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Abstract. The propagation of non-uniformly modulated, evolutionary random waves in viscoelastic,
transversely isotropic, stratified materials is investigated. The theory is developed in the context of a
multi-layered soil medium overlying bedrock, where the material properties of the bedrock are considered
to be much stiffer than those of the soil and the power spectral density of the random excitation is
assumed to be known at the bedrock. The governing differential equations are first derived in the
frequency/wave-number domain so that the displacement response of the ground may be computed. The
eigen-solution expansion method is then used to solve for the responses of the layers. This utilizes the
precise integration method, in combination with the extended Wittrick-Williams algorithm, to obtain all
the eigen-solutions of the ordinary differential equation. The recently developed pseudo-excitation method
for structural random vibration is then used to determine the solution of the layered soil responses.
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1. Introduction

Wave propagation in stratified or layered material is an important issue for many physical and

industrial problems, ranging from seismic wave propagation along layers of earth to ultrasonic wave

propagation in fiber-reinforced composite materials. The inverse problem of determining the

material properties of stratified layers is also important in the exploration of deep-underground

water, petroleum or mineral resources by means of surface explosion or remote sensing techniques.

Many different models and approaches to wave propagation in a stratified medium can be found

in the literature. The medium can be solid, porous or fluid, while the properties of the layers may be

transversely isotropic or anisotropic, elastic or viscoelastic, linear or nonlinear, homogeneous or

inhomogeneous. In general there are two kinds of problem: the first is the forward problem, in

which the main purpose is to determine the wave field or the reflection and transmission at the

interface; while the second is its inverse problem, in which the main purpose is to determine the

material parameters of the medium. Early treatments of such problems were analytically-based

(Timoshenko and Goodier 1951, Ewing et al. 1957, Achenback 1973, Graff 1975, Aki and Richards

1980, Brekhovskikh 1980, Doyle 1989). More recently Rizzi and Doyle (1992a,b) developed a

spectral element approach based on the Fast Fourier Transform technique (FFT) and applied it to

the study of transient waves in elastic layered solids. Similar techniques were proposed by Khoury

et al. (2002a,b) for determining the parameters of the layers.

Transient wave propagation has also been investigated when considering viscoelastic media

(Alshaikh et al. 2001) as well as anisotropic stratified media (Thomson 1997, Caviglia and Morro

2000a,b, Caviglia and Morro 2002, Verma 2002, Gulyayev et al. 2003). A method of simulating the

propagation of elastic waves in stratified transversely inhomogeneous media using a generalized

Thomson-Haskell matrix method was proposed by Zhang and Li (1997), while the propagation of

waves in stratified transversely orthogonal porous media has been investigated by Vashishth and

Khurana (2002).

The conventional way of dealing with the problem of wave propagation is to transform the partial

differential equation (PDE) into the frequency/wave-number domain. However, deriving an

analytical solution is generally very difficult mathematically, thus matrix methods may be more

effective (Kennett 1983). Nevertheless, it is still quite difficult to obtain the numerical solution with

sufficient accuracy, although the precise integration method (Zhong 1994) is quite effective for such

elastic wave propagation problems.

The randomness in wave propagation in layered material comes mainly from random waves,

random parameters of materials and random interfaces or boundaries (Mamolis 2002). There are

many publications on random material parameters and random interfaces (Mamolis and Shaw 1996,

1997, Zhang and Shinozuka 1996, Zhang and Lou 2001, Mamolis 2002). However the random

property caused by the input waves has rarely been studied. In this paper, the propagation of non-

uniformly modulated evolutionary random waves in transversely isotropic viscoelastic media will be

solved using the precise integration method (PIM) (Zhong 1994) combined with the extended

Wittrick-Williams (W-W) algorithm (Zhong et al. 1997) and the pseudo excitation method (PEM)

(Lin 1992, Lin et al. 1993, 1994, 1995a,b,c).

