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Abstract. A method for the dynamical analysis of FE discretized uncertain linear and nonlinear
structures is presented. This method is based on the moment equation approach, for which the differential
equations governing the response first and second-order statistical moments must be solved. It is shown
that they require the cross-moments between the response and the random variables characterizing the
structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a
closure scheme must be applied even if the structure is linear. In this sense the proposed approach is
approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in
order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be
linear if the structure is linear. The application of this procedure to some simple examples has shown its
high level of accuracy, if compared with other classical approaches, such as the perturbation method, even
for low levels of closures.

Keywords: uncertain structures; linear and nonlinear structures; moment equation approach; dynamic
analysis.

1. Introduction

The study of uncertain structures has become more and more important in these last years. The

uncertain structures are characterized by the fact that one or more of their mechanical and/or

geometrical properties cannot be defined deterministically. The importance of this kind of study is

above all related to some structural problems, as the structural reliability, for which neglecting the

effective uncertain nature of the structural parameters is not possible. It is obvious that for these

systems the traditional deterministic analyses cannot be applied, but alternative approaches have to

be taken into account. If the uncertainty of the system parameters is due to imprecise information

and the statistical data cannot be obtained, only the theory of fuzzy sets can be considered and the

fuzzy finite element method must be used (Zadeh 1978, Rao and Savier 1995, De Lima and

Ebecken 2000, Akpan et al. 2001). On the contrary, if it is possible to characterize the uncertain

parameters stochastically, then the probabilistic approaches can be used. In this paper only this last

case will be taken into consideration.
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Among the probabilistic approaches, the statistical ones, based on the Monte Carlo simulations,

are the simplest from a theoretical point of view. In fact, they need the realizations of a sufficiently

high number of samples of the uncertain parameters and the solution of the corresponding

deterministic problems (Papadrakakis and Kotsopoulos 1999). However, increasing the structural

degrees of freedom and the number of uncertain parameters, the computational effort attained by the

statistical methods becomes very high, above all for nonlinear structures. For this reason, some

alternative non-statistical methods have been proposed in the literature (Liu et al. 1987, Ghanem

and Spanos 1991, Matthies et al. 1997, Sudret and DerKiureghian 2000, Schueller 2001, Noh 2004,

Stefanou and Papadrakakis 2004). In particular, the perturbation approaches have had the greatest

diffusion (Nakagiri and Hisada 1982, Elishakoff et al. 1995, Impollonia and Muscolino 2002, Van

den Nieuwenhof and Coyette 2003). As a consequence, the stochastic finite element (SFE) approach

is usually identified with the classical FE approaches coupled with the perturbation techniques. This

happens in both the static and dynamic field. The fundamental drawback related to the use of the

perturbation approaches lies on the consistent loss of accuracy when the level of uncertainty and of

nonlinearity of the structural parameters increases. Consequently the results obtained by these

approaches are acceptable only for very low level of uncertainty and nonlinearity. 

Other non-statistical approaches, related to the case of linear structures, are based on the

expansion methods of the structural stiffness matrix in order to perform explicitly its inversion.

Some authors have used the Neumann expansion, both in the static and in the dynamic linear case

(Yamazaki et al. 1988, Spanos and Ghanem 1989, Chakraborty and Dey 1998). A drawback

common to all these approaches is that a sufficient accuracy is reached only for low levels of

uncertainty and that they can be difficultly extended to the nonlinear structures. At last, in some

works, the chaos expansion is used (Ghanem and Spanos 1990).

In this paper an approach is developed based on the consideration that, even if the structural

system is linear, the relationship between the structural response and the random variables

characterizing the uncertain parameters is nonlinear. As a consequence, a typical approach for

nonlinear system, such as the moment equation approach (Lin 1967) coupled with a closure scheme

(for example on the cumulants (Wu and Lin 1984)), can be advantageously applied. This approach

shows the great advantage of being characterized by an accuracy level that can be improved by

increasing the closure order, starting from the second one (Gaussian closure). Moreover the

extension to the nonlinear structural systems is quite straightforward. 

The applications of the proposed approach to some structural uncertain linear and nonlinear

systems have relieved a better accuracy performance than the perturbation approaches, even for low

closure orders (fourth at maximum). 

2. Preliminary concepts 

The analysis of an uncertain structure usually requires its FE discretization and, if the uncertain

structural parameters are modeled as continuous random fields, these have to be approximated by

discrete random variables. In the literature many methods allow the discretization of the random

fields in random variables (Li and DerKiureghian 1993). The approach used here needs the use of

any of the point discretization methods, as, for example, the mid point method (DerKiureghian and

Ke 1988) or the spatial averaging method (Vanmarcke and Grigoriu 1983) or the shape function

method (Liu et al. 1986). By using one of these approaches, each uncertain parameter is assumed to
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be constant in each FE. Hence, one or more random variables define the structural uncertainty in

each FE. 

