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Optimal design of laminated composite plates 
to maximise fundamental frequency 

using MFD method
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Abstract. This paper deals with optimal fibre orientations of symmetrically laminated fibre reinforced
composite structures for maximising the fundamental frequency of small-amplitude. A set of fiber
orientation angles in the layers are considered as design variable. The Modified Feasible Direction method
is used in order to obtain the optimal designs. The effects of number of layers, boundary conditions,
laminate thicknesses, aspect ratios and in-plane loads on the optimal designs are studied.
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1. Introduction

Since the composite materials have higher specific modulus and strength compared to the

conventional materials and due to the possibility of their design for the required mechanical

properties, the plates made of fibre reinforced composite materials are being extensively used in

many engineering applications, especially for light-weight structures that have tight stiffness and

strength requirements. However, their analysis and design are more complicated due to anisotropy

of each layer than that of conventional metal plate. Furthermore, the light-weight structures are

often exposed to severe vibration circumstances and the consideration for optimizing anti-resonance

performance (e.g., by maximising the fundamental frequency) becomes more important than before

in composite structural design.

More recently, a vast body of literature for vibration analysis of laminated plate is available.

Haldar and Sheikh (2005) studied a high precision composite plate-bending element developed by

Sheikh et al. has been applied to the free vibration analysis of isotropic and fibre-reinforced

laminated composite folded plates. The in-plane displacements, transverse displacement and

rotations of the normal have been taken as independent field variables and they have approximated

with polynomials of different orders. Ashour (2005) analyzed the natural frequencies of

symmetrically laminated plates of variable thickness using the finite strip transition matrix
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technique. The natural frequencies of such plates are determined for edges with being elastically

restrained against both rotation and transition or both. A successive conjunction of the classical

finite strip method and the transition matrix method is applied to develop a new modification of the

finite strip method to reduce the complexity of the problem. Ferreira et al. (2005) used the first-

order shear deformation theory in the multiquadric radial basis function (MQRBF) procedure for

predicting the free vibration behavior of moderately thick symmetrically laminated composite plates.

Patel et al. (2005) studied the free flexural vibration behavior of bimodular laminated angle-ply

composite plates. The formulation is based on the theory that accounts for the transverse shear and

transverse normal deformations, and incorporates higher order through the thickness approximations

of the in-plane and transverse displacements. Chen and Lu (2005) developed a semi-analytical

method, which combines the state space approach with the technique of differential quadrature on

the basis of the three-dimensional theory of elasticity, is developed for free vibration of a cross-ply

laminated composite rectangular plate. The plate is assumed to be simply supported at one pair of

opposite edges such that trigonometric functions expansion can be used to satisfy the boundary

conditions precisely at these two edges. Lanhe et al. (2005) employed a novel numerical solution

technique, the moving least squares differential quadrature (MLSDQ) method to study the free

vibration problems of generally laminated composite plates based on the first order shear

deformation theory. Wang and Zhang (2005) developed a layerwise B-spline finite strip method for

free vibration analysis of truly thick and thin composite laminated plates within the context of a

layerwise plate theory proposed by Reddy. Nallim et al. (2005) developed a variational approach for

the study of the statical and dynamical behaviour of arbitrary quadrilateral anisotropic plates with

various boundary conditions based on the classical laminated plate theory. Leung et al. (2005)

applied a new trapezoidal p-element is to solve the free vibration problem of polygonal laminated

composite plates subjected to in-plane stresses with various boundary conditions. Chaudhuri et al.

