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Spherically symmetric transient responses of functionally
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Abstract. On the basis of equilibrium equations for static electric and magnetic fields, two unknown
functions related to electric and magnetic fields were firstly introduced to rewrite the governing equations,
boundary conditions and initial conditions for mechanical field. Then by introducing a dependent variable
and a special function satisfying the inhomogeneous mechanical boundary conditions, the governing
equation for a new variable with homogeneous mechanical boundary conditions is obtained. By using the
separation of variables technique as well as the electric and magnetic boundary conditions, the dynamic
problem of a functionally graded magneto-electro-elastic hollow sphere under spherically symmetric
deformation is transformed to two Volterra integral equations of the second kind about two unknown
functions of time. Cubic Hermite polynomials are adopted to approximate the two undetermined functions
at each time subinterval and the recursive formula for solving the integral equations is derived. Transient
responses of displacements, stresses, electric and magnetic potentials are completely determined at the
end. Numerical results are presented and discussed.
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1. Introduction

The emergence of functionally graded materials (FGMs) is a great progress in materials science.
Due to their distinguishing feature that material properties vary continuously with location, FGMs
possess many advantages and have been used in many areas including: superheat resistance (furnace
liners and space structures), biomedical (dental and bone implants), military (vehicle and body
armor), and dielectric materials (wave guides and radar avoidance).

The investigations on static and free vibrations for FGM hollow cylinders and spheres have been
reported extensively. Among them, many achievements have been obtained for the special cases that
the material constants have a power law dependence on the radial coordinate (Jabbari ef al. 2002,
2003, Tarn 2001, Horgan and Chan 1999, Eslami et al. 2005, Chen 1999a, 2000, Chen et al.
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1999b). It is well known that FGM structures are often used in severe environments, such as
thermal shock, dynamic loads and impact pressures etc. The responses under dynamic loads are
always larger than those under static loads. So to know the transient responses of FGM structures
exactly is very important. But the investigations in this field are relatively scarce and really difficult
and complex. Recently, Ding et al. (2002, 2003a,b) studied the dynamic responses of functionally
graded elastic, piezoelectric and pyroelectric hollow spheres, respectively.

The investigations for interactions of multi-fields (mechanical/electric/magnetic) are relatively new.
Pan and Heyliger (2002) studied the free vibrations of simply supported and multilayered magneto-
electro-elastic plates. Chen et al. (2005) investigated the free vibrations of non-homogeneous
transversely isotropic magneto-electro-elastic plates. Buchanan (2003) obtained the free vibration of
an infinite magneto-electro-elastic cylinder. Hou and Leung (2004) further studied the transient
responses of magneto-electric-elastic hollow cylinders. While to the authors’ knowledge, the transient
responses of FGM magneto-electric-elastic hollow sphere have not been reported yet.

In this paper, we first present the basic equations and their non-dimensional forms. Then by virtue
of the motion equations of electric and magnetic fields, two unknown functions of time are
introduced to rewrite the governing equations and boundary conditions as well as the initial
conditions for mechanical field. The solution for displacement involving two unknown functions of
time is obtained firstly. Then by utilizing the electric and magnetic boundary conditions, two
Volterra integral equations about two unknown functions of time are derived. The integral equations
are solved successfully by means of the interpolation method. The displacements, stresses, as well
as all electric and magnetic quantities are determined completely at the end.

2. Problem statements

In this study, we assume that the under-considering material possesses magneto-electro-elastic
coupling effect. Factually, such property can be observed in piezoelectric/piezomagnetic composites
(Nan 1994, Wan et al. 2003).

Consider a magneto-electro-elastic hollow sphere with the inner and outer radii a and b,
respectively, subjected to complex loads (Fig. 1).

