered system are

shown in Fig. 6. Again, the mode localization phenomenon and loci veering occur from the first

mode. 

Case 3 Disorder due to the length of the right beam

This case discusses the effect of disorder in the span length of substructure beam on the mode

localization. It is assumed there is a 4% reduction in the length of right beam, and the other

parameters of the system remain unchanged. The first 8 natural frequencies are also shown in Table 1.

Figs. 7 and 8 show the first 8 mode shapes and the first 8 frequency loci curves respectively.

Comparing the figures of mode shapes and the loci veering curves, one can see, for the weakly

coupled system, the stronger the localization phenomenon, the closer the two frequency curves at

point ε = 0. 

Case 4 Disorder due to a small disorder in one element, an extreme case

An extreme case is studied here; for the given coupled beam system, a disorder in a single

element is simulated. It is assumed that there is only one percent reduction in the flexural rigidity in

the 3rd element of the first beam. This can be used to simulate a small local damage in the beam.

Fig. 9 The first 8 mode shapes of the disordered system with one percent perturbation in flexural rigidity
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The other system parameters remain unchanged. Figs. 9 and 10 show the first 8 mode shapes and

the first 8 frequency loci curves respectively. In this case, mode localization phenomenon also

occurs from the third mode when there is such a small disorder in the system. From this study, one

can see that the local damage (it often causes the local reduction in the flexural rigidity of the

structure) will sometime lead to mode localization. 

From study Cases 1 to 4, a conclusion can be drawn that an asymmetric disorder in the weakly

coupled system will lead to the occurrence of mode localization and frequency loci phenomena.

3.2 A dual-spam coupled beam system on elastic supports 

As shown in Fig. 11, the system studied above is extended to a case with more general boundary

condition, the coupled beam with elastic support boundaries. The physical parameters of the original

Fig. 10 The first 8 frequency loci veering of the disordered system with one percent perturbation in flexural
rigidity

Fig. 11 The dual-span coupled beam system with elastic support
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system are: EI01 = EI02 = 175 N·m2, m01 = m02 = 0.78 kg/m, l01 = l02 = 5.0 m, ks0 = 0.001EI01 N/m, kr0 =

0.0001EI01 Nm/rad, ksa0 = ksb0 = 20 N/m, kra0 = krb0 = 10 Nm/rad. In the finite element model of the

system, each beam is discretized into 20 elements. The first 8 natural frequencies are shown in

Table 1. 

Case 5 Disorder due to the Young’s modulus of the right beam

A disorder in the Young’s modulus of the right beam is simulated with a 4% reduction, and the

other parameters of the system remain unchanged. Fig. 12 shows the first 8 mode shapes of the

disordered system. From this figure, one can see the mode localization phenomenon occurs from the

Fig. 12 The first 8 mode shapes of the disordered elastic support system with perturbation in EI
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third mode and the higher the mode, the stronger the phenomenon. The first 8 frequency loci of the

disordered system are shown in Fig. 13. As shown in subplot (b)-subplot (d), when the perturbation

ε increases from −0.1 to 0, frequency loci veering phenomenon occurs. However, in subplot (a), this

phenomenon does not take place, the two frequency curves seems parallel to each other. This means

that the mode localization phenomenon does not take place in these two modes, and this is verified

from Fig. 12. Comparing this with Case 1, one can see, different boundary conditions may have

effect on the mode localization, in Case 1, the mode localization occurs from the first mode,

however, in this case, the mode localization occurs from the third mode. 

Case 6 Disorder due to the coefficients of the elastic support

Many studies have been carried out on mode localization due to disorder in the material,

geometry of the structure; in this case, the mode localization due to the disorder of the boundary

spring is studied. It is assumed that there is a 4% reduction in the transverse spring of the left

boundary, and the other parameters of the system remain unchanged. The first 8 natural frequencies

are also shown in Table 1. And Figs. 14 and 15 show the first 8 mode shapes and first 8 frequency

loci curves of the disordered system. Again, the mode localization phenomenon occurs only from

the third mode. 

Case 7 Sensitivity analysis of different types of disorder

Several studies are carried out above to investigate the effect of different types of disorder on the

mode localization. But which physical parameter is the mode localization most sensivitive to? Here,

the sensitivities of different types of disorder to the mode localization are analyzed. First of all, the

norm of mode shape difference in two substructures is introduced, taking the ith mode as example

Fig. 13 The first 8 frequency loci veering of the disordered support system with perturbation in EI
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(11)

where ui1 and ui2 are the normalized ith mode shapes of two substructures respectively. Figs. 16(a)

and 16(b) show the norm of mode shape difference vs. the perturbation parameter ε in different

physical parameters for the first two modes. From this figure, one can see, as the perturbation

parameter ε increase from −0.1 to 0, the mode localization becomes weaker and as ε increase from

0 to 0.1, the mode localization becomes stronger. In addition, the mode localization seems more

sensitive to the disorder in the length than to the disorder in mass density and Young’s modulus. 

Norm u∆( )i ui1 ui2–=

Fig. 14 The first 8 mode shapes of the disordered elastic support system with perturbation in elastic support
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4. Conclusions

In the present study, a coupled beam system is studied to investigate the mode localization and

frequency loci veering phenomena using finite element analysis. The system is modeled by Euler-

Bernoulli beam element and both the free and forced vibration analysis is conducted. The following

conclusions can be drawn from the study cases carried out in this paper:

Fig. 15 The first 8 frequency loci veering of the disordered support system with perturbation in elastic support

Fig. 16 Comparison on mode localization due to perturbations in different parameters (a) clamped boundary
condition, (b) elastic support
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1. When there is some small disorder due to material (for instance, Young’s modulus, mass

density ect.) or geometry (e.g. The length of the substructure) in the symmetric structure

system, the structure will undergo mode localization and frequency loci veering. Engineers

should pay more attention to symmetric and weakly coupled structures in designing such

structures because vibration mode localization will cause dramatic effects on these structures. 

2. The occurrence of mode localization and frequency loci veering indicates that the dynamic

system is very sensitive to the disordered parameters. Attention should be paid to the

significance of the sensitivity for it affects the dynamic modes dramatically. 

3. For the weakly coupled system, sometimes, local structural damage may also lead to the

occurrence of mode localization phenomenon. One should pay more attention to such system in

damage detection when mode localization occurs.

4. Attention should also be paid to the perturbation in the elastic supports of the weakly coupled

structures. As shown in the study, the disorders in these factors will also lead to mode

localization and frequency loci veering. 
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