In the frequency domain, random excitations and responses are usually described in terms of the

power spectral density (PSD). As the bedrock is a continuum, it will generate an infinite number of

plane incident waves. If these waves are assumed to be plane waves travelling in the x-y plane, then

a spectrum associated with the wave-number can be obtained through use of a Fourier transform.
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Priestley (1967) suggested a kind of non-uniformly modulated evolutionary random excitation that

can be described by means of the Riemann-Stieltjes integration. However, the relative computation

is rather difficult. In this paper, by using PEM, the non-uniformly modulated evolutionary random

excitations are transformed into deterministic pseudo excitations, so that the problem can be solved

by means of a transient direct integration. 

In the work that follows, the non-uniformly modulated evolutionary random excitations of the

bedrock are given in the frequency/wave-number domain, from which the time dependent PDE

system is developed. The parameters of this system are deterministic, whereas the boundary motion

in the bedrock is random. This is similar to the random vibration of a structure subjected to

excitation by the ground. Clearly, PEM is applicable to this system. The key is to compute the

response of the ground under the pseudo bedrock excitations for any given frequency and wave-

number. In addition, by virtue of the extended W-W algorithm, the participating eigen-pairs may be

obtained and used in the mode superposition prior to using PIM to solve the reduced partial

differential equations. The PSD functions of the ground excitation  and

 in the frequency/wave-number domain are then computed and correspond to the

ground excitations that structures on the ground would be subjected to.

The W-W algorithm is highly accurate for eigenvalue extraction and accurate modes can be

obtained by solving the dual equations. PEM is likewise an efficient and accurate method for

computing the random responses of any linear system, while PIM can solve linear ordinary

differential equations to the working accuracy of the host computer. Therefore, except for taking a

limited number of modes, the proposed method is very accurate.

2. Fundamental equations

Consider the propagation of plane waves in the x-y plane in stratified transversely isotropic media.

Let the z axis point downwards with z = 0 being at the free surface, see Fig. 1. The ith layer is

separated by the horizontal planes , where  when i < j. The lowest

boundary is at z = zl, where enforced displacements (random excitations)  and  are

Suu κx κy ω, ,( ) Svv κx κy ω, ,( ),
Sww κx κy ω, ,( )

z zi i 1 2 … l, , ,=( )= zi zj<
ûg v̂g, ŵ

g
x y t, ,( )

Fig. 1 Stratified material
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given. Let  and  be the displacements along the inertia coordinates, then the strain-

displacement relations are

,

(1)

The viscoelastic isotropic stress-strain relationships are

, (2)

Here: λ and G are the Lamé constants which may be different for different layers; P, Q are

differential operators; pk, qk are the viscoelastic material constants; p0 = 1,  corresponds

to the Maxwell fluid;  corresponds to the Kelvin solid; and  with

 corresponds to the three-parameter solid.

The equations of motion can then be written as

(3)

in which ρ is the density, which may have different values for different layers.

3. The non-stationary modulated evolutionary random field

Priestley (1967) suggests that the non-uniformly modulated evolutionary random excitation 

can be expressed as a Riemann-Stieltjes integration

(4)

in which  satisfies

(5)

where  is a stationary random excitation with PSD  given, δ is the Dirac function and

the superscript asterisk represents the complex conjugate.

In the present paper, the bedrock excitation  is a random field, which can also be written

as a Riemann-Stieltjes integration

(6)

û v̂, ŵ
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in which  satisfies

(7)

(8)

where  is a stationary random field with PSD  given.

In this paper, it is assumed that A varies with ω and t, but not with x and y, that means the

bedrock random excitation is non-uniformly modulated with the time coordinate t, but not with the

space coordinates x and y. Thus, the random excitation of the bedrock can be written as

(9)

(10)

where  are the stationary random components, their PSDs Sxg(κx , κy, ω),

 are known, and ,  satisfy Eq. (8).