(2005) presented a generalized boundary-continuous displacement based double Fourier series

solution to the boundary-value problem of free vibration of thin anisotropic fiber reinforced plastic

(FRP) rectangular plates. Kabir (2004) presented an analytical solution to a boundary value

problem. The eigenvalues and mode shapes obtained are compared with the moderately thick plate

theory based analytical and finite element solutions. Onkar and Yadav (2004) analyzed the effect of

material parameter dispersion on the large amplitude free vibration of especially orthotropic

laminated composite plates. The basic formulation of the problem has been developed based on the

classical laminate theory and Von-Karman non-linear strain–displacement relation. Hu et al. (2004)

proposed an analytical method for vibration of an angle-ply laminated plate with twist considering

transverse strain and rotary inertia. Numayr et al. (2004) used the finite difference method to solve

differential equations of motion of free vibration of composite plates with different boundary

conditions. Also, the effects of shear deformation and rotary inertia on the natural frequencies of

laminated composite plates are investigated. Rao and Desai (2004) presented a semi-analytical

method to evaluate the natural frequencies for simply supported, cross-ply laminated and sandwich

plates by using higher order mixed theory. More results can be found in Shi et al. (2004), Setoodh

and Karami (2004), Liew et al. (2003), Gorman and Ding (2003), Aydogdu and Timarci (2003),

Messina (2002), Wang et al. (2002), Harras et al. (2002), Messina and Soldatos (2002), Matsunaga

(2002), Kant and Swaminathan (2001).

Structural optimization of laminated plates involving vibration are found in some papers. Narita

(2003) proposed a layerwise optimization approach to determine the maximum fundamental

frequency of laminated composite plates. Narita (2006) also extended the layerwise optimization
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approach to accommodate the finite element analysis for optimizing the free vibration behavior of

laminated composite plates with discontinuities along the boundaries. Narita and Hodgkinson (2005)

applied the layerwise optimization approach to point-supported, symmetrically laminated rectangular

plates. The plates considered rest on some elastic or rigid point supports distributed in different

arrangements. Adali and Verijenko (2001) studied the design of hybrid symmetric laminated plates

consisting of high-stiffness surface and low-stiffness core layers. The maximization of the

fundamental frequency and frequency seperation was performed over a discrete set of available ply

angles. Correia et al. (1997) researched the structural optimization of multilaminated composite

plate structures of arbitrary geometry and lay-up, using single layer higher order shear deformation

theory discrete models. Hu and Tsai (1999) maximized the fundamental frequencies of fiber-

reinforced laminated cylindrical shells with a given material system with respect to fiber

orientations by using the golden section method. Kam and Lai (1995) studied the lamination

arrangements of moderately thick laminated composite plates for optimal dynamic characteristics

via a constrained multi-start global optimization technique. In the optimization process, the

dynamical analysis of laminated composite plates was accomplished by utilizing a shear deformable

laminated composite finite element, in which the exact expressions for determining shear correction

factors were adopted and the modal damping model constructed based on an energy concept.

Fukunaga et al. (1994) examined the optimal laminate configurations of symmetric laminated plates

for maximizing fundamental frequencies. The coupling between bending and twisting are taken into

consideration in the free vibration analysis of symmetric laminated plates. With the use of

lamination parameters, the effect of bending-twisting coupling on the fundamental frequencies are

discussed for the cases of simply supported or clamped edges. Duffy and Adali (1991a) maximized

the fundamental frequency and the frequency separations of antisymmetric, angle-ply laminates

subject to a mass constraint. Fibre orientation was considered as design variables. Bert (1977)

presented a rationale method for determining the optimal laminate design for a thin plate consisting

of multiple layers of equi-thickness composite material. The optimal design criterion is

maximization of the fundamental frequency of small-amplitude, free flexural vibration. More studies

can be found in the literature about maximization of frequency of laminated structures (Bert 1978,

Reiss and Ramachandran 1987, Grenestedt 1989, Duffy and Adali 1991b, Adali 1984, Hu and Ou

2001, Sivakumar et al. 1999).

The current work deals with the optimum design of laminated composite plates for maximising

the fundamental frequency. The objective function is maximised with respect to the fibre

orientations of the layers. The Modified Feasible Direction method is used in order to obtain the

optimal designs. Finally, the effects of different number of layers, boundary conditions, laminate

thicknesses, aspect ratios and in-plane loads on the results are given.

