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Analysis of the shear failure process of masonry by 
means of a meso-scopic mechanical modeling approach
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Abstract. The masonry is a complex heterogeneous material and its shear deformation and fracture is
associated with very complicated progressive failures in masonry structure, and is investigated in this
paper using a mesoscopic mechanical modelling, Considering the heterogeneity of masonry material,
based on the damage mechanics and elastic-brittle theory, the newly developed Material Failure Process
Analysis (MFPA) system was brought out to simulate the cracking process of masonry, which was
considered as a three-phase composite of the block phase, the mortar phase and the block-mortar
interfaces. The crack propagation processes simulated with this model shows good agreement with those
of experimental observations by other researchers. This finding indicates that the shear fracture of
masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic
level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures
are generated in pure shear loading.
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1. Introduction

The masonry is a complex heterogeneous material and its shear deformation and fracture is

associated with very complicated progressive failures in masonry structure. The researches on the

cracking mechanism of the masonry composite were concentrated on the static property analysis

based on the assuming model by virtue of some simplified models coming from the finite element

method (Chiou et al. 1998, 1999, Lotfi and Shing 1991, Lourenco et al. 1999, Miha 1996, Milad et
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al. 1999, Park et al. 1999, Paulo et al. 1998, Briccoli Bati et al. 1999, Shi 1992, Sutcliffe et al.

2001, Wang et al. 2003, Wang and Tang 2003). At present, the analysis research on the related

masonry failure mode, owing to the complexity of dealing with the failure problem, it is difficult to

simulate the whole process from deformation to cracking of the masonry material, and more

difficult to draw the laws.

Now researches try to find an approximate method, which can combine the theory experiment and

numerical simulation to research the capability of the masonry or concrete structure, a good way to

relate the meso-scopic crack propagation to the macroscopic mechanics capability. 

The numerical method is regarded as one of the more effective ways to settle that problem.

Thereinto, finite element method is one of the most important numerical tools. Finite element

method is applicability of different numerical techniques for the analysis of masonry structures, and

compared the computed results with the experimental test data obtained on a full-scale masonry

specimen (Chiou et al. 1999, Miha 1996, Wang et al. 2003). As other researchers pointed out,

homogenization is one of the most important steps in the numerical analysis of masonry structures

where the continuum method is used (Wang and Tang 2003). And equivalent elastic properties,

strength envelope, and different failure patterns of masonry material are homogenized by

numerically simulating responses of a representative volume element (RVE) under different stress

conditions (Massart et al. 2004, Agioutantis et al. 2002, Cluni and Gusella 2004, Giuseppe et al.

2001, Mazars and Pijaudier-Cabot 1987). Pegon et al. (2001) showed how 2D and 3D numerical

modeling could be used in order to design a representative model of a built cultural heritage

structure to test at the laboratory and to characterize its behavior. A 3D model was proposed to

study masonry walls subject to in plane and out of plane actions through a rigorous homogenization

procedure (Pegon et al. 2001). The numerical methods above have a number of advantages over

traditional limiting equilibrium approaches for masonry analysis. Most importantly, the critical

failure surface can be found automatically. Nevertheless, the currently widely accepted numerical

methods do not take into account the heterogeneity of masonry material at mesoscopic level with

complicated conditions. However, during fracturing, the heterogeneity plays a marked influence in

determining the fracture paths and the resulting fracture patterns of masonry. The influence of

heterogeneity is pronounced on the progressive failure process.

The great advantage of numerical tools is its flexibility in simulating all kinds of boundary

conditions. In recent years, there has been growing interest in numerically modeling the meso-scale

behavior during the fracture process and evaluating the macroscopic response of masonry subjected

to external loading. For example, the random particle model presented by Bažant et al. (1990),

UDEC used by Vonk et al. (1991), micromechanical model proposed by Mohamed and Hansen

(1999), the lattice model that have used in the Stevin laboratory (Mohamed and Hansen 1999), and

discontinuous deformation analysis (DDA) modeling framework of (Pearce 2000, Schangen and Van

Mier 1992) are all typical mesoscopic mechanical models that can simulate the fracture process of

masonry. In many micromechanical models such as lattice model, and micromechanical model

proposed by Mohamed and Hensen (1999), Schangen  and Van Mier (1992), Van Mier  and  Van

Vliet (1999), Abrams and Paulson (1991), Guinea et al. (2000), Marfia and Sacco (2001), the

fracture process is simulated based on the assumption that tensile cracking at the micro level is the

only failure criterion associated with the masonry materials. However, the shear fracture really

exists at macroscopic level, whether is there shear cracking at the meso-level? Because of the

heterogeneity of masonry, the stress distribution in the masonry is actually very complex even if
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very simple external load is applied. Its micromechanical failure mechanism is certainly related to

its stress conditions. 

