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Analysis of free vibration of beam on elastic soil using 
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Abstract. Differential transform method (DTM) for free vibration analysis of both ends simply
supported beam resting on elastic foundation is suggested. The fourth order partial differential equation for
free vibration of the beam resting on elastic foundation subjected to bending moment, shear and axial
compressive load is obtained by using Winkler hypothesis and small displacement theory. It is assumed
that the material is linear-elastic, and that axial load and modulus of subgrade reaction to be constant. In
the analysis, shear and axial load effects are considered. The frequency factors of the beam are calculated
by using DTM due to the values of relative stiffness; the results are presented in graphs and tables.

Keywords: differential transformation method; partial differential equation; motion equation; free
motion; elastic soil.

1. Introduction

Differential equations are widely used to describe continuous time physical problems. In most
cases, these problems may be too complicated to solve analytically. Alternatively, the numerical
methods can provide approximate solutions rather than the analytical solutions of problems. The
equation of free vibration of the beam resting on elastic foundation subjected to bending moment
shear and axial load is a forth order partial differential equation. Many researchers have solved the
forth order partial differential equation of motion by using different methods in the past. Doyle and
Pavlovic (1982) have solved motion equation of Euler beam partially resting on elastic foundation
by using separation of variables. West and Mafi (1984) have obtained the eigenvalues for free
vibration of column-beam systems on elastic soil using an initial-value numerical method. Çatal
(2002) has obtained the free vibration circular frequencies of the piles partially embedded in the soil
due to supporting conditions of top and bottom ends of the pile by using separation of variables.
Chen and Ho (1996, 1999), using differential transform technique have proposed a method to solve
eigenvalue problems for the free and transverse vibration problems of a rotating twisted Timeshenko
beam under axial loading Özdemir and Kaya (2006), flapwise bending vibration of a rotating
tapered cantilever Bernoulli-Euler beam has considered by using differential transform technique.
Jang and Chen (1997), the differential transformation method has applied to solve a second order
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non-linear differential equation that describes the under damped and over damped motion of a
system subject to external excitation. Chen and Liu (1998) have considered first order both the
linear and non-linear two-point boundary value problems using the differential transform method,
Jang et al. (2000) have interested in the first order linear and non-linear initial-value problems have
solved by differential transformation method with fixed grid size. Köksal and Herdem (2002) have
proposed for the analysis of the electrical circuits using differential Taylor transformation. Hassan
(2002) has studied the solution of Sturm-Lioville eigenvalue problem by the help of differential
transform method). Ayaz (2004) has obtained numerical solution of linear differential equations by
using differential transform method. In this study, a new transformation called differential transform
has introduced to solve the equation of motion of the beam on elastic soil. The concept of
differential transform was first proposed by Zhou in 1986 and was applied to solve linear and non-
linear initial value problems in electric circuit analysis (Zhou 1986).

2. Problem formulation

A beam resting on elastic foundation, internal forces and deformation of differential beam
segment are presented in Fig. 1(a) and Fig. 1(b), respectively. It is assumed that the elastic soil that
the beam is on behaves due to Winkler hypothesis. The relation between displacement function
y(x, t) of the beam on elastic soil and the distributed force q(x, t) existing at the elastic soil under
the beam can be written by q(x, t) = Cs y(x, t). Where Cs = C0 b, C0 is the modulus of subgrade
reaction, b is beam width.

Fig. 1(a) A beam on elastic soil, (b) Internal forces and deformations of differential beam segment on elastic
soil
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The equation of lateral motion of the beam resting on an elastic foundation is written using the
equilibrium equations of the internal forces acting on the differential beam segment (Fig. 1b) and
neglecting the second order terms as follows (Çatal 2002)

(1)

The lateral displacement function of the beam may be written for harmonic motion as follows:

Y(x, t) = Y(x) · sin(ωt + θ ) (2)

Where Y(x) is the mod shape, ω is beam circular frequency, θ is phase angle, t is time variable.
If the position variable (x) and the mode shape Y(x) are nondimensionalized by defining new

variables φ(z) = Y(x)/L, z = x/L, the equation of lateral motion of the beam is written as follows:

(3)

Where N
r 
= NL2/(π 2EI) is ratio of compressive axial load N acting on the beam to Euler buckling load,

L is beam length, 

In the case that axial and shear force effects are neglected  and  terms are taken

being zero (Tuma and Cheng 1983).
If both side of Eq. (3) is divided by Sin(ωt + θ ) following equations are obtained.

