
Structural Engineering and Mechanics, Vol. 23, No. 4 (2006) 449-454 449

Numerical method for the undamped forced dynamics 
of steel cable network structures

Dimitris S. Sophianopoulos†

Department of Civil Engineering, University of Thessaly, Pedion Areos, 38 334 Volos, Greece

 Panagiotis G. Asteris‡

Department of Structural Design and Construction, Hellenic Ministry of Rural Development and Food, 

60 Serafi & 210 Liosion Str., 104 45 Athens, Greece

(Received July 15, 2005, Accepted December 19, 2005)

1. Introduction

Steel cable network structures are characterized by strong geometric nonlinearities and high

flexibility, which are the main causes of their unexpected behavior, especially under dynamic

loading conditions (Levy and Spillers 1995). Excluding cable-stayed and cable-suspended structural

systems as well as low-tension cable nets, the majority of static and dynamic analysis techniques

used are approximate and complex in nature, while their approaches differ significantly. There are

five widely accepted methodologies dealing with the foregoing structural systems, with their salient

features summarized in the work of Kwan (1998), while combinations, variations and extensions of

these, taking into account numerous parameters, such as slackening, friction, pre-stress etc., have

also been reported (Goslin and Korban 2001, Kanno et al. 2002, Kanno and Ohsaki 2005, Talvik

2001, Volokh et al. 2003, and others not cited herein). To this end, in the present study a numerical

technique for the undamped dynamics of cable networks is proposed, in which pretension of cable

elements, uniform time dependent temperature change as well as flexibility and temporal

dependence of boundary conditions are accounted for. Applications of the method produce results in

very good agreement with existing ones and important conclusions for structural design purposes

are drawn.
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2. Description of the method

2.1 General considerations and basic equations

We consider a steel cable network structure with given initial geometry, each member of which can

transfer only tensile forces, may undergo large displacements combined with small strains, while the

whole system is considered simply supported, with generally time-varying boundary conditions. Each

member is discretized into n straight pinned jointed elements, while the dynamic loading is also

discretized in a similar manner. A uniform temperature change may also act on the system, which is

considered initially at rest, i.e. in static equilibrium due only to self-weight and possible pre-tension.

Denoting as ui(t), vi(t), wi(t) the dynamic displacement components of joint i (along the x, y and z

direction), the physical and geometrical equations valid for element ik are given by:

(1a,b)

In the above, aik is the coefficient of linear thermal expansion, Tik the increase of temperature, 

preliminary (initial strains), Nik the axial force developing on element ik, Aik its cross-sectional area

and Eik Young’s modulus of elasticity, while  represent the element’s length before and after

deformation. Under a dynamic external loading Pi(t), acting on the i-th joint, after setting as mi

discretized concentrated masses on every joint i, the undamped motion is governed by the following

set of differential equations:

(2)

The corresponding boundary conditions, evaluated at the j bearing joints, can be written in the form

of:

(3)

where  are the known co-ordinates of the supporting joints in the initial configuration, ,

,  also known displacements of these joints, varying in time, Sxj, Syj, Szj components of the

reaction forces and Fxj, Fyj, Fzj flexibility of the supports. Furthermore, the most general case of

initial conditions is considered and prescribed below:

(4)

2.2 Numerical procedure

Eliminating the inertia terms from Eqs. (2), we obtain the static equilibrium equations which are

treated numerically through an iterative process, in each consecutive step of which the new co-

ordinates  are computed as , where k

denotes the number of consecutive iterations and ξ may be thought of as a super-relaxation

coefficient; for the requirements of the proposed method a value of ξ = 1 is used, which has been

proven quite adequate for rapid convergence and less computer time. Performing a direct numerical
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integration of the motion equations (Hoffman 2001), their final form for the i-th joint, where m

elements meet, is

(5)

Setting as gi the dynamic displacement vector of joint i, its time derivatives are approximated by:

, j = i, k  (6a,b)

where h is the integration step and c1, c2 parameters of the method.

3. Applications of the proposed method

3.1 Saddle cable network

The first application deals with a steel cable network having the shape of a saddle, for which a
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Fig. 1 Saddle cable network configuration (a,b) and corresponding static response (c)
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variety of theoretical results have been presented (Kwan 1998). As depicted in Figs. 1(a), (b), it

consists of a total of 95 nodes (25 supporting ones). All cable segments have EA = 44.982 MN and

possess an initial pretension of 60 kN in magnitude. The structure is acted upon by a step point

conservative loading of infinite duration at joints 11-15, 22-26, 33-37, 44-48, 55-59, 66-70 and 77-

81 with Px = 1 kN, Py = 0.00 kN and Pz = 1 kN. The static response results obtained are in

excellent agreement with previously reported ones (Kwan 1998) for the displacements and for the

cable tension forces after loading, with the static configuration of the network shown in Fig. 1(c).

The method also captures the undamped dynamic response of the structure; in Fig. 2(a), the

dynamic displacement of the network at two time incidents is shown, while in Fig. 2(b) the time

series plots of displacement components for joints 11 and 72 are depicted. Periodic motions around

the static equilibria are reported and it is anticipated that if damping is also accounted for, the

transients would finally decay to the expected point attractor of the static case. 

3.2 Spider - web like cable network

The 2nd application refers to an initially plane steel cable network having a spider-web form. As

Fig. 2 Dynamic response of the saddle net
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shown in Fig. 3(a), the 20 perimeter nodes coincide with the vertexes of a canonical icosaplevron

inscribed in a 10.5 m diameter circle, while the inner icosaplevra are inscribed in corresponding

circles increasing with a 0.5 m ratio in diameter to the center. The longitudinal rigidity of the 20

radial members is equal to 224.4 MN while the rigidity of the parallel members is equal to

149.06 MN. Preliminary tension by progressive shortening of all parallel cable segments is realized

in steps as follows: by 0.1% of their length on the 1st external layer, 0.2% for the 2nd interior layer

and so on up to 2% for the middle cables. The structure is acted upon on the center node by a

suddenly applied constant directional loading (with gravitational direction) of infinite duration with

magnitude of P = 2500 kN. The static configuration was determined without significant difficulties,

yielding a center node vertical deformation of about 0.40 m, as qualitatively shown in Fig. 3(b).

This node exhibits closed vertical vibrations around its static equilibrium, illustrated in the time

series plot of Fig. 3(c), while all nodes also undergo in plane vibrations along x and y axes, of

rather small amplitude. This is due to the geometric nonlinearity arising from the differential action

Fig. 3 Spider-web cable net geometry and corresponding static and dynamic response
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of the parallel and radial cables and shown in Fig. 3(d), where dynamic deformation patterns of the

spider-web network are given. A nonlinear radial increase (starting from the center node) of the

joints’ vertical deformation was established, while the maximum cable tensile forces appear in

radial cable segments, significantly larger than the ones developing on the parallel members. 
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