For spherically symmetric problem, with the spherical coordinate system (r, 6, @), the nonzero
components of displacement, electric potential and magnetic potential can be denoted, respectively,

P Fr( 'r)

Dy(1), (1)

.7 b
Cu(1), Fult)

Fig. 1 Sketch of FGM magneto-electro-elastic hollow sphere under complex loads
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as u, = u(r,t), ®= d(r,t), and ¥ = ¥(r,t). Then, the constitutive relations for radially
polarized, hexagonal crystal media are read as (Buchanan 2003)

ou, oD oV

Tgo = Tpp = (C11 + Clz)uf e or " 6315 * %IE
D, = 2e3lli”+ez3i,ir—&30;,_f_m33%y
B, = 2q3|%+433%_m33%_ﬂ33%{/

where oj, D,, and B, are the components of stress, electric displacement and magnetic induction,
respectively. ¢, es, g3, &3, mss, and g3 are elastic, piezoelectric, piezomagnetic, dielectric,
electromagnetic and magnetic constants, respectively. In the absence of body force, electric charge
density and electric current density, the equations of motion are

ao,, o, — O, ﬁzur
S+ 2 % = p— @)
r r ﬁt
12,2
S5(°D,) =0 3)
12
SZ(7B,) =0 )

where p is the mass density. In this paper, we consider the hollow sphere formed by a special non-
homogeneous medium. Suppose the material constants vary as power-law in r-direction as

2N 2N IN 2N
CU = § Clj’ €3 = § E315 q3; = é Q31> &3 = é A33>
2N 2N 2N
my = & My, i3 =& Ky, p=S& py, $=1/b

where Cj, E3;, Os;, Ass, M3, K33 and py are known constants, and N can be an arbitrary real number.
Substituting Egs. (5) into Egs. (1)-(4) and introducing a series of non-dimensional quantities, we
obtain

)

Oy = 0, = §2N|:(CIIP + Clzp)g + CI3P@ +E of + Qlﬂ/}

¢ o Tlog Flag

_ 2N u ou ¢ y
o =¢ [2C,3P§ + C”P_ﬁg + E3—§§ + Q3—§§}
(6)

‘o o T o¢

¢
ooty 0.0y 08 O
B, =¢ [2Q1§+Q30,,§ M30,,§ 0,,5}

E2L 20 4,2V
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2
09 2% %0 _ o )
o& g or
-—(5 D) =0 )]
§og
-—(5 D=0 )
§ag
where
CI/P = CU , E = Ly s = O , M;= Mss
Cs3 NC33A53 NC33K55 A3 K
o= Zii=r0p, ¢= 22 - Ea¥ p_ Dy (10a)
T Gy, Cy b Cy b JCahn
B, = B ,u:u—”,s:g, T:C—”t, c, = %
JC3Ks3 b b b Po

If the hollow sphere is subjected to dynamic pressures P,(¢) and P,(t), respectively, at the interior
and exterior surfaces. Also, we suppose the electric potentials and magnetic potentials imposed on
the interior and exterior surfaces are, respectively, @,(¢), @,(¢t) and ¥, (t), ¥,(t). For dynamic
problem, we further suppose the initial displacement and initial velocity are U,(r) and Vy(r),
respectively. The above-mentioned quantities can be expressed in non-dimensional forms as

Pa= ﬁa Py = /h_a ¢b A“ @h
C33 C33 C33
_ K33 K'ﬂ /7 _ 0 _ 0
a — -~ - _5 Vo = —
NCs3 b 'V Cy b Cy

By means of Egs. (10b), the boundary conditions and initial conditions are denoted in non-
dimensional forms as

(10b)

0,(s, 0 = pu(0), 6,(1, 1) = py(7) (11)
#(s, ) = 4u(2), 9(1, ) = §4(7) (12)
w(s, 1) = w,(7), y(l, 1) = y(7) (13)
u($,0) = up($), u(s, 0) = vy($) (14

In Eq. (14) and thereafter, a dot over a quantity denotes its partial derivative with respect to non-
dimensional time 7.
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3. Solution approach for mechanical field

transient responses

3.1 Governing equations for mechanical field

The solutions of Egs. (8) and (9) are

D& 1) = Lo,
£

BA& D) = ~4(9)
£

529

(15)

where 77(7) and y(7) are unknown time functions of non-dimensional time 7. By virtue of Eq. (15),
the following equations can be derived from the last two of Eqgs. (6) as

¢ _ u 1 1
o¢ 2An§ Alzé,_é_A»*W”(T)"'A“ézNuZ(T)
vy _ u Ju 1 1
¢ = Mgt Angpt A ()~ A s

where

Ay = (EI_Q1M3)/X5 Ay = (E3—

Ay = (Ql —E1M3)/X, Ay = (Q3 —E3M3)/X, X =1-MM,

The substitutions of Egs. (16) into the first two equations in Eqs. (6) give

o
%= % = & [(C“D + Ciop)= + Ciap u} Emngg) + le(zr)