(4)

3. Differential transformation

The differential transformation technique, which was first proposed by Zhou in 1986, is one of the
numerical methods for ordinary and partial differential equations that use the form of polynomials
as the approximation to the exact solutions that are sufficiently differentiable. f (z, t) function that
will be solved and the calculation of following derivatives necessary in the solution become more
difficult when the order increases. This is in contrast with the traditional high-order Taylor series
method. Instead, the differential transform technique provides an iterative procedure to obtain
higher-order series; therefore, it can be applied to the case high order.

Basic definitions and operations of differential transformation are introduced as follows.
Differential transformation of the function φ (z) is defined as follows:
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(5)

In Eq. (5), φ (z) is the original function and Φ(k) is transformed function which is called the T-
function (it is also called the spectrum of the φ (z) at z = z0, in the K domain). The differential
inverse transformation of Φ(k) is defined as:

(6)

from Eq. (5) and Eq. (6) we get

(7)

Eq. (7) implies that the concept of the differential transformation is derived from Taylor’s series
expansion, but the method does not evaluate the derivatives symbolically. However, relative
derivative are calculated by iterative procedure that are described by the transformed equations of
the original functions.

From the definitions of Eq. (5) and Eq. (6), it is easily proven that the transformed functions
comply with the basic mathematical operations shown in below. In real applications, the function
φ (z) in Eq. (6) is expressed by a finite series and can be written as

(8)

Eq. (8) implies that  is negligibly small and  is decided by the converge of

the eigenvalues. Where  is series size.

3.1 Some basic mathematical operations of the differential transformation:

The fundamental mathematical operations performed by differential transformation are listed,
where the transformed functions Φ(k) are related with the known original function φ (z), as follows:
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3.2 Using differential transformation to solve motion equations:

The boundary conditions of the beam resting on elastic foundation and both ends simply
supported shown in Fig. 2 are given in Eqs. (15)-(18).

(15)

(16)

(17)

(18)

If transform values of Eqs. (9)-(14) are substituted into dimensionless displacement functions φ (z)
and its derivative in equation of motion (4) for the case that axial and shear force effects are taken
into consideration, the following equation is obtained.

(19)

where 

Boundary conditions (15) and (17) are written using Eq. (8) for near the z0 = 0 point as in the
following respectively:

for z = 0;      Φ(0) = 0 (20)

for z = 1; (21)

Boundary conditions (16) and (18) are written using the function obtained by derivating Eq. (8)
twice as in the following:

for z = 0; Φ(2) = 0 (22)

for z = 1; (23)
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Fig. 2 Both ends simply supported beam on elastic soil



56 Seval Çatal

Put Φ(1) = α1, Φ(3) = β1 from Eq. (19) we find that

for k = 0 Φ(4) = 0
k = 1 Φ(5) = (−3!β1C – Dα1)/5!
k = 2 Φ(6) = 0
k = 3 Φ(7) = (3!β1C

2 + CDα1 – 3!β1D)/7! (24)
k = 4 Φ(8) = 0
k = 5 Φ(9) = (−3!β1C

3 – C2Dα1 + 2*3!β1CD + D2α1)/9!
k = 6 Φ(10) = 0
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.

.

We calculate up to the th term  and substituting from Φ(1) to  into Eq. (21) and
(23) we obtain system,

(25)

Determinant of the coefficients matrices of equations system (25) is obtained as in the following.
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Also the series expansions of Eq. (26) is 
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In the case that both axial and shear force effects are neglected the value of C is taken being zero
in Eq. (27). In the case that only axial force effect is neglected the value of C is taken being

 in Eq. (27). In the case that only shear force effect is neglected the value of C
is taken being N

r
π 2 in Eq. (27).

Solving (26) we get , i = 1, 2, 3, … where  is the th estimated ω circular
frequency corresponding to , and  is indicated by

 (28)

where  is the ith estimated circular frequency corresponding to  and ε is a positive and
small value.