The failure mechanism of masonry at mesoscopic level is certainly related to its stress conditions.

Because of the heterogeneity of masonry, the stress distribution in the masonry is actually very

complex even if very simple external load is applied. In this paper, an elastic damage-based

mesoscopic model that can deal with both tensile damage and shear damage at the meso level is

used to reappraise the fracture mechanism of the regular shear test.

The numerical simulation has become the third powerful tool in studying the mechanical

behaviors of masonry material. Numerical tools can give an approximate behavior at best.

In this paper a three-phase composite model that the masonry was considered as a three-phase

composite of the block phase, the mortar phase and the block-mortar interfaces, is simulated from

mecroscropic level conducted in the Northeastern University, China, by using the Material Failure

Process Analysis (MFPA2D). This numerical approach to the masonry structure sheds some new

light on the understanding of the shear fracture process (Guinea et al. 2000, Marfia and Sacco 2001,

Zhu and Tang 2002, Wang et al. 2002).

As an alternative approach to the failure process related to masonry structures. Mathematically,

MFPA is completely a continuum mechanics method for numerically processing nonlinear and

discontinuum mechanics problems in masonry failure. The code has been developed by considering

the deformation of a heterogeneous material containing a randomly initial distribution of meso-

fractures. As load is applied the fractures will grow, interact, and coalesce, resulting in nonlinear

masonry behavior and in the formation of macroscopic fractures. MFPA not only satisfies the global

equilibrium, strain consistent and nonlinear constitutive relationship of masonry materials but also

takes into account the heterogeneous characteristics of materials at mesoscopic level. In an attempt

to model tension failure, a tension cut-off criterion was incorporated. The code has been

successfully applied in failure process analysis of brittle material (Wang et al. 2003). In the present

work, an introduction on mesoscopic mechanical model is proposed to simulate the behavior of

masonry. Considering the heterogeneity of masonry material, based on the damage mechanics and

elastic-brittle theory, the new developed Material Failure Process Analysis (MFPA2D) system was

brought out to simulate the cracking process of masonry, which was considered as a three-phase

composite of the block phase, the mortar phase and the block-mortar interfaces.

2. Mesoscopic mechanical model

In order to simulate the shear fracture process of masonry subjected to external loading, the

heterogeneity of mesoscopic structures of masonry must be considered and included in the

numerical model. Here the failure process simulation is attained when using FEM as the basic stress

analysis tools, where the four-node isoparametric element is used as the basic element in the finite

element mesh, and the elastic damage constitutive relationship of meso-level elements is

incorporated in it. Masonry is assumed to be a three-phase composite composed of the block phase,

the mortar phase and the block-mortar interface. The mechanical parameters such as Young’s

modulus, strength and Poisson’s ratio of each phase in masonry are heterogeneous and assumed to

be conformed to specific Weibull distribution. This kind of randomness used in the assignment of

mechanical properties of elements is quite different from that of stochastic finite element method,

because the mechanical and geometrical parameters of an element are actually definite after the
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assignment is finished; no probability is incorporated in the finite element analysis. The mesoscopic

element is assumed homogeneous and isotropic, whose damage evolution meets with the specific

elastic damage constitutive law.