To simplify we make reference to those structures in which the uncertainties are only in the

stiffness matrix. Moreover the dynamical external excitations are assumed to be deterministic.

However, some more complicated cases can also be considered, such as the uncertain damping or

mass matrices or the stochastic loads. 

As a consequence of the above cited assumptions, the n (n = structural DOFs) differential

equations governing the structural motion of a linear structure can be written as: 

(1)

where  is the vector collecting the random variables characterizing the

uncertainties in the various FEs; u(t) is the nodal displacement vector; M is the deterministic mass

matrix; C is the deterministic damping matrix; K(α) is the stochastic stiffness matrix; and f(t) is the

deterministic nodal force vector.

By introducing the state variable vector , Eq. (1) can be rewritten in the

following first order form:

(2)

where:

(3)

In×n and 0n×n being the identity and zero matrices, respectively, of order n.

If the structural system is characterized by nonlinearities of geometrical and/or mechanical types,

the equation of motion (1) can be rewritten in the following form:

(4)

where now the stiffness matrix KNL depends on the response displacements and velocities. By

introducing the state variable vector x(t), Eq. (4) takes on the form:

(5)

where:

(6)

 
and V has the same expression as in Eq. (3).
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3. Proposed approach: Linear structural system

As a first step, the following assumption about the dependence of the stiffness matrix on the

uncertainties is made:

(7)

It is just the same assumption made on the stiffness matrix when the perturbation approaches are

used. It is important to note that in many cases the dependence of the stiffness matrix on the

uncertain parameters is really linear, so that, in these cases, the assumption given in Eq. (7)

introduces no approximation in the results. In any case, it is always possible to perform a change of

variables in order to make this dependence linear with respect to the new variables.

Taking into account this hypothesis, Eq. (2) can be rewritten as follows:

(8)

where:

 (9)

The presence of the random variables αi in Eq. (8) makes the response vector x(t) as a vector

stochastic process. It can be characterized, from a probabilistic point of view, by the knowledge of

the corresponding moments of various orders. Each of these moments is governed by a first order

differential equation that can be easily found starting from the motion Eq. (8). 

3.1 Mean response

The equation governing the mean of x(t) is obtained by applying the mean operator E[·] to both

the members of Eq. (8), that is:

(10)

The solution of this equation requires the knowledge of the cross-moments  that are

governed by  first order differential equations whose expression can be easily found to be:

 (11)

The expressions of Eqs. (10) and (11) show that the exact evaluation of the response mean requires

the solution of an infinite hierarchy of differential equations. However, an approximate solution can

be obtained by applying a closure scheme (for example, the cumulant neglect closure (Wu and Lin

1984)) on the cross-moments between the response x(t) and the random variables αi. If the second

order cumulant neglect closure scheme is applied, the third order cross-moments appearing into
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Eq. (11) can be obtained as function of the first and second order ones by imposing that the

corresponding third order cumulants are zero. This implies that (Lin 1967, Ibrahim 1985):

 (12)

where  is the generic element of x(t) and the number under the summation sign refers to the

number of possible terms generated in the form of the indicated expression without allowing

permutation of terms, that is:

(13)

It is important to note that the moments  and  appearing in Eq. (13) are known

quantities, the probability density function of αi being given. This implies that the equations giving

the mean response, that are Eqs. (10), (11) and (12), are linear. Thus, they can be easily solved by

any numerical procedure for the solution of linear first order differential equations.

If a better accuracy is required, the fourth order cumulant neglect closure scheme can be applied.

This requires that the equations governing the third and fourth order cross-moments have to be

considered, besides of Eqs. (10) and (11). They have the following form:

(14)

(15)

The fifth cross-moments appearing in Eq. (15) can be obtained as functions of the first four ones by

imposing that the corresponding fifth order cumulants are zero, that is (Lin 1967, Ibrahim 1985):

    (16)

It is important to note that in this expression the moments of the random variables αi are known. As

a consequence, in Eq. (16) the unknown quantities appear linearly. Hence, even in this case, the

mean response can be obtained as the solution of a system of linear equations. It is clear that more

accurate results can be obtained by adopting greater order closure schemes.

