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Formulation for seismic response of a ship-block system
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Abstract. This paper presents a complete and consistent formulation to study the seismic response of a
free-standing ship supported by an arrangement of n keel blocks which are all located in a dry dock. It is
considered that the foundation of the system is subjected to both horizontal and vertical in plane
excitation. The motion of the system is classified in eight different modes which are Rest (relative),
Sliding of keel blocks, Rocking of keel blocks, Sliding of the ship, Sliding of both keel blocks and the
ship, Sliding and rocking of keel blocks, Rocking of keel blocks with sliding of the ship, and finally
Sliding and rocking of keel blocks accompanied with sliding of the ship. For each mode of motion the
governing equations are derived, and transition conditions between different modes are also defined. This
formulation is based on a number of fundamental assumptions which are 2D idealization for motion of
the system, considering keel blocks as the rigid ones and the ship as a massive rigid block too, allowing
the similar motion for all keel blocks, and supposing frictional nature for transmitted forces between
contacted parts. Also, the rocking of the ship is not likely to take place, and the complete ship separation
from keel blocks or separation of keel blocks from the base is considered as one of the failure mode in
the system. The formulation presented in this paper can be used in its entirety or in part, and they are
suitable for investigation of generalized response using suitable analytical, or conducting a time-history
sensitivity analysis.

Keywords: free-standing ship; keel blocks; coulomb friction; horizontal and vertical base excitation;
non-linear dynamic analysis; seismic response.

1. Introduction

The motion of rigid bodies lying on a rigid base subjected to horizontal and vertical excitation has

been studied by various researchers. This is a complicated problem because of frictional nature of

forces transferring between base and rigid bodies. Housner (1963) has proposed the minimum

acceleration required for overturning of a rigid block standing over a rigid base under horizontal

motion of the base. Lee (1975) developed a method for analyzing the nonlinear dynamic response

of a column consisting of stacked elements excited by boundary motions. He also presented

numerical results for the free vibrations of short columns and the boundary-excited response of tall

columns. Ikushima (1979) presented an analytical method for predicting the behavior of a prismatic

high-temperature gas-cooled reactor core under seismic excitation. In his model blocks were

allowed to have vertical and rocking motions, but their relative horizontal movement was restricted.
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Yim et al. (1980) derived the equation of motion of an overturning block subjected to horizontal

and vertical ground motion. Ishiyama (1982), Shenton et al. (1991) categorized the response of a

rigid block under horizontal and vertical ground motion. Allen (1986) also investigates the dynamic

behavior of rigid body assemblies. Shenton (1996) derived the criteria for initiation of slide,

overturning and slide-overturning combined modes. Pompei et al. (1998) and Zahng (2001) have

proposed conditions required to prevent sliding of blocks when overturning takes place. Lopez

Garcia and Soong (2003) have presented a sliding failure of block-type components. In all of these

investigations, the behavior of a block on a rigid base affected by ground motion either horizontal

or vertical has been studied. 

In order to inspect behavior of a real problem which can be modeled similar to a dual sliding-

rocking system, a massive block mounted over an arrangement of n keel blocks. Authors attempted

to study all kinds of responses probable for the system under horizontal and vertical base excitation.

One of these real problems is a ship standing freely over an arrangement of n keel blocks in a dry

dock. Dry docks adjacent to the sea are used for building, repairing and maintenance of ships.

There, the ship is supported by some keel blocks which are not fixed and can move. For high

seismic zones, it is of significant importance to study behavior of the system to probable

earthquakes that may occur while the ship is located on keel blocks. 

To study the seismic response of the system after regarding some fundamental assumptions, eight

modes of motion are considered here which are:

1. Rest (relative)

2. Sliding of keel blocks

3. Rocking of keel blocks

4. Sliding of the ship

5. Sliding of both keel blocks and the ship

6. Sliding and rocking of keel blocks

7. Rocking of keel blocks with sliding of the ship

8. Sliding and rocking of keel blocks accompanied with sliding of the ship

For each mode of motion, by applying a Lagrangian formulation, equations of motion are derived.