3

2N Ju
= 2C +C
r g [ 13D§ 3D 5%

where
Cip=Cip+E 4, + 04,5,
Cisp = Cizp + E34 ) + O34,
E\p=0,4,-E A4,
Onp = E14,- 0145,
Substituting Eqgs. (18) into Eq. (7), we obtain

@+(2N+ 2)Ldu _ fi, o L
o8

goe 2T 25

where

¢

}+E n(z )+Q Z/(_T)
g £ £

3

Ciop=Crp+E4 + 0,45
Cysp = Cogp+ EzA 1 + 0345,
Esp = O34, — EsA;
Osp = E34,— 0345

LW | (&) (1) + (o)

T

10 = /\/2C11D +Cpop— (2N

Cip

2F 1
X (&) = =L ,
1 Cisp §2N+3

P = [

20ip 1

X(¢) = T W

(16)

(17

(13)

(19)

(20)

ey
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By virtue of the expression for o, as given by the second of Egs. (18), the mechanical boundary
conditions (11) can be rewritten as

Ju U ~2N+2)p 2
=5 Cyup=—+2C;5p- =5 [s"p(7) = Espn(7) — Osp (D]
o¢ ¢ (22)
&=1: C,mjz—?"‘ 2CI3DL_£: = pp(7) = Espn(7) = Ospx(7)

In order to simplify Eq. (20), the following dependent variable w(¢&, 7) is introduced as

—(N+ 5)
u(é, 1) =& w(s, 7) (23)
Then, the substitutions of Eq. (23) into Egs. (20), (22) and (14) yield
Ow 10w i 13°w

Iow _p, _ 1w, y X, 24
e A e AR OLCARICHY (24)

£=s: Z—Vg+h§:pl(r); £=1: %+h§:p2(r> 25)
W(E0) = 1,(£), W& 0) =v(£) (26)

where

2
h = 2C13D/C33D_(N+%)a H = //J%"‘(N"‘%)

(v+3)

P =5 18P0 - Espn(2) - Osp(D)/Coap

P2(2) = [Py(2) — Esy (D) — Qs (D Copy @7)
X(8) = & X(O). X =& X()

u(§) =& Tu(). M) =& Tve(&)
3.2 Homogenization for mechanical boundary conditions

We first transform the inhomogeneous mechanical boundary conditions into homogeneous ones by
assuming

w(S, 1) = wi(S D) +wa(S, 7) (28)

where w,(&, 1), which is necessary to satisfy the inhomogeneous boundary conditions (25) only.
By observing Eqgs. (25), w,(&, 7) can be taken the following form as

wy(& 1) = o (E-1)'pi(0) + an(E—5) pa(7) (292)
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in which ¢y and o can be determined by substituting Eq. (29a) into Eqgs. (25). Then Eq. (29a) can
be rewritten as

wi(& 1) = oS D) +/1(E) (7)) +/2(E) x(7) (29b)

where

Jo(& D) = Bi()pa(7) + Br(S)ps(D)
Fi(E) = ~EsplBiE)S + AL, fo(E) = -0spl BN + Bo(E)]

N+1

BiE) =s ar(£-1)/Cupr B(E) = an(é-5)/Cap

o =[2G =)+ h(s =1 IsT,  a=[2(1 —s)+h(1-5)']"

(30)

Substituting Eq. (28) into Eqgs. (24)-(26) and utilizing Eq. (29b), we obtain

Fwi(& D), 19w D) e = 18w(& D)
o8 & oc g2 o or

W& D, Wi
o ¢

wi(S 0) = uy (&) —£1(£) 1(0) - £2($) 2(0)
wi(&,0) = v,(&) —£1(£)n(0) - £2(£)2(0) (33)

+g(¢, 7) €2y

=0(E=s1) (32)

where

2E D) = g(& D+ (O n(D) + (O (D) + A7) +AEOF(Dc]
1(€) = u(E)=F(E0), va(&) = vi(E) —f(&,0)
g(& D) = [é—li—d—z+ a szo(e‘, 9 (34)