4. Pseudo Excitation Method (PEM)

The ground response PSDs  are to be computed

for a series of specified κx , κy, ω. To achieve this, the pseudo excitation method will be used (Lin

1992, Lin et al. 1993, 1994, 1995a,b,c, 1997, 2005). The pseudo excitations of the bedrock can be

expressed as

(11)

If  are the ground responses due to these pseudo excitations, then , ,

 will be the PSD functions of the corresponding ground displacements. Therefore the

problem is reduced to the transient response analysis due to the deterministic pseudo excitations.

Assume the wave-numbers along the x, y directions are . All unknowns can then be

expressed as

(12)

in which  are all functions of z, t and . Let

(13)

Substituting Eq. (12) into Eqs. (1) and (2) and substituting the results into Eq. (3), gives the

following equations in matrix form as
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ûg v̂g ŵg, ,{ }T
A ω t,( )exp i κxx κyy ωt–+( )[ ] dα κx κy ω, ,( ) dβ κx κy ω, ,( ) dλ κx κy ω, ,( ), ,{ }T

∞–

+∞

∫=

xg x y t, ,( ) yg x y t, ,( ) zg x y t, ,( ), ,{ }T
exp i κxx κyy ωt–+( )[ ] dα, dβ dγ,{ }T

∞–

+∞

∫=

xg x y t, ,( ) yg x y t, ,( ) zg x y t, ,( ), ,
Syg κx κy ω, ,( ) Szg κx κy ω, ,( ), α κx κy ω, ,( ) β κx κy ω, ,( ), λ κx κy ω, ,( )

Suu κx κy ω t, , ,( ) Svv κx κy ω t, , ,( ) Sww κx κy ω t, , ,( ), ,
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(14)

in which , and

(15)

We can now constitute a dual vector

(16)

which satisfies

(17)

The boundary and continuity conditions are

 at (z = 0); q, p continuous at 

(18)

Let , then the initial conditions are

(19)

5. Processing of the inhomogeneous boundary conditions
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boundary conditions at z = zl must be transformed into a homogeneous form. Firstly, let us constitute

a matrix Ωr for the r-th layer, which is continuous in , and satisfies

(20)
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. Therefore the inhomogeneous boundary conditions have been transformed into

homogeneous ones. It is easy to prove that one solution of Eq. (20) is

(21)

Substituting  into Eq. (14) gives

 (22)

The initial conditions are

(23)

6. Mode superposition analysis

In order to solve Eq. (22), it is first necessary to solve the following eigen-equation without

damping

(24)

Denoting the i-th eigenpair as , it can readily be verified that

 (25)

where  are the values of the modes  at the r-th layer of the medium and 

etc. are the density and K22 etc. of the r-th layer. The superscript H represents Hermitian

transposition. It is assumed that the first p modes are used in the mode-superposition, then

(26)

In terms of the orthogonality relation (25), the equation of motion (22) and the initial conditions

(23) can be reduced to 
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where
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Therefore, in order to solve the problem in the reduced way, it is necessary to: (1) Solve Eq. (24)
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for eigenpairs using the precise integration method; (2) Compute N1i, N2i; (3) Solve Eq. (27). The

precise integration method combined with the extended W-W algorithm is then used to solve Eq. (24)

to obtain the required eigenvalues (Zhong 2002). 