2. Basic equations

Consider a symmetrically laminated rectangular plate of length a, width b and thickness h

(h = Σ hi, hi represents thickness of a layer) which consists of N orthotropic layers with fibre angles

θk (k = 1,2,…., N) which is measured counterclockwise about the z-axis from the element local x-

axis to the material 1-axis as shown in Fig. 1.

If the rotary inertia deformation is neglected, dynamic equilibrium of the infinitesimal element

yields the following equations:
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 (1)

 (2)

 (3)

where Dij is the out-of-plane stiffnesses, A44 and A55 are the shear rigidities, α is shear correction

factor, ρ is the average mass density of all laminates, w is the displacement in the z direction and ϕx

and ϕy are the rotations in the x and y directions. Dij, A44, A55 can be calculated as

i, j = 1, 2, 6; m, l = 4, 5  (4)

where  are components of the transformed reduced stiffness matrix for the kth layer.

For the finite element analysis, if the damping is neglected, the equation of motion of the structure

for free vibration can be written as

 (5)

where {D} is a vector containing the unrestrained nodal degrees of freedoms, [M] is a structural

mass matrix, [K ] is a structural stiffness matrix. Since {D} undergoes harmonic motion, the vectors

{D} and  become

 (6)

where  vector contains the amplitudes of {D} vector and ω is the frequency. Therefore, Eq. (5)

can be written in as
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Fig. 1 Structure of a layered laminate plate
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 (7)

where λ = ω 2 is the eigenvalue and  becomes the eigenvector. Finite element solution is done

to solve for the eigenvalues, the natural frequency, and the eigenvectors. The obtained smallest

natural frequency (fundamental frequency) is then the objective function for maximization.

3. The Modified Feasible Direction method

A general optimization problem may be defined as below

Minimize  (8)

subject to i = 1, …, r  (9)

j = r + 1, …, m  (10)

k = 1, …, n  (11)

where  is an objective function,  are inequality constraints,  are equality

constraints, and  is a vector of design variables.

The Modified Feasible Direction (MFD) method is a powerful general method, and can be applied

to most constrained nonlinear problems. MFD is a modification of the classical steepest descent

method. It takes into account not only the gradients of objective function and the retained active

and/or violated constraints, but also the search direction in the former iteration. Let xo be an initial x

vector. The design is updated according to the following equation:

 (12)
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Fig. 2 The Modified Feasible Direction method
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where Sq is the search direction. λ  is a scalar whose value is determined through a onedimensional

search. Different optimization methods are characterized by different methods to determine the

search direction Sq. The search direction Sq in MFD is determined using the Fletcher-Reeves

conjugate direction method when there is no active or violated constraint.

 (13)

where

 (14)

Fig. 2 shows the iterative process within each optimization process.

Based on the Modified Feasible Direction method, the mathematical expression for such an

optimization problem is written as

Max (objective function)

(design variable) 

(constraint)

4. Numerical results and discussions

Numerical results are given for T300/5208 graphite/epoxy material with E1 = 181 GPa,

E2 = 10.3 GPa, G12 = 7.17 GPa, ν12 = 0.28, ρ = 1600 kg/m3. The symmetric laminated plate is

constructed of equal thickness layers with the continuous case for which the stacking sequence is

taken as (θ /−θ /θ /−θ /...)sym and the thickness ratio is specified as h/b = 0.01. Frequencies are

obtained for the first five natural modes of vibration.
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Fig. 3 The fundamental frequency (ωmax) versus θ for different number of layers for simply supported
laminated plate with a/b = 1, h = 0.01 m
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4.1 Laminated plates with different number of layers

Fig. 3 shows the fundamental frequency (ωmax) versus θ for different number of layers for simply

supported laminated plates. It can be seen that, for laminates with symmetric lay-up, there is a

gradual increase in the value of the optimal fundamental frequency with increase in the number of

layers. Also, the optimal design with θ = 45o is outstanding for square plate. The optimal

fundamental frequency leads to an increase around 5%, 1%, 0.7% between N = 4-6, N = 6-8 and

N = 8-10 layered laminated plates, respectively. That is, differences of the optimal fundamental

frequency decrease, as the number of layer increases. 