2
c; Ot

g(&) = [;i _1d dd—fz}ﬁ(é) FX (6 (=1,2)

SORE S

=0

. o) =422

r=0 =0

3.3 The orthogonal expansion technique

By means of the separation of variables technique, the solution of Eq. (31) can be assumed as

wi(& 1) = X, 1R(E)2(7) (35)

where €2,(7) is an unknown function of 7, and R;(£) is a known function of £ as
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Rl(é:) = J,u(klg)PY(/u’ kl’ S) - Y,u(klf)P/(/u’ kl’ S)

(36)

in which J,(k,£) and Y (k&) are Bessel functions of the first and second kind, and of order g,
respectively. k;, arranged in an ascending order, are a series of positive roots of the following

eigenequation:

PJ(/ua ki: S)PY(/U: kn 1) _PJ(/ua kn I)PY(/’lD ki: S) =0

where

dY,u(ki§) + hY,u(kl f)

dJ, (k&) JlkiS)

—— +hﬂ - ] P(,U,k,-,f):

d< ¢ ' dg ¢
By virtue of the orthogonal property of Bessel function, we have

PJ(/ua kn 93) =

Il SRR, (5)dS = N;o,

where §; is the Kronecker delta, and

YA dg
dRr,(s) _ dR«($) dr,(1) _ dR,(S)
d& ~dg |, Tde T Tde |,
Substituting Eq. (35) into Eq. (31) and utilizing Eq. (39), we obtain
()

2
Dt 500 = q,(0)
T

where

q:(7) = ho(7) + by (1) + oy (1) + sy 17(7) + hy 7 (7)

0, = kiess (D) = 5[ dan(& DR

[S]

b= =L E(OR(EAE I, = L[ EaOR(E)dE

1 4 1 4
hy; = N L SHOR(H)AE,  hy, = _ZV,L H(HR($)dE
The solution of Eq. (41) is
A1) = 20coso, 7+ 2O ing 4 L (pysino(c-p)dp
; ; 0

And .Q,(r) can be expressed as

Q7)) = — 0,2,0)sine, 7+ 2,(0)cos », 7+ J;'q,(p)cosa),(r—p)dp

L{["’R'“)T RO erra) - R ) —;f[Rf(l)—R?(s)]}

(37

(3%)

(39)

(40)

(41)

(42)

(43)

(44)
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Utilizing Eqs. (35) and (39), €2,(0) and £2,(0) can be obtained from Eqs. (33) as
Q/(O) = h3177(0) + h41Z(0) + hS/ﬂ Q’(O) = h3177(0) + h4ll(0) + h61 (45)
where
1 1
hsy = 3 [ S OR(DAE by = [ Ea(HR(£E (46)

It is noticed that ¢,(7) involves #(7) and ¥(7) as denoted in the first of Eqgs. (42). Utilizing the
integration-by-parts method, Eq. (43) can be rewritten as

Q) = Q)+ hs,1(7) + hyyy(2) + 1, [ 1(p)sino(t=p)dp + L, [ x(p)sine(z=p)dp - (47)

where
0,(7) = Q2(0)cosw, 7+ Q(O)sma) T+ —rho,(p)51nw (r—p)dp
hs, hy
—2A(0)sinw, 7+ n(0)o,cos w,7] — <[ (0)sinw, 7 + y(0) w,cosm, ] (48)
1 a)l
[11 = @ _h31a)1> ]21 th h4l i

4. The second kind Volterra integral equations

Substituting Eq. (28) into Eq. (23) and utilizing Eqs. (29b) and (35), we obtain
v+l

W& = & IR RO QD + f(& 1) +[HE (D) + HE) 1(D)] (49)

Integrating Eqgs. (16) over the space interval [s,£] and utilizing Eq. (49) as well as the Eqs. (12)
and (13), we obtain

#(E 1) = 8D+ Bo(& D)+ $1(E) (D) + $(E) 1(D) + 2, - 1 :,(E) ()
W(&E D) = w(2)+ wo(& D+ p(E) (D) + ya(E) 2(D) + 2, w5.(E) 2(7)
where 4,(& 1), $1(E), $:(E), 45,(&) and wi(&, 1), w1 (&), Ya(E), Wi, (&) are known functions and

the specified expressions are presented in Appendix A.
If £ =1, Egs. (50) then reads as