Once  has been determined from Eq. (24), Ti can be obtained using the precise integration

method (Zhong 2002). The responses u0, v0, w0 at z = 0 can then be computed using Eq. (26). Next,

assume a value for ∆ω, and repeatedly compute u0, v0, w0 for . According

to PEM, the ground response PSDs would be

(30)

7. Numerical examples

A solid consists of two layers, whose parameters are taken from the Gutenberg model (Aki and

Richards 1980), as shown in Table 1. The viscoelastic parameters are p0= 1.0, p1= 0.05, q0 = 1,

q1 = 0.1 and the wave-numbers are κx = 0.0002(m−1) and κy = 0.0003(m−1). The spectral densities of

the stationary components of the evolutionary bedrock excitations (white noises) are Sxg = 1.0 m2/s3,

Syg = 1.0 m2/s3 and Szg = 1.0 m2/s3. Assume , the frequency step is  and

the time step is . Take the non-uniformly modulated function as the following form

qi 1, z0( )

ω n ω∆ n 0 1 2 …, , ,=( )=

Suu u0

* u0⋅= , Svv v0

* v0⋅= , Sww w0

* w0⋅=

ω 0 6,[ ]s 1–∈ ω∆ 0.02s
1–

=

η 0.5s=

A ω t,( ) exp η0

ωt

ωata
----------–⎝ ⎠

⎛ ⎞ g1 t( ), ωata 100.0= =

Fig. 2 Modulation functions

Table 1 Parameters of the soil

Layer
λ

(1010 N/m2)
G

(1010 N/m2)
ρ

(103 Kg/m3)
Thickness

(104 m)

1 3.3 3.5 2.74 1.9

2 4.4 4.3 3.00 1.9
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Fig. 3 Response PSDs for piecewise linear modulation function: (a) PSD of u, (b) PSD of v and, (c) PSD of w

Fig. 4 Response PSDs for sine modulation function: (a) PSD of u, (b) PSD of v and, (c) PSD of w
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Case 1. Consider η0= 0.0, that is the case for uniform modulation. Let g1(t) take three different

functions, as shown in Fig. 2, which are, in the time interval s, (1) the piecewise linear

modulation functions composed by solid lines; (2) the sinusoidal function sin(πt/40) plotted by a

broken curve and; (3) the squared sinusoidal function sin2(πt/40) plotted by a dotted curve. When

t > 40s, all g1(t) equals zero. The PSDs of ground displacement responses are shown in Figs. 3, 4

and 5. 

In all these modulation functions, the numbers of participating modes required range from 100 to

250. Therefore the efficiency of the algorithm is of great importance. The proposed PEM based

algorithm has proved to be quite effective in this sort of application elsewhere (Lin et al. 1994,

1997, 2005). 

There exists a stationary duration lasting for 30s in the piecewise linear modulation function,

whereas the displacement response PSDs don’t reach the stationary state within this duration. This

shows that the non-stationary effect must be considered in the analysis of the propagation of random

waves.

It can be seen from Fig. 3 that the response PSD surfaces oscillate dramatically near the time

when the first derivative of the modulation function becomes severely discontinuous. (See also Lin

et al. 1995c). In Fig. 4 this phenomenon still exists, but the oscillations are not so strong. In Fig. 5

such oscillations almost disappear, since the discontinuity of the derivative of the modulation

function at t = 40s is not so severe as for the previous ones.

Case 2 If η0 = 0.0 is replaced by η0= 2.0 or η0= 4.0, the ground displacement response PSD

surfaces for the piecewise linear modulation function in Case 1 will be replaced by the surfaces

t 0 40,[ ]∈

Fig. 5 Response PSDs for the square of sine modulation function: (a) PSD of u, (b) PSD of v and, (c) PSD of w
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Fig. 6 Response PSDs with η0 = 2.0 for piecewise linear modulation function: (a) PSD of u, (b) PSD of v and,
(c) PSD of w

Fig. 7 Response PSDs with η0 = 4.0 for piecewise linear modulation function: (a) PSD of u, (b) PSD of v and,
(c) PSD of w
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shown in Fig. 6 or Fig. 7. When , the modulation function  decays exponentially and

it will therefore approach zero more quickly for a bigger η0. As a result, the response PSDs will

also decay more quickly as η0 increases. Comparing Figs. 2, 6 and 7, it can be observed that the

effect of a bigger η0 is to cause the higher frequency response components to decay more quickly in

the time domain. This agreement also justifies the method proposed in this paper. 