By solution of these equations, horizontal and vertical acceleration of blocks and ship, and rotational

acceleration of blocks are calculated. In addition to equations of motion, the conditions of transition

between different modes of motion are obtained. These conditions are achieved by comparison of

inertia forces and friction forces in each mode, and by considering the geometry of the problem in

hand. By having acceleration of keel blocks and the ship in each mode of motion and translation

conditions between each mode, a time-history response analysis is possible under any base

excitation.

2. Modeling

To model a dual sliding-rocking system subjected to horizontal and vertical base excitation some

simplifying assumptions are made: the motion of the system is restricted to two dimensions, the

ship is considered as a simple rigid block with mass M, lying on n similar keel blocks, and each

keel block is assumed as a rigid rectangular block of width 2B and height 2H, [θc = tan−1(B/H)]. The

mass m and mass moment of inertia I are the other characteristics of each keel block. The system

under investigation is shown in Fig. 1 and Fig. 2.
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The motion of the ship is considered in two directions relative to keel blocks and the rocking of

the ship is neglected. xs and ys stand for translation in X-direction and Y-direction, respectively. The

degrees of freedom for each keel block are translation relative to the ground in X-direction xb, in

Y-direction yb and the counter clockwise rotation θ relative to the ground. Due to similarity of all

keel blocks in dimensions, and similarity of friction coefficients between keel blocks-ground and

between keel blocks-ship, uniform motion for all keel blocks can be assumed. Because of this

uniform motion, horizontal forces between keel blocks-ground and between keel blocks-ship are

identical for all keel blocks. In other words, if Fx, Fy stand for total horizontal and vertical forces

transmitted between keel blocks-ship, and fx, fy stand for total horizontal and vertical transmitted

force between keel blocks-ground, forces acting on each keel block are:

Fig. 1 A simple model of a ship over n similar keel blocks

Fig. 2 Specifications of a sample block
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(1)

Fig. 2 shows a sample 2B*2H keel block, its degrees of freedom and forces acting on it. The only

mechanism of force transfer between keel blocks-ground and keel blocks-ship is the coulomb

friction force between these surfaces. μs and μk represents the static and dynamic coefficients of

friction, respectively. In order to account rotation of each keel block, points of applied forces are

considered to be symmetrical relative to the center of blocks. Another fundamental concept in

formulation of initial condition of motion is that the motion of the system starts from keel blocks

and then transfers to the ship. After that, the motion of the ship affects the motion of keel blocks as

a feedback mechanism.

3. Study of modes of motion

3.1 Rest (relative)

This mode of motion represents no displacement of the ship relative to keel blocks, and also no

movement of keel blocks relative to the ground. Using mentioned simplification, all keel blocks can

be replaced by a single block with mass n × m, and ship can be considered as a rigid block with

mass M. In complete relative rest state, using equilibrium equations, forces transmitted between

different parts of the system can be simply found out as: 

(2)

(3)

Fxi

Fx

n
----- Fyi

Fy

n
-----= fxi

fx

n
---= fyi

fy

n
---=, , ,=

Fy M y··g g+( )=

Fx Mx··g=

Fig. 3 Mode 1-Rest, (a) one keel block at rest, (b) the system at rest
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(4)

(5)

Where Mn is defined as nm/M. The moment equilibrium equation can also be used to determine

points on which applied forces are considered. These points are located in distance of ξi from

vertical axe of the keel block.

(6)

Using Eqs. (2) to (5), Eq. (6) can be rewritten as:

(7)

For complete relative rest state, no motion should occur in the system, so some necessary

conditions are expected. These conditions can be stated as follow:

• No separation of keel blocks from the base. This is possible if we have fy > 0 (or fyi > 0). By fy
provided in Eq. (4) this condition leads to:

 (8)

• No keel blocks sliding. To establish this condition, inertia forces applied on each keel block shall

be less than friction forces between that block and the ground or . This may be

expresses as:

(9)

In which μS1 and μS2 are defined as the static friction coefficients between keel blocks-ground

and between keel blocks-ship, respectively.