 

3.2 Second order response moments

The second order response moments are governed by a first order differential equation having the

following form (Di Paola et al. 1992):
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 (17)

where the symbol  indicates the Kronecker product (Brewer 1978) that is defined as follows: if

 and  are a (m × n) and a (p × q) matrix, respectively, then the Kronecker product

 is a matrix  of order  built by multiplying each element of 

by the entire matrix , that is:

(18)

At last, in Eq. (17) the symbol  indicates the Kronecker sum defined as follows:

 (19)

If the second order cumulant neglect closure is applied on the cross-moments between the

response x(t) and the random variables αi, then the quantities , appearing in

Eq. (17) as elements of the vector , can be obtained by setting zero the

corresponding third order cumulant. This leads to the following result:

(20)

It is easy to recognize that this equation requires the knowledge of quantities already evaluated in

the subsection 3.1. Moreover it does not introduce any non-linearity in the evaluation of the second

order moments of the response.

If one wants to improve the accuracy of the results by considering the fourth order cumulant

neglect closure on the cross-moments, first the differential equations governing the cross-moments

 have to be written. It is easy to show that they have the following form:
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evaluated by applying the closure scheme as follows (Lin 1967, Ibrahim 1985):

    (23)

Even in this case, it is easy to show that Eq. (23) requires the knowledge of quantities already

evaluated in the previous subsection and that it does not introduce any non-linearity in the set of

governing equations. Thus, taking into account the results obtained for the evaluation of the mean

response, the second order moments can be evaluated by solving Eqs. (17), (21), (22) and (23) by

any numerical rule valuable for linear differential equations.

4. Proposed approach: Nonlinear structural system

For a nonlinear structural system let us consider the following assumption:

 (24)

Taking into account this hypothesis, Eq. (5) can be rewritten as follows:

(25)

where:
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 (27)

Besides of the moments  and , the solution of Eq. (27) requires the

knowledge of the second order cross-moments  that are governed by first order

differential equations whose expression can be easily found to be:

    (28)

Eqs. (27) and (28) show that the exact evaluation of the response mean requires the solution of an

infinite hierarchy of differential equations, besides of the evaluation of the moments including the

nonlinear dynamical matrices  and . However, an approximate solution can be obtained

by applying a closure scheme even for the nonlinear structural systems. The difference with respect

to the linear case lies on the fact that here the closure schemes are necessary for both the evaluation

of the above cited nonlinear moments and closing the equation hierarchy. The type of closure

scheme to choose depends on the nonlinearity type of the dynamical matrices  and .

For example, if they show polynomial type nonlinearity, a cumulant neglect closure can be suitable

for the nonlinear case, too. 

It is important to note that in this case the system of differential and algebraic equations resulting

from the closure remains nonlinear, in contrast to the linear structural case in which it was linear.

It is obvious that the accuracy level of the approximate response depends on the closure order. 

4.2 Second order response moments

The second order response moments are governed by a first order differential equation having the

following form:

(29)

 

Besides of the moments depending on the nonlinear dynamical matrices, this equation requires the
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Even in this case it is necessary to apply a closure scheme both for closing the equation hierarchy

and for evaluating the nonlinear moments.

5. Numerical applications

5.1 Application 1

As an example, the truss represented in Fig. 1 is taken into account. It is characterized by the

following deterministic geometrical and physical parameters: L = 10 m; the cross element area is

A = 0.04 m2; the mass is considered as lumped in the nodes A and B and its value is m = 10000 kg;

the damping factor is ξ = 0.05. The only uncertain parameter is chosen to be the Young modulus in

each bar. It is given by the following relationship:

(31)

where  is the mean value of the Young modulus that is assumed equal for all

the bars; αi are independent random variables having a probability density function uniformly

distributed in the range [−0.2;0.2].

 This truss can be considered as a bar type FE uncertain structure. As a consequence, the

treatment shown in the section 3 can be applied for finding the means and the second order

moments of the response. In particular, if the second order cumulant neglect closure is applied for a

first order approximate evaluation of the response statistics, then Eqs. (10), (11) and (17) have to be

considered. These equations must be coupled with the closure relationships expressed in Eqs. (13)

and (20), that, taking into account the zero mean of the random variables αi, become:

(32)
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Fig. 1 Truss under examination
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More accurate results are obtained if the fourth order cumulant neglect closure is adopted. With

this aim, Eqs. (10), (11), (14) and (15) have to be considered for the response mean evaluation.

Eqs. (17), (21) and (22) must be considered, together with the previous ones, for the evaluation of

the response second order moments. All these equations must be coupled with the closure

relationships expressed into Eqs. (16) and (23), that, in this case of zero-mean random variables αi,

become:

 

 (33)

  

 

In Figs. 2-3 the stationary mean response displacement corresponding to the nodes A (horizontal

displacement) and B (vertical displacement) are reported, respectively, under the condition that the

excitation is a horizontal force acting on the node A and having a sinusoidal form of frequency

ωf = 156 rad/sec. This frequency corresponds to the first mode frequency of the deterministic truss

characterized by a stiffness matrix equal to K0, for which, in other works (Falsone and Ferro 2004),

the not high accuracy of many approximated approaches has been evidenced. In these figures the

results obtained by the proposed approach are compared with those obtained by a first order

classical perturbation and with those by a Monte Carlo simulation implemented with 20000

samples. In Figs. 4-5 the second order moments of the same response displacements are reported.