The participating eigenvalues of the system distribute quite uniformly, therefore the complete

quadratic combination (CQC) (Lin 1992, 2005) method must be used in the analysis. The proposed

PEM - based algorithm provides a strict and efficient CQC method.

8. Conclusions

A new approach to deal with the propagation of non-uniformly modulated evolutionary random

waves in transversely isotropic materials is proposed. The time dependent governing differential

equations are derived in terms of the pseudo-excitation method in the frequency and wave-number

domain and are solved using the eigen-solution expansion method. The precise integration algorithm

in combination with the extended W-W algorithm is applied to the extraction of the eigen-solutions

of the ordinary differential equation. The displacement responses of the ground subjected to non-

uniformly modulated evolutionary random excitations of the bedrock are investigated. Numerical

analyses show that the extended W-W algorithm combined with the precise integration method and

the pseudo excitation method is an effective way to deal with such problems.

Acknowledgements

The authors are grateful for the support of: the doctoral research fund of the Chinese Ministry of

Education (No 20040141020) and the Natural Science Foundation of China (No 10472023).

References

Achenback, J.D. (1973), Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
Aki, K. and Richards, P.G. (1980), Quantitative Seismology, W H Freeman and Company, San Francisco, U.S.A.
Alshaikh, I.A.B.U., Turhan, D. and Mengi, Y. (2001), “Two-dimensional transient wave propagation in

viscoelastic layered media”, J. Sound Vib., 244(5), 837-858.
Brekhovskikh, L.M. (1980), Waves in Layered Media, Academic Press, New York, U.S.A.
Caviglia, G. and Morro, A. (2000a), “Riccati equations for wave propagation in planarly-stratified solids”,

European Journal of Mechanics A/Solids, 19, 721-741.
Caviglia, G. and Morro, A. (2000b), “Wave propagation in multilayered anisotropic solids”, Int. J. Eng. Sci., 38,

847-863.
Caviglia, G. and Morro, A. (2002), “Reflection and transmission in anisotropic dissipative multilayers”, European

Journal of Mechanics A/Solids, 21, 1055-1067.
Doyle, J.F. (1989), Wave Propagation in Structures, Springer, New York, U.S.A.
Ewing, W.M., Jardetzky, W.S. and Press, F. (1957), Elastic Waves in Layered Media, McGraw-Hill, New York,

U.S.A. 
Graff, K.F. (1975), Wave Motion in Elastic Solids, Clarendon Press, Oxford, U.K.
Gulyayev, V.I., Lugovyy, P.Z. and Ivanchenko, G.M. (2003), “Discontinuous wave front propagation in

η0 0≠ A ω t,( )



Propagation of non-uniformly modulated evolutionary random waves 225

anisotropic layered media”, Int. J. Solids Struct., 40, 237-247.
Kennett, B.L.N. (1983), Seismic Wave Propagation in Stratified Media, Cambridge University Press, Cambridge,

U.K.
Khoury, R.A.L., Kasbergen, C., Scarpas, A. and Blaauwendraad, J. (2002a), “Poroelastic spectral element for

wave propagation and parameter identification in multi-layer systems”, Int. J. Solids Struct., 39, 4073-4091.
Khoury, R.A.L., Scarpas, A., Kasbergen, C. and Blaauwendraad, J. (2002b), “Spectral element technique for

efficient parameter identification of layered media. Part III: Viscoelastic aspects”, Int. J. Solids Struct., 39,
2189-2201.

Lin, J.H. (1992), “A fast CQC algorithm of PSD matrices for random seismic responses”, Comput. Struct., 44,
683-687.

Lin, J.H., Fan, Y. and Williams, F.W. (1995a), “Propagation of non-stationary random waves along substructural
chains”, J. Vib. Acoustics, 187(4), 585-593.