(50)

B (1) = $.(0) + 4o (1, D) + (D) 1(2) + (D (D) + 2, 1 65,(1)€2(7)

. (51
w(7) = w(D) + w1, O+ p (D7) + ya (D) 2(2) + 2.y, (1) 2(7)

From Egs. (51), we have
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$1(7) = da(7) + Po(1, D) +¢1(1)1(2) +$2(1)7(7) + 2, - 193,(1)2(7)

s(2) = Pr(2) + 001, D)+ (1D (D) + ua(D7(D) + 2w (D€2(0) (52)

Setting 7 = 0 and utilizing Egs. (45), 7(0), (0), 7(0) and #(0) then can be determined from
Egs. (51) and (52).

n(0) = (byay —byapn)/W,  x(0) = (byay, —byay)/W

(53)
17(0) = (bsay —byap)/W,  y(0) = (byay, — bsay)/W
where
ay = ¢ (1) + 27: 1hyid5(1),  apn=¢(1)+ ZT: 1hai$5,(1)
ay =y (1) + Zi 1hyiysi(1), ayn = yi(1) + ZT: 1haiysi(1)
b = $,(0) = $,(0) = go(1,0) = X 75, 65,(1)
(54)

by = y(0) =, (0) — wo(1,0) = 2, 1hs,y5,(1)
by = $5(0) = $a(0) — go(1, 0) — 2, 1116, 45,(1)
by = §-Uh(0) - §-Va(0) - §-U0(1, 0)- 27; 1h6,%i(l), W=ayay—anay

Then «2,,(r) become a known function by substituting Eqs. (53) into the first of Eqgs. (48).
Substituting Eq. (47) into Egs. (51), we have

Zun(o) + Zpx(70) + 273: IJ;)T[ZISIU(p) +Zyx(p)Isino(r-p)dp = F(7)

(55)
Z111(2) + Zn)(7) + 221 [ (203, 11(p) + Lo 2(P) Jsine (1= p)dp = Fi(1)
where
Zy = () + 216Dy Ziy = (1) + 27 45, (Dhy,
Zo = pi(1) + 2 s (Db Zoy = yn(1) + 2.y (Dhy,
Z = 65D Ziy = (DD Zos, = (D] Zogy = v, (56)

Fi(7) = $(0) = 4o(0) = (1, D) = 2, #3,(1)£2,(7)
Fy(1) = w(0) = wl(D) = wo(1, D) = 2, y,(1)€2,,(7)

It is noted that Egs. (55) is a system of second kind Volterra integral equations. The effective
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numerical approach for Eqs. (55) has been discussed detailedly in Ding and Wang (2005). The
detailed solving procedure is presented in Appendix B.

5. Some special practical degeneration cases

The present solution can be directly degenerated into those for some special practical cases as:

(1) If we set g5, = g3» = g3, = my3 = 0 in Eq. (1) and omit the equations for magnetic fields, the
present solution becomes that for non-homogeneous radially polarized, spherically isotropic
piezoelectric hollow sphere;

Q) If we set ¢35, = ey, = e3, = &5 = 0 in Eq. (1) and omit the equations for electric fields, the
present solution becomes that for non-homogeneous radially polarized, spherically isotropic
piezomagnetic hollow sphere;

(3) If we set both g5, = g3, = g3, = m33;, =0 and e;; = e5, = €3, = &3 = 0 in Eq. (1) and omit
the equations for magnetic and electric fields, the present solution becomes that for non-
homogeneous purely elastic, spherically isotropic hollow sphere.

@) If we set N=0, the present solution becomes that for homogeneous radially polarized,
spherically isotropic magneto-electro-elastic hollow sphere. Also, in cases (1)-(3), if we further
set N =0, the solutions then degenerated into those for corresponding homogeneous cases.

6. Numerical results and analysis

The dynamic responses of a functionally graded magneto-electro-elastic hollow sphere subjected
to a dynamic pressure on the interior surface are considered in this section. The material constants
are listed in Table 1 (Buchanan 2003).