4. Numerical examples

Both ends simply supported beam made by IPB 700 steel profile is resting on elastic foundation
having modulus of subgrade reaction of 60.000 kN/m2. Natural circular frequencies for the first
three modes of the beam are calculated using DTM for the case that bending moment, axial and
shear force effects are taken into consideration and for the case that axial, shear force effects are
neglected. The characteristics of IPB 700 steel profile are presented as in the following:

I = 256.9 * 10−5 m4;  A = 3.06 * 10−2 m2;  = 0.24 kNsec2/m;  = 1.54; 
E = 2.1 * 108 kN/m2; G = 8.1 * 107 kN/m2 

Lengths of the beam (L) on elastic soil are calculated due to relative stiffness values (λ) and are
presented in Table 1 in numerical example:

Variation due to relative stiffness of frequency factors  calculated due to circular

frequencies of the beam on elastic foundation that bending moment, shear and axial force effects
are taken into consideration and that, shear, axial force effects are neglected are presented
respectively in Fig. 3 and Fig. 4 for N

r
 = 0.25; N

r
 = 0.50; N

r
 = 0.75. 

mω2 Cs–( ) k L
2/AG

ω ωi

N( )
= ωi

N( )
N

N N

ωi

N( )
ωi

N 1–( )
– ε≤

ωi

N 1–( ) N 1–

m k

γ
mω

2
L
4

EI
----------------4=

Table 1 The beam lengths (L) due to relative stiffness (λ)

λ = Cs L
4/EI L (m)

1 1.731

10 3.079

100 5.476

1000 9.738

10000 17.316

100000 30.793

1000000 54.769
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Fig. 3(a) Variation of frequency factors due to relative stiffness for Nr = 0.25, (b) Variation of frequency
factors due to relative stiffness for N

r
 = 0.50, (c) Variation of frequency factors due to relative

stiffness for Nr = 0.75 

Fig. 4 Variation of frequency factors due to relative stiffness of the beam that axial and shear force effects are
neglected.
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To demonstrate rate of convergence and accuracy of the presented DTM both ends simply
supported beams resting on elastic foundation having modulus of subgrade reaction of 60.000 kN/m2

and made by IPB700 steel profile are considered neglecting shear and axial force effects. The
frequency factors of these beams calculated due to relative stiffness by using DTM. The results of
DTM and the results which are obtained from graphs of Doyle and Pavlovic (1982) are presented in
Table 2.

Neglecting axial force effects, the natural vibration frequencies and frequency factors of both end

simply supported beam not resting on elastic foundation can be calculated by using 

and, respectively (Chopra 1995) where r is mode number. Due to lengths of the beam and series
size , frequency factors of both ends simply supported beams which are made of IPB700 steel
profiles are calculated by using DTM and assuming C

s 
= 0. The results of DTM and the results of

Euler beam are presented in Table 3.

5. Discussions

Fig. 3 indicate that, for all values of N
r
, the curves of frequency factor for the first three modes of

the beam having relative stiffness between 100000 and 1000000 cluster together.
Frequency factor values for lower modes decreases as the magnitudes of the axial force increases

for relative stiffness value between 1 and 10000.
The comparison between Figs. 3 and 4 indicates that the shear and axial force effects are

significant on frequency factors especially for the first two modes of the beam having relative
stiffness between 1 and 100000. The frequency factors with shear and axial force effects of the
beam having relative stiffness between 1 and 100000 are lower than the values without shear and
axial force effects of the beam having same relative stiffness. Fig. 4 shows that the curves of
frequency factor for the first three modes of the beam having relative stiffness between 1000000
and 1000000 cluster for the case that axial and shear force effects are neglected. 

The frequency factors with and without shear and axial force effects for the first three modes of
the beam having relative stiffness between 100000 and 1000000 are very close together. This result

ωr
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2
π
2
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Table 2 The frequency factors due to relative stiffness of the beam that axial and shear force effects are
neglected.

λ = CsL
4/EI  1st. Mode  2nd. Mode  3rd. Mode

Present Doyle et al. Present Doyle et al. Present Doyle et al.

