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1. Introduction

In this study, the finite element linear buckling analysis of folded plate structures using adaptive

h-refinement methods is presented. The variable-node flat shell element used in this study possesses

a drilling D.O.F. which, in addition to improvement of the element behavior, permits an easy

connection to other elements with six degrees of freedom per node (CLS element, Choi and Lee

1996). Accordingly, the folded plate structures, for which it is hard to find the analytical solutions,

can be analyzed with a relative ease using the developed flat shell elements. Using the adaptive h-

refinement procedure, the convergent buckling modes and the critical loads of these modes can be

obtained by the buckling analyses of those structures.
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2. Variable-node flat shell element

CLS element was established by combining CLM element (Choi and Lee 1996) with a drilling

D.O.F. and Mindlin plate bending element. For the variable-node membrane elements with a drilling

D.O.F., the Allman-type interpolations are used for the basic behavior of the element (Allman 1984,

1988). Variable-node plate bending element is formulated based on Reissner-Mindlin plate theory to

account for the shear deformation and has the substitute shear strain fields (Choi and Park 1992). In

the plate bending element based on Reissner-Mindlin plate theory, to account for the shear

deformation the vertical displacement field and rotation field of an element are assumed separately

and only Cº continuity is needed to be satisfied. To avoid excessive shear strains in the element

stiffness formulation, the substitute shear strain polynomials are used, maintaining the bending part

of the element stiffness unchanged. For the out-of-plane D.O.F. in the plate bending element with

respect to the local coordinate system, Green-Lagrangian strains defined in the plate bending

element can be expressed as the linear and nonlinear parts. As a result, the stress stiffness matrix

[K
σ
] in each element can be derived.

3. Finite element buckling analysis

First, a reference level of loading [R]ref is applied to the structure and through the static analysis,

and the membrane stresses in all the elements are evaluated. By assembling the stress stiffness

matrices of elements, the stress stiffness matrix of the entire structure is composed. Then, the

incremental form of the equilibrium equation results in the eigenvalue problem. In the numerical

solution of the eigenvalue problem, the subspace iteration method is used, which is particularly

suited for the calculation of a few eigenvalues and eigenvectors of large finite element systems.

4. Adaptive h-refinement method

The adaptive mesh refinement is normally performed after an initial solution has already been

made available, and regions of the solution domain where the accuracy is not satisfactory have been

identified according to a prescribed set of criteria. This process can be iterated using the last

solution as the new initial solution. Two criteria are essential for adaptive mesh refinement, i.e.,

stopping criterion and refinement criterion. The stopping criterion is used to decide if the obtained

error is within the prescribed maximum error tolerance or not. The adaptive mesh refinement

process will stop if the requirement is satisfied (Zienkiewicz and Zhu 1989). 

5. Numerical analysis

As examples of numerical analysis, a box section beam with holes and an octagon box section

beam are chosen. Analyses are performed to show the results by the present analysis schemes.

A box section beam with holes under two opposite concentrated loads at the centers as shown in

Fig. 1 is tested. Using the symmetry, a one-eighth segment is actually analyzed. The following
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material properties are used: the elastic modulus E = 2,100,000 kgf/cm2 and Poisson’s ratio ν = 0.18.

The two opposite concentrated load of the intensity P = 1 tonf is applied.

As the meshes are locally refined, the changes of the relative percentage error, the 1st critical

Fig. 2 Analysis of the box section beam with holes

Fig. 3 Buckling modes of the box section beam with holes

Fig. 1 A box section beam with holes
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load, and the 2nd critical load are shown in Fig. 2, where analysis results are compared with those

using uniformly refined meshes. In addition, the buckling modes of adaptively refined meshes are

shown in Fig. 3. The accuracy of the predicted critical loads are dependent on the number of

degrees of freedom irrespective of the pattern of refined mesh. However, the relative percentage

Fig. 4 An octagon box section beam

Fig. 5 Analysis of the octagon box section beam

Fig. 6 Buckling modes of the octagon box section beam
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error becomes smaller when adaptive meshes are used than uniform meshes. Also, when the

adaptive meshes are used, the positions of nodes can be located more efficiently in the view point

of practical use and the more accurate buckling modes can be predicted.

An octagon box section beam under two opposite concentrated loads at the centers as shown in

Fig. 4 is tested. Using a symmetry, a one-eighth segment is actually analyzed. The two opposite

concentrated loads of the intensity P = 1 tonf is applied. As the meshes are refined, the changes of

the relative percentage error, the 1st critical load, and the 2nd critical load are shown in Fig. 5,

where analyses results are compared with those using uniformly refined meshes. In addition, the

buckling modes of adaptively refined meshes are shown in Fig. 6. 

6. Conclusions

In this study, the finite element linear buckling analysis of folded plate structures using adaptive

h-refinement methods was presented. CLS element, which possesses a drilling D.O.F., was found

effective for the modeling of folded plate structures. In addition, the formulation of the stress

stiffness matrix of CLS element was presented for the finite element buckling analysis. Accordingly,

the folded plate structures, for which it is hard to find the analytical solutions, can be analyzed

using the CLS elements. Using the adaptive h-refinement procedure, the finite element linear

buckling analyses for those structures are found to be more accurate and efficient. As a result of

analysis, the convergent buckling modes and the critical loads of these respective modes could be

obtained.
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