The boundary conditions are

pa(T) = H(T), pb(T) =0
¢[,(T) =0, ¢/,(T) =0 (57)
v(7) =0, y(7) =0

where H(7) is Heaviside function. In the demonstration, we set s = a/b = 0.5 and suppose the hollow
sphere is motionless at 7=0, i.e., #y(£) = 0 and v,(&) = 0. Also, the time step length Az=0.02
and 40 terms in Eq. (35) are adopted in the calculation.

In the following numerical experiments, the material constants of purely elastic and piezoelectric
hollow spheres are taken the corresponding values of the magneto-electro-elastic one.

Table 1 Material constants

Cy Ci Cis Css E5 Ess
218 x 10° 120 x 10° 120 x 10° 215 x 10° -2.5 7.5

Os1 033 Ass M3 K33

265 345 5.8x107° 2.82 x107° 95 x 107°

Units: Cj-Pa; Ey-C/m?; 03~-N/(Am); As3-C%/(Nm?); Ms3-Ns/(VC); K33-Ns?/C?
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Figs. 2(a) and 2(b) show the responses of radial stresses o, at the middle surface (£=0.75) in
functionally graded magneto-electro-elastic and purely elastic as well as piezoelectric hollow
spheres for N=—-1 and 1, respectively, subjected to a sudden constant pressure at the inner surface.
From the curves, we can see that the radial stresses peaks periodically and at £=0.75, the
amplitudes of o, for N=1 are larger than those for N=-1. For the same N, we find that the
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responses of o, in piezoelectric hollow sphere are almost same as those in magneto-electro-elastic
one. That is to say, the induced magnetic field has little influences on the responses of radial
stresses. In order to show the results clearly, we present the responses of piezoelectric hollow sphere

separately.

Figs. 3(a) and 3(b) depict the responses of hoop stresses oy at the interior surface (£=0.5) for
N=-1 and 1, respectively. From the numerical results, we find that at the location £=0.5, the
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Fig. 7(a) Distributions of magnetic potential y in

magneto-electro-elastic hollow sphere for
different Ns at 7= 0.1
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Fig. 7(b) Distributions of magnetic potential in

magneto-electro-elastic hollow sphere
for different Ns at 7= 1.0

maximum tensile stress of oy for N=—1 is about 4 times larger than that for N=1. Similarly, as
noted for o,, the responses of oy in piezoelectric hollow sphere are almost same as those in
magneto-electro-elastic one. Also, we can conclude that the induced magnetic field has little
influences on the responses of hoop stresses.

At the very beginning, the distributions of non-dimensional radial stresses and hoop stresses in
magneto-electro-elastic hollow sphere for different Vs are shown, respectively, in Figs. 4(a) and 5(a)
(stage I: 7=0.1, 0.2, 0.3 and 0.4) and Figs. 4(b) and 5(b) (stage 1I: £=0.5, 0.6, 0.7, 0.8 and 0.9).
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From the figures, we can find that the stress waves generate instantly after a sudden constant
pressure acting on the interior surface and then propagate from the inner to outer. When the
wavefronts reach the outer surface, the stress waves are then reflected and propagate along the
opposite direction. We also find an interesting phenomenon that in spite of different values of N, the
stress waves propagate with the same velocity.

Figs. 6(a),(b) and Figs. 7(a),(b) illustrate the distributions of non-dimensional electric potential ¢
and magnetic potential y at 7=0.1 and 1.0 in magneto-electro-elastic hollow spheres. We catch that
at the very beginning (7= 0.1), the distribution form of electric potential and magnetic potential is
similar with each other for different Ns and the amplitude of ¢ and i increases dramatically with
the increasing of N. In Figs. 6(a) and 7(a), a sharp kink is clearly observed at the location around
£=10.6. Synchronously, in Figs. 4(a) and 5(a), we notice that the stress wavefronts arrive at the
location around £= 0.6 at the time 7= 0.1. So we can deduce that: at the very beginning stage, due
to the special magneto-electro-elastic coupling effect, the electric potential ¢ and the magnetic
potential s will reach the extremum values at the location when the stress wave wavefront arrives.
While with the time processing, the distribution form of electric potential and magnetic potential for
different Ns becomes really different, see Figs. 6(b) and 7(b).

7. Conclusions

The dynamic problem of a functionally graded magneto-electro-elastic hollow sphere in the state
of spherically symmetric case is successfully transformed into two Volterra integral equations of the
second kind with respect to two time functions. Interpolation method is introduced to solve the
Volterra integral equations efficiently.