2.1 Assignment of material properties

In order to capture the heterogeneity of quasi-brittle materials at meso-level, the mechanical

parameters of materials, including the Young’s modulus, strength and Poisson’s ratio are assumed to

conform to Weibull distribution as defined in the following probability density function:

Fig. 1 Elastic damage constitutive law of element under uniaxial tensile stress

Fig. 2 Distributions of elastic modulus of specimens with different homogeneity indices (53 × 240 elements)
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(1)

Where σc is the parameter of element (such as strength or elastic modulus); the scale parameter σ0

is related to the average of element parameter and the parameter m defines the shape of the

distribution function. The parameter m defines the degree of material homogeneity, is called

homogeneity index. In Fig. 1 elastic damage constitutive law of element under uniaxial tensile stress

is given. In Fig. 1, E and E0 are Damaged and Undamaged (initial) elastic moduli of element,

respectively; ft and ftr are Tensile strengths of element and Residual tensile strengths of element,

respectively; σ is Stress; ε is Strain; εt0, εtr , and εtu are Strain at the peak tensile stress; Maximum

tensile strain at the residual tensile strength; and Ultimate tensile strain.

According to the definition of Weibull distribution, the value of parameter m must be larger than

1.0. Fig. 2 show three single-phase numerical specimens, which are all composed of 53 × 240

elements, produced randomly by the computer according to the Weibull distribution with different

homogeneity indices. As the homogeneity index m increases, material properties become more

homogeneous and approach that of the homogeneous body; the Young’s modulus and strength of

every element approach their mean value given in the Weibull distribution (as shown in Fig. 3). In

Fig. 3 the values of calculated elastic modulus and strength of the numerical specimens are all

normalized with respect to their mean values of Weibull distribution parameter µ0. We find that the

homogeneity index m has much more influence on the macroscopic strength than that on elastic

modulus. 

Only when all the mesoscopic elements in the specimen have the same mechanical parameters

would all elements in the numerical specimen damage simultaneously when subjected to uniaxial

compression, and the stress-strain curve of numerical specimen would exactly coincide with the

constitutive law of elements (Fig. 3). This also proves that the finite element analysis used in MFPA

is correct (the detailed discussion seen in Wang and Tang 2003).

Here the specimen produced numerically with given distribution of material properties is called

“numerical specimen”. In Fig. 4 the different gray degree of color corresponds to different

magnitude of strength of elements. It can be found that the strengths of more elements are

concentrated and closer to σ0
 with the increase of homogeneity index. So the increase of

homogeneity index leads to more homogeneous numerical specimens. In general, we assumed that
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Fig. 3 Stress-strain curve of homogeneous specimens for different schemes of constitutive law (simulated with
MFPA) (Wang and Tang 2003)
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Young’s modulus and strength conform to two individual distributions with the same heterogeneity

index. The distribution of Poisson’s ratio is not very dispersing in reality; therefore, a high

homogeneity index of 100 is specified in the following numerical simulations. In previous literature

(Wang and Tang 2003), how the homogeneity index affects the macroscopic mechanical response

has been discussed and found that the homogeneity index is a very important Weibull distribution

parameter to control the macroscopic response of numerical specimen.

Based on the above assumption, we can numerically produce the heterogeneous material using

this model, and the material is composed of many mesoscopic elements. Here the mesoscopic

element is also acted as the element of finite element analysis. The mesoscopic element is assumed

to be isotropic and homogeneous. This heterogeneous material produced by computer is usually

used to indicate the real specimen used in the laboratory, so it is called numerical specimen in this

investigation. The mesoscopic elements in the specimen must be relatively small enough to reflect

the mesoscopic mechanical properties of materials under the conditions that current computer can

perform this analysis because the number of mesoscopic elements is substantially limited by the

computer capacity. No local heterogeneous part is included; the nonhomogeneity of this numerical

specimen is specified only according to a Weibull distribution with the above given parameters.

2.2 Constitutive relations of element

Continuum damage mechanics has proved to be an efficient tool for the understanding and the

description of structural evolutions, so here we use it to describe the mechanical behavior of a

meso-scopic element. In the paper, the material is analyzed at meso-scopic level. At the beginning,

the element is considered to be elastic, and its elastic properties can be defined by Young’s modulus

and Poisson’s ratio. The stress-strain curve of element is considered linear elastic till the given

damage threshold is attained, and then is followed by softening. We choose the maximum tensile

strain criterion and Mohr-Coulomb criterion respectively as the damage threshold. In the previous

paper (Wang and Tang 2003, Agioutantis et al. 2002, Cluni and Gusella 2004, Giuseppe et al. 2001,