• No keel blocks overturning. To satisfy this condition, ξi is the controlling parameter. As long as

 there is no any liftoff. Using Eqs. (2) to (5) and Eq. (7), this condition results to:

(10)

Where α stands for (B/H).

• No ship sliding. In this case, the inertia forces applied to the ship must be less than friction

forces between keel blocks and the ship, in other words . Using Eqs. (2) and (3),

this condition can be rewritten in the following form:

(11)

• No separation of the ship from keel blocks. The result of this condition is similar to Eq. (8).

fy nm M+( ) y··g g+( ) M Mn 1+( ) y··g g+( )⋅= =

fx nm M+( )x··g M Mn 1+( ) x··g⋅= =

fxi Fxi+( )H fyi Fyi+( )ξ i+ 0=

ξ i

fxi Fxi+

fyi Fyi+

------------------⎝ ⎠
⎛ ⎞H

fx Fx+

fy Fy+

----------------⎝ ⎠
⎛ ⎞H= =

y··g g–>

fxi μs1 fyi⋅≤

x··g

y··g g+

-------------- μS1≤

ξ i B<

x··g

y··g g+

-------------- α≤

Fx /Fy μs2≤

x··g

y··g g+

-------------- μS2≤
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3.2 Sliding of keel blocks

In this mode of motion, it is assumed that keel blocks slide, and the ship remains at rest relative

to keel blocks. Fig. 4 shows this mode of motion. The dominating degree of freedom for this mode

is the horizontal motion of keel blocks relative to the ground which is denoted by xb. Applied forces

on keel blocks and the ship can be obtained by the use of equilibrium equation along both X and Y

direction. To calculate fy and Fy, equilibrium equations along Y-direction are used which give results

similar to Eqs. (2) and (4). By equilibrium equation along X-direction Fx is calculated as:

(12)

Once sliding of keel blocks, the transmitted force between keel blocks-ground may be expressed as:

(13)

Where  is defined to account for the direction of motion as: 

The governing equation of motion for this mode is given by:

(14)

 

After initiation of this mode of motion the conditions needed for the ship sliding or keel blocks

rocking are probable to be satisfied, and a new mode of motion will occur. According to Eqs. (2)

and (12) the ship sliding condition in this case ( ), can be expressed as:

Fx M x··g x··b+( )=

fx S x·b( )– μk1 fy⋅ ⋅ S x·b( )– μk1 M Mn 1+( ) y··g g+( )⋅ ⋅= =

S x·b( )

S x·b( )
1  x·b 0>

1– x· b 0<⎩
⎨
⎧

=

x··b S x· b( )– μk1 y··g g+( ) x··g–⋅ ⋅=

Fx /Fy μs2>

Fig. 4 Mode 2-Sliding of keel blocks Fig. 5 Mode 3-Rocking of keel blocks around left
bottom edge
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(15)

As  and , this condition reduces to . To establish the condition

for incoming to keel blocks rocking mode ξi must be equal or greater than α ; hence, it can be said

that: 

 (16)

By simplifying Eq. (16), the initiation condition of keel blocks rocking is .

3.3 Rocking of keel blocks

In this case, keel blocks can rock to left or right about the corner points due to the base excitation.

The sliding motions of the ship and keel blocks are restricted. This mode of motion is shown in Fig. 5.

It is assumed that the contact between the ship and keel blocks occur in a single point on each keel

block. Geometry of the problem does not allow the ship to rock. To obtain applied forces transmitted

between keel blocks and the ship, the coordinates of keel block’s mass center , and the ship’s

mass center  are defined due to rotational degree of freedom θ, as given in below:

(17)

(18)

(19)

(20)

Where R is defined as  and the superscript t is used for total displacement.

 is also defined to account for the direction of rotation of keel blocks as:

If equilibrium equation in the rotational state is used, the applied forces can be calculated as

follows:

(21)

(22)

(23)

(24)