4.2 Laminated plates with different boundary conditions

The different combinations of free (F), simply supported (S) and clamped (C) boundary conditions

are considered, viz. (SSSS), (CCCC), (CSCS) and (CSFS). The symbolism (CSCS), for example,

identifies a rectangular plate with edges clamped, simply supported, clamped and simply supported;

start counting anticlockwise from the left edge of the plate. As can be seen from Fig. 4, (CSFS)

boundary condition gives the smallest fundamental frequency, on the other hand, (CCCC) boundary

condition gives the largest values.

The optimum fibre angles are (0o, 90o), (90o) and (0o) for (CCCC), (CSCS) and (CSFS) boundary

conditions, respectively. The optimal fundamental frequency leads to an increase around 85%, 77%

between (SSSS)-(CCCC) and (SSSS)-(CSCS) boundary conditions, respectively. On the other hand,

the optimal fundamental frequency leads to a decrease around 24% between (SSSS)-(CSFS)

boundary conditions.

4.3 Laminated plates with different plate thickness

Fig. 5 shows ωmax versus θ for different plate thickness for simply supported laminated square

composite plates. As expected, as the thickness of plate increases, the fundamental frequency

increases. Also, the optimum fibre angle is 45o for all plate thicknesses. The optimal fundamental

frequency leads to an increase around 95%, 48%, 32% between h = 0.01-0.02 m, h = 0.02-0.03 m

Fig. 4 Effect of the boundary conditions on the fundamental frequency of laminated plates with a/b = 1, N = 4,
h = 0.01 m
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and h = 0.03-0.04 m laminated plates, respectively. That is, differences of the fundamental frequency

decrease, as the thickness of plate increases. 

4.4 Laminated plates with different plate aspect ratio

Fig. 6 shows ωmax versus θ for different aspect ratios for different boundary conditions of

laminated plates.

Fig. 5 Effect of the plate thickness on the fundamental frequency of simply supported laminated plates with
a/b = 1, N = 4

Fig. 6 ωmax versus θ for different aspect ratios for different boundary conditions for laminated plates with
N = 4, h = 0.01 m
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As can be seen from Fig. 6, the optimal fundamental frequency occurs at 90o at aspect ratios

rather than a/b = 1.25 for (SSSS) boundary condition. The optimal fundamental frequency occurs at

90o for all aspect ratios for (CCCC) (also 0o for a/b = 1) and (CSCS) boundary conditions. The

optimal fundamental frequency occurs at 0o for aspect ratios lower than a/b = 1.75 for (CSFS)

boundary condition. 

The optimal fundamental frequency leads to a decrease around 17%, 6%, 1.5%, and 1% between

for a/b = 1-1.25, a/b = 1.25-1.5, a/b = 1.5-1.75 and a/b = 1.75-2, respectively for (SSSS) boundary

condition. The optimal fundamental frequency leads to a decrease around 3.5%, 1.5%, 1%, and

0.6% between for a/b = 1-1.25, a/b = 1.25-1.5, a/b = 1.5-1.75 and a/b = 1.75-2, respectively for

(CCCC) boundary condition. The optimal fundamental frequency leads to a decrease around 3%,

0.8%, 0.5%, and 0.35% between for a/b = 1-1.25, a/b = 1.25-1.5, a/b = 1.5-1.75 and a/b = 1.75-2,

respectively for (CSCS) boundary condition. The optimal fundamental frequency leads to a decrease

in the fundamental frequency around 35%, 30%, 15%, and 10% between for a/b = 1-1.25,

a/b = 1.25-1.5, a/b = 1.5-1.75 and a/b = 1.75-2, respectively for (CSFS) boundary condition. That

is, differences of the fundamental frequency decrease, as the aspect ratio increases. 

In Table 1, the optimum ply angles are given for different aspect ratios for different boundary

conditions. 