Mazars and Pijaudier-Cabot 1987, Pegon et al. 2001, Bazant et al. 1990, Vonk et al. 1991,

Mohamed and Hansen 1999, Schangen  and Van Mier 1992, Van Mier  and  Van Vliet 1999,

Fig 4 The model of numerical simulation
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Abrams and Paulson 1991, Guinea et al. 2000), it has been proved that the macroscopic mechanical

response of masonry at macroscopic level can be simulated effectively even if very simple

constitutive law (such as elastic-brittle) of mesoscopic element is used. At any event, the tensile

strain criterion is preferential. If the maximum tensile strain criterion is met and the element

damages are in tensile mode, it will not decide whether the element will damage according to

Mohr-Coulomb criterion. Contrariwise, if the element does not damage in tensile mode, we will use

Mohr-Coulomb criterion to judge whether the damage of the element occurs in shear mode.

In elastic damage mechanics, the elastic modulus of element may degrade gradually as damage

progresses, the elastic modulus of damaged material defined as follows.

(2)

Where D represents the damage variable. E and E0 are elastic modulus of the damaged and the

undamaged material, respectively. Here the element as well as its damage is assumed isotropic

elastic, so the E, E0 and D are all scalar. A total (secant) rather than incremental (tangential) form is

used for the proposed constitutive law.

We had discussed the influence of different softening schemes for elastic damage constitutive law

on the macroscopic response of numerical specimen and found that the simple elastic-brittle

constitutive relationship is sufficient to describe the mechanical behavior of mesoscopic element

when the heterogeneity is considered. 

In this paper, the sign convention used through out this paper is that tensile strain is positive.

When the mesoscopic element is under uniaxial tensile stress, the constitutive relationship that is

elasto-brittle damage with given specific residual strength of elements is shown in Fig. 1. No initial

damage is incorporated in this model, thereafter, at the beginning, the stress-strain curve is linear

elastic, no damage occurs, i.e., D = 0. When the maximum tensile strain criterion is met, the

damage of element occurs. Herein this kind of damage is called tensile damage.

According to the constitutive relationship of mesoscopic element under uniaxial tension as shown

in Fig. 1 the damage evolution of element can be expressed as

(3)

Where σt and λ are uniaxial tensile strength and residual strength coefficient (abbreviated as

RSC), respectively. Where εt0 is the strain at the elastic limit, which is the so-called threshold strain.

And εtu is the ultimate tensile strain of element, which indicates that the element would be

completely damaged, when the tensile strain of element attains this ultimate tensile strain. The

ultimate tensile strain is defined as εtu = ηεt0, where η is called ultimate strain coefficient. 

Additionally, we assume that the damage of mesoscopic element in multiaxial stress field is also

isotropic elastic. According to the method of extending one-dimensional constitutive law under

uniaxial tensile to complex tensile stress condition, which was proposed by Mazars et al., we can

easily extend the constitutive law described above to use for three-dimensional stress states. Under

multiaxial stress states the element still damages in tensile mode when the combination of major
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tensile strain attains the above threshold strain εt0. The constitutive law of element subjected to

multiaxial stresses can be easily obtained only by substituting the strain ε in above (3), with

equivalent strain .

It must be emphasized that when D = 1, it can be calculated from Eq. (2) that the damaged elastic

modulus is zero, which would make the system of equations ill-posed, therefore, in this model a

relatively small number, i.e., 1.0e-05 is specified to the elastic modulus under this condition.

In fact, the above constitutive law only considers the situation when element is damaged in tensile

mode. But the compressive softening also occurs when masonry subjected to compressive and shear

stress. In order to study the damage of element when it is under compressive and shear stress,

Mohr-Coulomb criterion as expressed follows is chosen to be the second damage threshold.

(4)

Where σ1 and σ3 are major and minor principal stress respectively. Again, compressive stresses

are negative and tensile stresses are positive. As a matter of fact, the numerical value of σ3 and σ1

respectively indicate the magnitude of maximum and minimum compressive stress when these two

principal stresses are both compressive. Moreover, fc is uniaxial compressive strength and φ is the

internal friction angle of the element. Here, the effect of the intermediate principal stress σ2 on the

damage is not included in the model.