S x· b( )– μk1 y··g g+( )⋅ ⋅
y··g g+

------------------------------------------------------ μs2>

y··g g+( ) 0> S x·b( )– 1= μk1 μs2>

S x· b( )– μk1 M Mn 1+( ) y··g g+( )⋅ ⋅ S x·b( ) μk1 y··g g+( )⋅ ⋅–

Mn 2+( ) y··g g+( )
------------------------------------------------------------------------------------------------------------------------------------- α≥

μk1 α≥

xb

t
yb

t,
xs

t
ys

t,

xb

t
S θ( )– R sinθc sin θc θ–( )–[ ]⋅=

yb

t
R cos θc θ–( ) cosθc–[ ]=

xs

t
2S θ( )R sinθc sin θc θ–( )–[ ]–=

ys

t
2R cos θc θ–( ) cosθc–[ ]=

B
2

H
2

+( )
S θ( )

S θ( )
1 θ 0>

1  θ 0<–⎩
⎨
⎧

=

Fy M y··g g+( ) 2R S θ( )θ·· sin θc θ–( ) θ
· 2

cos θc θ–( )–[ ]+{ }=

Fx M x··g 2R θ
··

cos θc θ–( ) S θ( )θ·
2

sin θc θ–( )+[ ]+{ }=

fy M Mn 1+( ) y··g g+( ) R Mn 2+( ) S θ( )θ·· sin θc θ–( ) θ
· 2

cos θc θ–( )–[ ]+{ }=

fx M Mn 1+( )x··g R Mn 2+( ) θ·· cos θc θ–( ) S θ( )θ·
2

sin θc θ–( )+[ ]–{ }=
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To obtain the equation of motion a Lagrangian formulation is used. Therefore, the governing

equation of motion is derived as:

(25)

In this mode of motion, if the conditions needed for sliding of keel blocks or the ship are satisfied

a new mode of motion will occur. To establish sliding of keel blocks, based on the equation

 we obtain:

(26)

Based on the equation , sliding of the ship may be probable. This condition can be

expressed as:

(27)

3.4 Sliding of the ship

Since only the ship slides in this mode of motion, the degree of freedom is horizontal motion of

the ship relative to keel blocks which is denoted by xs. To obtain fy and Fy , equilibrium equations

along Y-direction are used which give results similar to Eqs. (2) and (4). According to Eq. (2) and

considering the ship sliding, Fx is obtained as:

(28)

To calculate fx, Fx given in Eq. (28) should be inserted in keel blocks equilibrium equation along

X-direction. The following relationship will be resulted:

(29)

The equation of motion can be derived by the use of Lagrangian formulation as:

(30)

If , keel blocks sliding will occur. According to Eqs. (29) and (2) this condition can be

simplified as:

(31)

θ
·· 3

4R
-------

Mn 2+

Mn 3+

----------------⎝ ⎠
⎛ ⎞ x··gcos θc θ–( ) S θ( ) y··g g+( )sin θc θ–( )–[ ]=

fx/fy μs1>

Mn 1+

Mn 2+

----------------⎝ ⎠
⎛ ⎞ x··g R θ

··
cos θc θ–( ) S θ( )θ·

2

sin θc θ–( )+[ ]–

Mn 1+

Mn 2+

----------------⎝ ⎠
⎛ ⎞ y··g g+( ) R S θ( )θ·· sin θc θ–( ) θ

· 2

cos θc θ–( )–[ ]+

-------------------------------------------------------------------------------------------------------------------------------------------------- μs1>

fx/fy μs2>

x··g 2R θ
··

cos θc θ–( ) S θ( )θ·
2

sin θc θ–( )+[ ]–

y··g g+( ) 2R S θ( )θ·· sin θc θ–( ) θ
· 2

cos θc θ–( )–[ ]+

------------------------------------------------------------------------------------------------------------------------------- μs2>