Lin, J.H., Shen, W.P. and Williams, F.W. (1995b), “A high precision direct integration scheme for non-stationary
random seismic responses of non-classically damped structures”, Struct. Eng. Mech., 3(3), 215-228.

Lin, J.H., Song, G.Z., Sun, Y. and Williams, F.W. (1995c), “Non-stationary random seismic response of non-
uniform beams”, Soil Dyn. Earthq. Eng., 14, 301-306.

Lin, J.H., Sun, D.K., Sun, Y. and Williams, F.W. (1997), “Structural responses to non-uniformly modulated
evolutionary random seismic excitations”, Communications Numer. Meth. Eng., 13, 605-616.

Lin, J.H., Williams, F.W. and Zhang, W.S. (1993), “A new approach to multiphase-excitation stochastic seismic
response”, Microcomputers in Civil Engineering, 8, 283-290.

Lin, J.H. and Zhang, Y.H. (2005), Vibration and Shock Handbook, Chapter 30: “Seismic random vibration of
long-span structures”, CRC Press, Boca Raton, U.S.A..

Lin, J.H., Zhang, W.S. and Williams, F.W. (1994), “Pseudo-excitation algorithm for nonstationary random
seismic responses”, Eng. Struct., 16, 270-276.

Mamolis, G.D. (2002), “Stochastic soil dynamics”, Soil Dyn. Earthq. Eng., 22, 3-15.
Mamolis, G.D. and Shaw, R.P. (1996), “Harmonic wave propagation through viscoelastic heterogeneous media

exhibiting mild stochasticity-I. Fundamental solutions”, Soil Dyn. Earthq. Eng., 15, 119-127.
Mamolis, G.D. and Shaw, R.P. (1997), “Harmonic elastic waves in continuously heterogeneous random layers”,

Engineering Analysis with Boundary Elements, 19, 181-189.
Priestley, M.B. (1967), “Power spectral analysis of nonstationary random processes”, J. Sound Vib., 6, 86-97.
Rizzi, S.A. and Doyle, J.F. (1992a), “Spectral analysis of wave motion in plane solids with boundaries”, Trans.

ASME Journal of  Vibration and Acoustics, 114, 133-140.
Rizzi, S.A. and Doyle, J.F. (1992b), “Spectral element approach to wave motion in layered solids”, Trans. ASME

Journal of Vibration and Acoustics, 114, 569-577.
Thomson, C.J. (1997), “Modelling surface waves in anisotropic structures I theory”, Physics of Earth and

Planetary Interiors, 103, 195-206.
Timoshenko, S.P. and Goodier, J.N (1951), Theory of Elasticity, McGraw-Hill, New York, U.S.A.
Vashishth, A.K. and Khurana, P. (2002), “Inhomogeneous waves in anisotropic porous layer overlying solid

bedrock”, J. Sound Vib., 258(4), 577-594.
Verma, K.L. (2002), “On the propagation of waves in layered anisotropic media in generalized thermoelasticity”,

Int. J. Eng. Sci., 40, 2077-2096.
Zhang, J.F. and Li, Y.M. (1997), “Numerical simulation of elastic wave propagation in inhomogeneous media”,

Wave Motion, 25, 109-125.
Zhang, R.R. and Lou, M.L. (2001), “Seismic wave motion modeling with layered 3D random heterogeneous

media”, Probabilistic Engineering Mechanics, 16, 381-397.
Zhang, R. and Shinozuka, M. (1996), “Effects of irregular boundaries in a layered half-space on seismic waves”,

J. Sound Vib., 195(1), 1-16.
Zhong, W.X. (1994), “The method of precise integration of finite strip and wave guide problems”, Proc. the Int.

Conf. on Computational Methods in Structural and Geotechnical Engineering, Hong Kong, December.
Zhong, W.X. (2004), Duality System in Applied Mechanics and Optimal Control, Kluwer Academic Pub.,

Boston, U.S.A..