1 3.15 3.15 6.28 6.28 9.42 9.42

10 3.22 3.20 6.29 6.28 9.43 9.43

100 3.75 3.75 6.38 6.38 9.45 9.45

1000 5.76 5.75 7.11 7.10 9.71 9.70

10000 10.02 10.03 10.35 10.35 11.56 11.56

100000 17.79 17.75 17.85 17.85 18.12 18.10

1000000 31.69 - 31.84 - 32.09 -
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Table 3 The frequency factors of both ends simply supported Euler beams 

 Method L = 1.731 m L = 3.079 m L = 5.476 m

γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3

 8 3.14159265 6.32966375 6.32966518 3.14159265 6.32967997 7.61925411 3.14159265 6.32968044 7.61926842

10 3.14159265 6.28365898 6.28366518 3.14159265 6.28365183 8.84833813 3.14159265 6.28368330 8.84844017

DTM 12 3.14159265 6.28319931 9.37460423 3.14159265 6.28328531 9.3741798 3.14159265 6.28328531 9.37489605

14 3.14159265 6.28318531 9.42348003 3.14159265 6.28318531 9.42350674 3.14159265 6.28318531 9.42362565

16 3.14159265 6.28318531 9.42477795 3.14159265 6.28318531 9.42477795 3.14159265 6.28318531 9.42477795

Exact solution 3.14159265 6.28318531 9.42477795 3.14159265 6.28318531 9.42477795 3.14159265 6.28318531 9.42477795

L = 9.738 m L = 17.316 m L = 30.793 m

γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3

 8 3.14159265 6.32968044 7.61927366 3.14159265 6.32976341 7.61929178 3.14159265 6.32995558 7.61961699

10 3.14159265 6.28365183 8.84844875 3.14159265 6.28380871 8.84841061 3.14159265 6.28383589 8.84842205

DTM 12 3.14159265 6.28319931 9.37488747 3.14159265 6.28328531 9.37514210 3.14159265 6.28328531 9.37539577

14 3.14159265 6.28318531 9.42352009 3.14159265 6.28318531 9.42359447 3.14159265 6.28318531 9.42381382

16 3.14159265 6.28318531 9.42477795 3.14159265 6.28318531 9.42477795 3.14159265 6.28318531 9.42477795

Exact solution 3.14159265 6.28318531 9.42477795 3.14159265 6.28318531 9.42477795 3.14159265 6.28318531 9.42477795

L = 54.769 m

γ1 γ2 γ3

8 3.14159265 6.33047342 7.61982059

10 3.14159265 6.28447914 8.84909916

DTM 12 3.14159265 6.28319931 9.37594509

14 3.14159265 6.28318531 9.42488766

16 3.14159265 6.28318531 9.42477795

Exact solution 3.14159265 6.28318531 9.42477795

N

N

N
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indicates that the effects of shear and axial force on frequency factor for the beam having relative

stiffness between 100000 and 1000000 are negligible.

In application of DTM, frequency factor values of the beam are calculated by increasing series

size . It is determined that change in the results of frequency factors with shear and axial force

effects are negligible for series size > 12 and change in results of frequency factors without shear

and axial force effects are negligible for series size > 5. The series size is taken respectively 15

and 7 in the numerical example for the case that shear, axial force effects are taken into

consideration and are neglected. 

The numerical values of frequency factors obtained for the first three modes of the beam using

DTM become fixed for the case that the series size is taken higher than a definite value. Table 2 is

achieved that the results of DTM agree with the results of Doyle et al. (1982). The results in Table

3 indicate that the results of Euler beam obtained by using DTM and assuming Cs = 0 are rapidly

converging on the results of exact solution and the results of DTM are accurate.

6. Conclusions

DTM was employed for free vibration analysis of both ends simply supported beam resting on

elastic foundation. Bending moment, axial and shear force effects are taken into consideration in

this analysis. If axial, shear force effects are neglected and it is assumed that C
s 

= 0 in equations

obtained by DTM, the equations are obtained for free vibration analysis of Euler beam having same

boundary conditions. It is seen from the results of DTM and results in the references that rate of

convergence and accuracy of DTM is very good and that the frequency factors of the beam having

relative stiffness values between 1 and 1000 increase as the values of axial compressive loads acting

on the beam decrease. 
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