Fx S x· s( ) μk2 Fy⋅ ⋅– S x· s( )– μk2 M y··g g+( )⋅ ⋅ ⋅= =

fx M Mnx
··
g S x· s( )– μk2 y··g g+( )⋅ ⋅[ ]=

x··s S x· s( )– μk2 y··g g+( )⋅ ⋅ x··g–=

fx /fy μs1>

Mn

Mn 1+

----------------⎝ ⎠
⎛ ⎞ x··g

y··g g+

-------------- S x· s( )– μk2
1

Mn 1+

----------------⋅ ⋅ μs1>
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To consider the rocking of keel blocks and knowing the rocking initiation condition 

 the following equation is obtained:

(32)

3.5 Sliding of both keel blocks and the ship

Sliding of keel blocks and the ship occurs simultaneously, in this mode of motion. Degrees of

freedom in this mode are the horizontal translation of keel blocks relative to the ground, xb and the

horizontal translation of the ship relative to the blocks, xs. Such as previous cases, Values for fy and

Fy are same as Eqs. (2) and (4). 

Satisfying the condition corresponding to the ship sliding Fx can be expressed as follows:

(33)

and while keel blocks also slide, fx is equal to:

(34)

To drive equations of motion in this mode two coupled Lagrangian equations should be solved.

After that, the governing equations can be presented as:

(35)

(36)

fx Fx+ / fy Fy+

B/H( )≥

Mn

Mn 2+

----------------
x··g

y··g g+

-------------- S x· s( )– μk2
2

Mn 2+

----------------⋅ ⋅ α≥

Fx S x· s( )– μk2 M y··g g+( )⋅ ⋅ ⋅=

fx S x· b( )– μk1 M Mn 1+( ) y··g g+( )⋅ ⋅=

x··b
1

Mn

------- y··g g+( ) S x·b( )– μk1 Mn 1+( )⋅ ⋅ S x· s( ) μk2⋅+[ ] x··g–=

x··s
Mn 1+

Mn

---------------- y··g g+( ) S x·b( ) μk1⋅ S x· s( ) μk2⋅+[ ]=

Fig. 6 Mode 4-Sliding of the ship Fig. 7 Mode 5-Sliding of both keel blocks and the
ship
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Satisfaction of rocking condition for keel blocks in this mode  make a

new mode of motion. This condition can be rewritten as:

(37)

3.6 Sliding and rocking of keel blocks

While this mode of motion occurs, keel blocks experience rocking and sliding together. Degrees

of freedom are defined as horizontal translation of keel blocks relative to the ground, xb, and

counter clockwise rotation of keel blocks, θ. The coordinates of keel blocks’ mass center and the

ship’s mass center can be defined in the following formulation:

(38)

(39)

Definitions of  are similar to Eqs. (18) and (20).

The applied forces on keel blocks and ship, when this mode of motion happens are as follows:

(40)

 (41) 

Values of fy and Fy are similar to Eqs. (2) and (4).

By applying a Lagrangian formulation and solving derived set of equations, the solution is

obtained as:

fx Fx+ / fy Fy+ B/H( )≥

S x·b( ) μk1

Mn 1+

Mn 2+

----------------⎝ ⎠
⎛ ⎞⋅ ⋅ S x· s( )+ μk2

1

Mn 2+

----------------⋅ ⋅ α≥

xb

t
xb S θ( ) R sinθ c sin θ c θ–( )–[ ]⋅ ⋅–=

xs

t
xb 2S θ( )R sinθ c sin θ c θ–( )–[ ]–=

ys

t
yb

t,

Fx M x··g x··b 2R θ
··

cos θ c θ–( ) S θ( )θ·
2

sin θ c θ–( )+[ ]–+{ }=

fx S x· s( )μk1M Mn 1+( ) y··g g+( ) Mn 2+( )R S θ( )θ·· sin θ c θ–( ) θ
· 2

cos θ c θ( )–[ ]+{ }–=

Fig. 8 Mode 6-Sliding and rocking of keel blocks Fig. 9 Mode 7-Rocking of keel blocks with sliding
of the ship
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(42)

(43)

The coefficients in these equations are defined as:

To establish the mode of ship sliding, the condition  should be satisfied. So we have:

(44)

3.7 Rocking of keel blocks with sliding of the ship

This mode occurs when rocking of keel blocks and sliding of the ship happen simultaneously.