This kind of damage is called shear damage because the stress conditions of element meet the

Mohr-Coulomb criterion. 

In the same way, similar constitutive law is given when the element is under uniaxial compression

and damaged in shear mode according to the Mohr-Coulomb criterion. The damage variable D can

be described as follows.

(5)

Where λ is also residual compressive strength. We assumed that  is true when

element is under uniaxial compression or tension.

The mechanical behavior of masonry in multiaxial compression is mainly characterized by a

considerable increase of strength and pre-peak strain at high confinement level. When element is

under multi-axial stress state and satisfies the Mohr-Coulomb criterion, the damage occurs, and we

must consider the effect of other principal stress in this model during damage evolution process.

When the Mohr-Coulomb criterion is met, we can calculate the minor principal strain (maximum

compressive principal strain) εc0 at the peak value of minor principal stress.

(6)

In addition, we assume that the damage evolution is related to the maximum compressive

principal strain ε3. Therefore, we use the maximum compressive principal strain ε3 of damaged

element to substitute the uniaxial compressive strain ε in Eq. (5). 

From the above derivation of damage variable D, which is generally called damage evolution law

in damage mechanics, as well as the Eq. (2), we can calculate the damaged elastic modulus of
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element at each stress or strain level. The unloaded element keeps its original elastic modulus and

strength. That is to say, the element will unload elastically and no residual deformation is

incorporated in the numerical model.

The simulation of crack is just as method used in smeared crack model, the crack is smeared over

the whole element, which has the advantage of leaving untouched the mesh topology, and no special

singular element is adopted. When the stress states of an element meet the damage threshold, the

element will damage in tensile or shear mode. Only when the maximum tensile strain of the

damaged element attains given ultimate tensile strain, the damaged element will become totally

cracked and displayed as crack in the post-processing figures.

2.3 Numerical simulation process

Based on the mesomechanical model presented in the preceding sections, computer program

named MFPA (Material Failure Process Analysis) was developed based on RFPA (Rock Failure

Process Analysis) under the Microsoft Visual C++ and the Fortran Power-Station environment. The

program provides a user-friendly interface so that the numerical simulation process, including the

setting-up of the numerical model, execution of the finite element analysis, the processing of

outputs, can all be accomplished easily and efficiently. Outputs from the computer program include

stress distributions, the stress-strain response, and the crack propagation process. The entire process

of numerical simulation using this computer program may divided into the three common stages of

pre-processing, finite element analysis and post-processing as described below.

(1) Pre-processing: the pre-processing stage is aimed at the creation of a numerical model of a

masonry specimen for use in a subsequent finite element analysis (numerical specimen). As

mentioned earlier, the masonry is considered as a three-phase composite. Before generating a

finite element mesh, material properties for each of the three phases have to be specified first.

In principle, the mechanical properties including the elastic modulus and strength of each phase

should be determined from meso-level experiments. The meso-level properties of the block

phase and the mortar phase should be obtained form meso-level experiments on the block and

mortar respectively. The properties of the block-mortar interfaces should also be similarly

based. However, there are few results from experiments on the block-mortar interfaces that are

carried out at the meso-level. In the present study, the Weibull distribution parameters of the

three phases were chosen to give realistic macroscopic responses of masonry under uniaxial

compression when compared with results from laboratory experiments.

(2) Finite element analysis: this stage involves finite element stress analysis that is generally

executed with a large number of steps corresponding to different load or deformation levels.

Both load control and displacement control are possible during the analysis, with the latter

being generally adopted to trace the entire fracture process. Within each step corresponding to

a pre-defined load or deformation level, several iterations are carried out until on new damage

is detected or the number of newly damaged elements is below a small percentage of the total

number of elements. Each iteration involves a linear elastic finite element analysis of the

numerical specimen under the total applied load/deformation, with the elastic modulus of each

element being that determined by the previous iteration, the results of which are then used to

evaluate the state of damage of each element and the degraded material properties considering

the new damage. Once convergence is achieved, the analysis proceeds to the next step with a

small increment in the load or deformation level. In addition, similar screen displays of the
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distributions of elastic modulus and damaged elements are also possible.