Numerical tests for functionally graded hollow sphere made of three different materials (magneto-
electro-elastic, piezoelectric and purely elastic) subjected to a sudden constant pressure at the
interior surface are presented. It is noted that the responses in functionally graded magneto-electro-
elastic hollow sphere are almost same as those in functionally graded piezoelectric one. Then we
can deduce that the induced magnetic field has little influences on the responses of stress.
Furthermore, the stress wave in the functionally graded magneto-electro-elastic hollow sphere
propagates with the same velocity in spite of the variation of N.

From the definition Eq. (5), we know that the material constants increasing gradually from the
inner to outer for N> 0 and it is the contrary for N <0. Also, the special case for N =0 denote that
the material is homogeneous. Numerical experiments indicate that the parameter N has important
effect on elastic, electric and magnetic fields in functionally graded magneto-electro-elastic hollow
sphere. In other words, it is feasible to design an optimal model according to practical application
by adjusting the parameter N.

The present method is suitable for a functionally graded magneto-electro-clastic hollow sphere
subjected to arbitrary spherically symmetric mechanical, electric and magnetic loads.
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Appendix A
The specified expressions of @(&, 7), $i1($), $2($), $:(S) and y,o(S, 1), Yi(S), Ya($), ysi(S) are

9o(&, 1) = 241 Ho (&, 1)+ AnHo(8, 1), wo(E, 1) = 245 Hoi (6, 7) + Ay Hep(E, 7)
$1 (&) = 241, H (&) + ApHp(E) —AH(E),  yi(E) = 24, H (&) + ApHp($) + ALH(E)
$(&) = 2411 Hy (&) + AnHyp(E) + AH(E),  yn(E) = 245 Hy (E) + ApHypn(E) — A3 H(E)

$:(&) = 241 Hy (§) + AnHyi(8),  wsi(E) = 245 Hy (&) + A H3p (&)
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—(N+ 1} —(N+ I

—(N+%} 5
Ho(&, 1) = jjé” fo(6, DdS, Hp(S)=¢ [l D=5 fols, 7)

) { e}

N+%)
H(&D = [ T Hu(O=¢ f&-s  h)

g
SAs)

,N+%j -|N

g o
Hu(& 1) = [76 " f9)ds, Hn(S)=¢ f(S)-s

(v+

¢ —(N+ ;l) —(N+%j —(N+%
Hyi(6 1) = [°6 TR(9AS, HplS)=¢ R(S)-s Ri(s)

H(Z) = {[5(2N+1)—.§(2N+')]/(2N+ 1) N#-1/2 (58)

In(&s) N =-1/2

Appendix B

The detailed procedure for solving Egs. (55) is presented in this Appendix. The time interval [0, 7,] is
firstly divided into » subintervals with discrete time points 7, = 0, 7y, 7, ..., 7,. Then at each time interval
[7,_1, 7], a cubic Hermite polynomial is introduced to approximate the unknown functions 7(7) and y(7)
as

(1) = Hy(D)n(z0) + Hy(D)n(z) + Hy(1)77(7;-1) + Hy(2)71(7)

. . (G=12,...,n) (59)
K1) = Hy(D)(51) + Hi(D (1) + Ha(0)ji(7;1) + Hy(D)j(7)

where

Hy(7) = (1 + 2;_ Tf”)( Lk )2, H,(7) = (1 + erJ_ ‘ )(7_ 7/-1)2

= G NG T AR G R

-4

Hy(7) = (7- t,_l)( ) (G=1,2,...,n) (60)

T—

TT,/ )2, Hi(1) = (7~ T./)(T e

7 j -1 J j-1

The derivatives of Egs. (55) are

Zai(D) + Zog (D + 27\ [ [Z0in(p) + Zuix(p)]@cos o (- p)dp = Fi(7) 6D
Zun(0) + Znj (D) + X7 [ 1 Z23i0(p) + Zowi1i(p)1@icos 0,(z—p)dp = Fx(7)
Setting 7 = 7; and utilizing Egs. (59), the following equations can be obtained form Egs. (55) and (61).
Fi(5) = Zun(g) + 272 ZZ) L [Logen(Tea) + L (2 + L) (1) + Lay (7))
+ Zpx(7) + Z,i 1Z,4,Z’];= I[LOi/'kZ(Tlr— D+ L (m) + Loy (tieo 1) + Ly ()] 62)