Fig. 9 shows this mode of motion. Degrees of freedom for in this case are counter clockwise

rotation of keel blocks θ and horizontal translation of the ship, xs. Similar to the other modes

coordinates of the mass centers can be defined as:

(45)

x··b

A1 A2

4R

3M2

----------
A3

M1

------- Rθ
· 2

A4–⎝ ⎠
⎛ ⎞

+ +

4

3
---

M1

M2

------- A5–

---------------------------------------------------------------------------=

θ
·· 6 2 Mn+( ) A

6
A

7
+( ) A

4
( )

R 12 1– A8+( ) Mn 5– 3A8+( ) Mn 4+( )+[ ]
-------------------------------------------------------------------------------------------------------=

A1 x··gcos θc θ–( )– S θ( ) y··g g+( )sin θc θ–( )+=

A2 cos θc θ–( ) S x·g( )S θ( )μk1sin θc θ–( )–=

A
3

S x·b( )S y··g g+( )μk1x
··
g=

A4 S θ( )sin θc θ–( ) S x·b( )μk1cos θc θ–( )+=

A5 cos θc θ–( ) S x·b( )S θ( )μk1sin θc θ–( )–[ ]cos θc θ–( )=

A6 y··g g+( ) 2Rcos θc θ–( )θ·
2

–=

A7 Mn y··g g+( ) Rcos θc θ–( )θ·
2

–[ ]=

A8 cos2 θc θ–( ) S x·b( )S θ( )μk1sin2 θc θ–( )–=

M
1

Mn 1+

Mn 2+

----------------=

M2

Mn 2+

Mn 3+

----------------=

Fx /Fy μs2>

x··g x··b 2R θ
··

cos θc θ–( ) S θ( )θ·
2

sin θc θ–( )+[ ]–+{ }

y··g g 2R S θ( )θ·· sin θc θ–( ) θ
· 2

cos θc θ–( )–[ ]+ +{ }
----------------------------------------------------------------------------------------------------------------------------------- μs2>

xb

t
S θ( ) R sinθc sin θc θ–( )–[ ]⋅ ⋅–=
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(46)

Definition of  are same as Eqs. (18) and (20). Forces along X-direction can be evaluated as:

(46)

(47)

Values of fy and Fy are same as those given by Eqs. (2) and (4). Applying a Lagrangian

formulation and solving the obtained set of equations, governing equations of motion become:

(48)

(49)

Where the coefficients in Eqs. (48) and (49) are:

If  sliding of keel blocks will occur. That leads to the following formulation:

(50)

3.8 Sliding and rocking of keel blocks accompanied with sliding of the ship

Since keel blocks experience sliding and rocking, sliding of the ship happens, also. Degrees of

freedom in this mode of motion are horizontal translation of the ship relative to the blocks, xs ,

horizontal translation of keel blocks relative to the ground, xb, and counter clockwise rotating of

blocks, θ. This mode of motion is shown in Fig. 10. The coordinates of mass centers are:

xs

t
xs 2– S θ( )R sinθc sin θc θ–( )–[ ]=

ys

t
yb

t,

Fx S x· s( )– μk2 M⋅ ⋅ y··g g+( ) 2R θ
··

S θ( )sin θc θ–( ) θ
· 2

cos θc θ( )–[ ]+{ }=

fx nm x··g R θ
··

cos θc θ–( ) S θ( )θ·
2

sin θc θ–( )–[ ]–{ }=

S x· s( )μk2M y··g g+( ) 2R S θ( )θ·· ⋅ sin θc θ–( ) θ
· 2

cos⋅ θc θ–( )–[ ]+{ }⋅–

x··s x··g– A1

3A2 A3 2 A4 A5+( )+[ ]
2Mn– 3A6+

----------------------------------------------------–+=

θ
·· 3 A3 2 A4 A5+( )+[ ]