(3) Post-processing: Following the completion of the finite element analysis, a variety of outputs

are available for an examination of the entire fracture process. Phenomena such as deformation

localization, stress redistribution, load-displacement responses, and crack patterns can then be

examined.

3. Numerical simulation and its results

Fig. 4 is the numerical specimens, which is composed of 200 × 198 elements with geometry of

1000 mm × 990 mm in size. All the elements have the same size in scale (square in shape). The

mechanical parameters of masonry such as Young’s modulus, strength and Poisson’s ratio are

heterogeneous and assumed to be conformed to Weibull distribution. 

The heterogeneity of the masonry structure must be considered to investigate the fracture process

of the masonry structure at meso-scopic scale. Therefore, the heterogeneity of the material is

incorporated into the numerical model at small scale to investigate the localization of the fracture

and the initiation, propagation and coalescence of the cracks in the masonry, and even the whole

fracture process of the masonry. Similar to other numerical methods, the crack are randomly

distributed in the whole element, the mechanical property of the element is still isotropic and

homogeneous. As for the damaged element, it can be taken as completely fractured and assigned to

a very small value (1.0E-05) until the maximum tensile strain reaches to the specified limit strain.

In the Figures of elastic modulus, the newly formed cracks can be obviously observed. In the

numerical model, tensile damage is the main reason for the initiation and propagation of cracks.

Shear damage can also lead to the degradation of the mechanical properties of elements and cracks

cannot be formed in the model. Even so, shear damage can cause the redistribution of stress and

induce cracks due to newly concentrated tensile stress.

Based on the above considerations, the homogeneity indexes list in Table 1 were used in this

numerical simulation presented in this section.

The boundary conditions of the problems are set as plane strain state. The parameter value is

selected according to the related handbook, and the elastic modulus and strength of the bondages

are small, which are similar to those of the concrete and mortar. The values of mechanical

parameters of the material are randomly assigned for a given material with a given homogeneity

index. In order to research the influence of the cracking path in the masonry structure, the strength

of mortar is given a low value, about 20 percent of the block strength. The numerical model is

shown in Fig. 4. Displacement control manner is adopted. The loading step is 0.004 mm/step and

200 steps in total. 

Table 1 Weibull distribution parameters of the three phases for masonry

Phase
Scale parameter of 

elastic modulus 
(GPa)

Scale parameter of 
compressive strength 

(GPa)

Homogeneity 
index
(m)

Block 50 100 5

Mortar 20 40 3

The block-mortar interfaces 26 60 3
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The elastic modulus of the failed elements will be reduced to a small value in MFPA2D, thus the

propagation track of the cracks can be obviously observed. As a convention, compressive stress is

regarded as positive value and tensile stress negative value. The numerically simulated results (step

20, step 48, step 87 and step 91) of the masonry structure under loading are given in Figs. 5(a)-(d). 

As shown in Fig. 5(a), tensile failure firstly occurs along perpendicular cracks and then shear

failure occurs along horizontal cracks, the failure pattern is symmetrical along the midline of the

masonry. Numerically simulated results reproduced the whole process of the masonry. Compared

with the Fig. 6 in experimental test (see Raijmakers and Vermeltfoort 1992), the numerical results

agree well with the experimental results, which reveals that the numerical model can well replicate

the failure process of the masonry. 

The heterogeneity of masonry is incorporated in the numerical simulations of this investigation,

those phenomena such as deformation localization, stress redistribution and curvilinear crack

propagation path observed in experiments can be numerically retrieved. Besides, the maximum load

obtained from numerical simulation is 186.7 KN, which is quite close to the values tested in

Fig. 5 Fracture process of masonry wall (Numerical results)
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experiment (Wang and Tang 2003). Because both the maximum tensile strain criterion and Mohr-

Coulomb criterion are utilized as damage threshold, the shear damages of few mesoscopic elements

are also observed from numerical simulation of masonry specimen subject to shear loading. But the

numerical result in the paper further proves that the shear damage is predominantly caused by

tensile damage at the mesoscopic level.