From the analysis of these figures, the optimum level of accuracy of the proposed approach is

evident. 
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Fig. 2 Mean response of the horizontal displacement
of the node A

Fig. 3 Mean response of the vertical displacement of
the node B
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5.2 Application 2

As second example, the beam represented in Fig. 6 is taken into account. It is characterized by the

following geometrical and physical parameters: L = 6 m; the cross section inertia moment is

I = 1.33 × 10−4 m4, the mass density factor is µ = 7850 kg/m3; the damping factor is ξ = 0.05. The

beam is discretized into N = 6 FEs with length equal to l = 1 m.

An uncertain Young modulus is considered for each finite element and it is defined by the

following relationship:

 (34)

where = 210 · 109 N/m2. The random variables αi are assumed to be zero-mean gaussian

correlated variables characterized by the following exponential correlation function:

   (35)

with correlation length λ = 0.4L and standard deviation σ = 0.2.

Using the same approach of the first example, it is possible to evaluate the mean value and the

second order moment of the vertical displacement of the forced node under the action of a

sinusoidal force. 

E αi( ) E 1 α i+( ); i 1 2 … 6, , ,= =

E

ρ x∆( ) exp
x∆
λ

---------–⎝ ⎠
⎛ ⎞

=

Fig. 4 Second order moment of the horizontal
displacement of the node A

Fig. 5 Second order moment of the vertical
displacement of the node B

Fig. 6 Beam under examination
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In Figs. 7-8 the stationary mean value and the second order moment of the vertical displacement

of the forced node are reported. Even for this example, the results are compared with those obtained

by a first order classical perturbation and with those obtained by a Monte Carlo simulation

implemented with 20000 samples.

5.3 Application 3

In the third example the truss represented in Fig. 9 is analyzed. It is endowed with geometrical

non-linearity and affected by an uncertain Young modulus. The system is characterized by the

following geometrical and physical parameters: L = 10 m; the cross section area is A = 0.04 m2; the

mass density factor is µ =7850 kg/m3; the damping factor is ξ = 0.05; the ratio h/L = 0.15.

The structure is composed by N = 2 bar type FEs with an uncertain Young modulus expressed as:

 (36)

where = 210 · 109 N/m2 is the mean value of the Young modulus assumed equal for both the

bars. αi are independent random variables having a probability density function uniformly

distributed in the range [−0.4;0.4]. The structure is subjected to a vertical constant force.

E αi( ) E 1 α i+( ); i 1 2 … 5, , ,= =

E

Fig. 7 Mean response of the middle node vertical
displacement

Fig. 8 Second order moment of the middle node
vertical displacement 

Fig. 9 Truss under examination
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Because of the geometrical non-linearity the proposed approach must be applied using the

relations expressed in section 4. It is important to note that, for the present example, Eq. (24) can be

simplified as follows:

(37)

where:

    

 (38)

If the second order closure scheme is considered, the evaluation of the response means and second

order moments requires the solution of Eqs. (27-30) and the corresponding closure equations. It is

important to evidence that these equations are not independent, so that they must be solved

together.

The second and fourth order closure schemes have been applied and the results related to the

mean value and to the second order moment of the vertical displacement are given in Fig. 10 and in

Fig. 11, respectively. From the analysis of these figures, the accuracy of the proposed approach is

evident in the non-linear cases, too. At last in Table 1 the CPU time percentages relate to the

application of the proposed approach are compared with those necessary for the Monte Carlo

simulation application.
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Fig. 10 Mean response of the middle node vertical
displacement

Fig. 11 Second order moment of the middle node
vertical displacement
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6. Conclusions

An approach for the approximate evaluation of the response statistical moments of uncertain FE

discretized structures has been presented. It is based on the solution of the differential equations

governing these moments. They require the knowledge of the cross-moments between the response

and the random variables characterizing the structural uncertainties. The infinite hierarchy of

equations governing these cross-moments has been truncated by using a cumulant neglect closure of

a fixed order. It has been shown that, for the case of linear structures, the set of differential

equations resulting from the application of this procedure is linear. The application of the proposed

approach to some simple examples of linear and nonlinear structures has revealed a good level of

accuracy, even for low order of closure schemes (at maximum a fourth order closure has been

applied). 
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