2R 2Mn 3A6–( )
----------------------------------------------=

A1 2R S θ( ) sin θc θ–( )⋅ S x· s( )μk2+ cos θc θ–( )⋅[ ]θ·
2

=

A2 cos θc θ–( ) S x· s( )S θ( )μk2 sin⋅ θc θ–( )–=

A3 Mn x··gcos θc θ–( ) S θ( ) y··g g+( )sin θc θ–( )–[ ]=

A
4

S θ( ) y··g g+( )sin θc θ–( )–=

A5 S θ( ) R⋅ sin2 θc θ–( )⋅ 2Rμk2+ S x· s( )cos
2
θc θ–( )⋅[ ]θ·

2

=

A6 cos2 θc θ–( ) S x· s( )S θ( )μk2– sin2 θc θ–( )⋅ 1–=

fx/fyi μs1>

Mnx
··
g S x· s( )– μk2 y

··
g g+( )⋅ R θ

··
Mncos θc θ–( ) 2S x· s( )μk2+ S θ( )sin θc θ–( )⋅( ) θ

· 2
S θ( )sin θc θ–( ) 2S x· s( )μk2cos θc θ–( )+[ ]–[ ]–

Mn 1+( ) y··g g+( ) Mn 2+( )R S θ( )θ
··
sin θc θ–( ) θ

· 2
cos θc θ–( )–[ ]+

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- μs1>
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(51)

(52)

Definition of  are same as Eqs. (18) and (20). Considering the slide of keel blocks and the

ship, forces along X-direction can be expressed as:

(53)

 (54)

Values of fy and Fy are same as those given by Eqs. (2) and (4).

Applying the Lagrangian formulation and solving the obtained set of equations, the following

resulted equations of motion are obtained:

(55)

(56)

(57)

The coefficients of Eqs. (55), (56) and (57) are:

xb

t
xb – S θ( )R sinθc sin θc θ–( )–[ ]=

xs
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Fig. 10 Mode 8-Sliding and rocking of keel blocks accompanied with sliding of the ship
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4. Impact induced by rocking of keel blocks

For the case when rocking of keel blocks takes place, changing in rotation direction causes an

impact between keel blocks-ground and between keel blocks-ship. This impact results to some

energy dissipation which causes reduction in the angular velocity of keel blocks after the impact.

The governing impact model is from classical impact theory. This model assumes a point impact,

nonzero coefficient of restitution, and finite value of friction. This model can be expressed as the

following condition considering the law of conservation of momentum:

In which e is the coefficient of restitution;  is the time right after the impact;  is the time right

before the impact. The duration of impact is ignored and changes in angular velocity are considered

to occur instantaneously.

5. Conclusions

The complete, two-dimensional formulation of all probable modes of motion for a ship-block

system which is located in a dry dock, and excited in both horizontal and vertical direction, has
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been presented. Some assumptions are considered throughout modeling: the ship is modeled as a

rigid block, and coulomb friction is applied between contacted surfaces, the supposed degrees of

freedom are horizontal translation of keel blocks and ship, and counter clockwise rotation of the

blocks. The motion of all keel blocks is considered to be the same. The formulation has been

described in terms of eight mode of motion which is the combination between sliding of the ship,

sliding of keel blocks, and rocking of keel blocks. By applying Lagrangian formulation, the

horizontal acceleration of keel blocks and the ship, and angular acceleration of keel blocks are

derived. The complete separations of the ship from keel blocks and keel blocks from ground are

regarded as failure. Vertical motions for the ship and keel blocks are defined in terms of keel block

rotational degree of freedom. Equations of motion for each mode as well as applied forces acting on

keel blocks and ship are formulated. Furthermore, using the interface forces and geometric

relationships, transition conditions between various modes are investigated. A classical impact

theory was used to describe the impact happened when the rotation direction of keel blocks

changes. A point-impact, nonzero coefficient of restitution and finite value of friction are the basic

characters of this model. 

In the accompanying paper a complete sensitivity analysis of the system is presented. In such

cases of properties, conducting a time-history analysis, responses of the system are studied.
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