Fig. 7 shows ωmax versus a/b for different boundary conditions for laminated plates. As expected,

as the plate aspect ratio increases, the fundamental frequency decreases. The optimal fundamental

frequency leads to an increase around 115%, 110% between (SSSS)-(CCCC) and (SSSS)-(CSCS)

Table 1 The optimum ply angles for different aspect ratios for different boundary 
conditions for laminated plates with N = 4, h = 0.01 m

Aspect ratio
(a/b)

(SSSS) (CCCC) (CSCS) (CSFS)

θopt (
o)

1 45 0 and 90 90 0

1.25 57.694 90 90 0

1.5 90 90 90 0

1.75 90 90 90 61.806

2 90 90 90 74.192

Fig. 7 ωmax versus a/b for different boundary conditions of laminated plates with N = 4, h = 0.01 m
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boundary conditions, respectively, while leading to a decrease around 40% between (SSSS)-(CSFS)

boundary conditions for a/b = 1.25. The optimal fundamental frequency leads to an increase around

125%, 120% between (SSSS)-(CCCC) and (SSSS)-(CSCS) boundary conditions, respectively, while

leading to a decrease around 55% between (SSSS)-(CSFS) boundary conditions for a/b = 1.5. The

optimal fundamental frequency leads to an increase around 125%, 125% between (SSSS)-(CCCC)

and (SSSS)-(CSCS) boundary conditions, respectively, while leading to a decrease around 60%

between (SSSS)-(CSFS) boundary conditions for a/b = 1.75. The optimal fundamental frequency

leads to an increase around 125%, 125% between (SSSS)-(CCCC) and (SSSS)-(CSCS) boundary

conditions, respectively, while leading to a decrease around 65% between (SSSS)-(CSFS) boundary

conditions for a/b = 2.

4.5 Effect of in-plane loads

The effect of in-plane loads on the optimal design is given in Fig. 8. The laminated plate

subjected to uniaxial compressive load, uniaxial tensile load, biaxial compressive load and biaxial

tensile load is considered. Nx = −3 × 105 N for uniaxial compressive load, Nx = 3 × 105 for uniaxial

tensile load, Nx = Ny = −3 × 105 N for biaxial compressive loads and Nx = Ny = 3 × 105 N for biaxial

tensile loads are considered. As can be seen, the optimal fundamental frequency is the highest for

biaxial tensile loads and increases about 0.6%. On the other hand, the optimal fundamental

frequency is the lowest for biaxial compressive loads and decreases about 0.6%. The optimal fibre

angle is θopt = 45o for all cases.

5. Conclusions

For the optimal free vibration analysis of laminated plates with various plate layers, boundary

conditions, plate thicknesses, aspect ratios and in-plane loads, the following conclusions may be

drawn 

• The optimal fundamental frequencies of simply supported laminates plates increase with the

increasing the number of layer and optimal angle is 45o for all layers. However, the differences

of the fundamental frequency decrease, as the number of layer increases.

• (CCCC) boundary condition gives the largest optimal fundamental frequency, on the other hand,

Fig. 8 Effect of in-plane loads on the optimal designs
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(CSFS) boundary condition gives the smallest values. 

• The optimal fundamental frequency increases with the increasing the thickness of plate. The

optimal angle is 45o for simply supported laminates for all plate thicknesses. However,

differences of the fundamental frequency decrease, as the thickness of plate increases. 

• For (CCCC) and (CSCS) boundary conditions, the optimal fiber angles are the same (90o) for all

aspect ratios (also 0o for a/b = 1 for (CCCC)). On the other hand, the optimal fiber angles are

different for other boundary conditions. The optimal fundamental frequencies lead to decrease

with the increasing the aspect ratio for all boundary conditions. Also, the differences of the

fundamental frequencies decrease, as the aspect ratio increases.

• The optimal fibre angle is not effected by in-plane loads for simply supported laminates. On the

other hand, the optimal fundamental frequency gives the highest values for biaxial tensile loads,

while it gives the smallest values for biaxial compressive loads. 
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