In fact, the failure process of the masonry structure is the mutual interaction and coalescence of

multiple cracks. Numerical simulation is characterized by quick visualization and feasible

manipulation, and it can not only track the whole process of initiation, propagation and coalescence

of the crack, but also clearly show the stress field, displacement field and damage evolution in the

masonry and obtain the failure mechanism of masonry with different geometries and loading

conditions. It is shown that the MFPA method is a very promising tool to study the failure and

seismicity of the masonry structure. 

Using the numerical method mentioned above, not considering the change of the damage and the

element grid structure, it can simulate the complex process of the cracking and the interaction in

compound material effectively.

4. Conclusions

The implementation of a mesoscopic mechanical model has been discussed in this paper; an

elastic damage mechanical model is proved to be effective in simulating the fracture process of

masonry. 

The recently proposed mesoscopic numerical model is capable of capturing the crack propagation

path and other fracture characteristics found in the shear tests of masonry. 

Numerical simulation is characterized by quick visualization and feasible manipulation, and it well

reproduces the whole process of initiation, propagation and coalescence of the crack. Compared

with the experimental tests, it can easily obtain the stress field and damage evolution in the fracture

process of the masonry.

Fig. 6 The progress of masonry wall failure progress observed in experiment (Raijmakers and Vermeltfoort
1992)
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From this work, in 2D space, these are a very good agreement between results on real materials

and simulation. It is the first step in this direction and the method must be refined, particularly to

extend for 3D space by a way, which seems easy to imagine. This opens up a new, very promising,

approach of research.

Acknowledgements

This research is supported by the Chinese National Natural Science Foundation (Grant No.

50374020), The Foundation on the Korea-China Young Scientist Exchange Program between the

Ministry of Science and Technology of the Republic of Korea and the Ministry of Science and

Technology of the Peoples’ Republic of China (2004). The Liaoning Natural Science Foundation of

China (Grant No. 20021008) of P. R. China. The Foundation of China Scholarship Council

(2003821178), the authors are grateful for these supports. Moreover, the helpful discussion with Dr.

W. C. Zhu at Lab for Numerical Test on Material Failure, Northeastern University, Shenyang, P. R.

of China, is very much appreciated.

References

Abrams, D.P. and Paulson, T.J. (1991), “Modeling earthequake response of masonry building structures”, ACI
Struct. J., 475-485.

Agioutantis, Z., Stiakakis, C. and Kleftakis, S. (2002), “Numerical simulation of the mechanical behaviour of
epoxy based mortars under compressive loads”, Comput. Struct., 80(27-30), 2071-2084.

Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Pijaudier-Cabot, G. (1990), “Random particle model for fracture
of aggregate or fiber composites”, J. Eng. Mech., ASCE, 116(8), 1686-1705.

Briccoli Bati, S., Ranocchiai, G. and Rovero, L. (1999), “A micromechanical model for linear homogenization of
brick masonry”, Materials and Structures/Materiaux et Constructions, 32, 22-30.

Chiou, Y.J., Tzeng, J.C. and Hwang, S.C. (1998), “Discontinuous deformation analytical for reinforced concrete
frames infilled with masonry walls”, Struct. Eng. Mech., 6(2), 201-215.

Chiou, Y.J., Tzeng, J.C. and Liou, Y.W. (1999), “Experimental and analytical study of masonry infilled frames”,
J. Struct. Eng., ASCE, 125(6), 1109-1125.

Cluni, F. and Gusella, V. (2004), “Homogenization of non-periodic masonry structures”, Int. J. Solids Struct.,
41(7), 1911-1923. 

Giuseppe, G., Santi, R. and Roberto, S. (2001), “Numerical analysis of masonry structures via interface models”,
Comput. Meth. Appl. Mech. Eng., 190, 6493-6511.

Guinea, G.V., Hussein, G., Elices, M. and Planas, J. (2000), “Micromechanical modeling of brick-masonry
fracture”, Cement and Concrete Research, 30(5), 731-737.

Lotfi, H.R. and Shing, P.B. (1991), “An appraisal of smeared crack models for masonry shear wall analysis”,
Comput. Struct., 41(3), 413-425.

Lourenco, P.B., Rots, J.G. and Blaauwendraad, J. (1999), “Implementation of an interface cap model for the
analysis of masonry structures”, Comput. Struct., 51(1), 123-134.