Fy(7) = Zyn(g) + 2,1 12231'2;: JLoyen(Tizy) + Lypn( ) + Lon1(7i-1) + Ly ()]

+ Zzz/'t’(z}) + z,i 12241 j,.(= l[LOI:/'kZ(kal) + Ll{/kl(rk) + LZUk/i/(Tk—l) + Lmyk/'f( 7)]
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Fl(?’,) = Zun (7)) + 2,1 12131'2‘;{: 1[K01j1r77(T1f—1) + Kyun(m) + KZ{[]("](T](—l) + Ksz;,kf?(Tk)]

+ Zpy(5) + 2,1 ,ZM;Z’;{: ][KOijk/},/(Tl(—l) + Ky (m) + Ko (tiz 1) + Ky (7)1

63
FZ( 5) = Zyn () + Z,Z 1223:'2’2: 1[K01j1(77( T_) + Kypen() + Koyp1(521) + Ky (7)1 “
+ Zpy(7) + Z,i 12241'2‘;{: AKoix(moy) + K (m) + Ky (m21) + Kaj (1)1
where
Ly = J':”H,,((p)sinw,-( 7,—-p)dp, K= -[rik,. w.Hy(p)cosw,( ;- p)dp o

(/=0,1,2,3; k=1,2,..,j; j=1,2,...,n)
Egs. (62) and (63) can be reorganized in a matrix form as

dhy dl, di, dll|n(z) B/
délil dé/% b d"% (7| B; (j=1,2,...,n) (65)
diy diy, diy di||7(T) B{

diy diy diy dily(z))  \B]

S

where
J o J o e J ] J o @
di, = le+2,=12m,le, diy —le"'z,-:,ZMiLmj/’ di; = z,=1ZISIL3Uj/a diy = z,-=lzl4iL3zjj
J w i o« YR R
dyy =2+ Y, ZLoilvijs  dn=Zn+ Y, Ll dyn =Y Zuilsy,  da =2 Zoailsy,

o _ e 7o © J o ® J _ @
dy = Z,-= lzlsiKlma dy, = Z,-= 12141'[(11;1/’ dyy = Zy + Z,-= IZI3iK31j/" dyy=Zp+ Z,-= lZl4iK31j/'

i o_ oo o i _ o i _ o
dy = 2,- 1 ZLaiKi dyp = 2,- 122K dis = Zy + 2, 1 Z2iKs dig = Zyp + Z, -1 224K

Bi/ = Fi(g)- 27: 1213:'(2;(: Loyen (1) + LZ[/kﬁ(Tk—l)] + ’;:1 [Lin(T) + Lm‘,kﬁ(ﬁ)])
0 j . -1 .
2 Zul (= [ Lo (T ) + Loy (i D1+ 2 o [L () + Ly v (2)1)
P © Jj . Jj-1 -
B) = Fy(1)) = 2/ -1 Zosl(Zo= /[ Lo Tez1) + Lot (7 )1+ 221 [Lyeni(7) + Lyt (701)

0 i . -1 .
-2 IZZ4i(E;r= W Loy (T 1) + Loy (T )] + 22 aLLyiex () + Ly x (7))

%

U= Fi(0) = 2 Zil e Ko 1T ) + K1 (- )1+ 22 [K (7 + K1 (201)
— 3 Z (o Ko (7o) + Ko (o)1 + 2 Kt + Ko7 (7))
B} = Fx(1) = X7 Zsi(Zh o [Koiu i (7 1) + Kot (7 D1+ 2 1 [Kyen(2) + Koyt (70)1)
=3 Zod o [K o2 (i) + Ko (e D1+ Zi 2 TK () + Kot (20]) (66)
It is noted here that the terms involving 2’;11( ) in Bf(l =1,2,3,4) for j=1 are treated as zero in the

computation. Since 7(0), #7(0), ¥(0) and ¥(0) have been determined in Egs. (53), then 7(7), 7(7), x(7))
and ¥(7;) (j=1,2,...,n) can be obtained step by step from Egs. (65).