Marfia, S. and Sacco, E. (2001), “Modeling of reinforced masonry elements”, Int. J. Solids Struct., 38(24-25),
4177-4198. 

Massart, T.J., Peerlings, R.H.J. and Geers, M.G.D. (2004), “Mesoscopic modeling of failure and damage-induced
anisotropy in brick masonry”, European Journal of Mechanics - A/Solids, 23(5), 719-735. 

Mazars, J. and Pijaudier-Cabot, G. (1987), “Continuum damage theory - application to concrete”, J. Eng. Mech.,
ASCE, 115(2), 345-365.



194 Shuhong Wang, Chun’an Tang and Peng Jia

Miha, T. (1996), “Seismic behavior of masonry walls: Experimental simulation”, J. Struct. Eng., ASCE, 122(9),
1040-1047.

Milad, M.A., Shebani, L. and Sinha, S.N. (1999), “Stress-strain characteristics of brick masonry under uniaxial
cyclic loading”, J. Struct. Eng., ASCE, 125(7), 600-604.

Mohamed, A.R. and Hansen, W. (1999), “Micromechanical modeling of concrete response understatic loading-
Part I: Model development and validation”, ACI Mater. J., 96(2), 196-203.

Park, H., Klingner, R.E. and Wheat, D.L. (1999), “Numerical techniques for predicting brittle failure of
reinforced concrete planar structures”, J. Struct. Eng., ASCE, 125(10), 1507-1513.

Paulo, B.L., Jan, G.R. and Johan, B. (1998), “Continuum model for masonry: Parameter estimation and
validation”, J. Struct. Eng., ASCE, 124(6), 642-652.

Pearce, C.J., Thavalingam, A., Liao, Z. and Bicanic, N. (2000), “Computational aspects of the discontinuous
deformation analysis framework for modelling concrete fracture”, Engineering Fracture Mechanics, 65, 283-
298.

Pegon, P., Pinto, A.V. and Geradin, M. (2001), “Numerical modeling of stone-block monumental structures”,
Comput. Struct., 79, 2165-2181.

Raijmakers, T.M.J. and Vermeltfoort, A. Th. (1992), “Deformation controlled mesoshear tests on masonry piers”,
Report B-92-1156, Tno-BOUW/Tu Eindhoven, Building and Construction Research, The Netherlands (in
Dutch).

Schangen, E. and Van Mier, J.G.M. (1992), “Experimental and numerical analysis of micromechanisms of
fracture of cement-based composites”, Cement. Concr. Comp., 14, 105-118.

Shi, C.X. (1992), Design and Theory of Masonry Structures, Chinese Construction Press, Beijing. (in Chinese).
Sutcliffe, D.J., Yu, H.S. and Page, A.W. (2001), “Lower bound limit analysis of unreinforced masonry”, Comput.

Struct., 79, 125-1312.
Van Mier, J.G.M. and Van Vliet, M.R.A. (1999), “Experimental and numerical simulation and the role of

engineering judgment in the fracture mechanics of concrete and concrete structures”, Constr. Build. Mater., 13,
3-14.

Vonk, R.A., Rutten, H.S., Van Mier, J.G.M. and Finneman, H.J. (1991), “Micro-mechanical simulation of
concrete softening”, Proc. of the Int. RILEM/ESIS Conf., Fracture Processes in Concrete, Rock and Ceramics.
Boundary Row, London: E. F. N. Spon, 129-138.

Wang, S.H. and Tang, C.A. (2003), Numerical Test of Masonry Failure Process, Science press, Beijing. (in
Chinese).

Wang, S.H., Tang, C.A., Wu, X. and Zhao, Y.C. (2002), “Numerical analysis on crack formation, reciprocity &
coalescence of masonry structure”, J. Northeastern University[natural science], 23(11), 1108-1111.

Wang, S.H., Tang, C.A., Zhu, F.S. and Zhu, W.C. (2003), “Constitutive damage model and its of numerical
method on cracking process of masonry structure”, J. Construction Structure, 24(2), 43-46. (in Chinese).

Zhu, W.C. and Tang, C.A. (2002), “Numerical simulation on shear fracture process of concrete using mesoscopic
mechanical model”, Construction and Building Materials, 16(8), 453-463.




