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Abstract. In this paper, the scattering of harmonic elastic anti-plane shear waves by two collinear
cracks in functionally graded materials is investigated by means of nonlocal theory. The traditional
concepts of the non-local theory are extended to solve the fracture problem of functionally graded
materials. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of
a two-dimensional one for the anti-plane dynamic problem to obtain the stress field near the crack tips.
To make the analysis tractable, it is assumed that the shear modulus and the material density vary
exponentially with coordinate vertical to the crack. By use of the Fourier transform, the problem can be
solved with the help of a pair of triple integral equations, in which the unknown variable is the
displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack
surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found
that no stress singularities are present at crack tips. 

Keywords: crack; nonlocal theory; functionally graded materials; lattice parameter; stress waves.

1. Introduction

With the development of the functionally graded materials (FGMs), it has been widely introduced

and applied to the development of thermal and structural components due to its ability to not only

reduce the residual and thermal stresses but to increase the bonding strength and toughness as well.

In recent years, many analytical and theoretical studies in fracture mechanics of FGMs have been

widely done (Erdogan and Wu 1997, Delale and Erdogan 1988, Chen 1990, Ozturk and Erdogan

1996). Among them there are the solutions for a FGM strip containing an imbedded or an edge

crack perpendicular to the surfaces (Erdogan and Wu 1997); for a crack in the non-homogeneous

interlayer bounded by dissimilar homogeneous media (Delale and Erdogan 1988); and for a crack at
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the interface between homogeneous and non-homogeneous materials (Chen 1990, Ozturk and

Erdogan 1996). Similar problems of delamination or an interface crack between a functionally

graded coating and a substrate were considered in Jin and Batra (1996), Bao and Cai (1997),

Shbeeb and Binienda (1999). The crack problem in FGM layers under thermal stresses was studied

by Erdogan and Wu (1996). They considered an unconstrained elastic layer under statically self-

equilibrating thermal or residual stresses. However, it is found that all the solutions in Erdogan and

Wu (1997), Delale and Erdogan (1988), Chen (1990), Ozturk and Erdogan (1996), Jin and Batra

(1996), Bao and Cai (1997), Shbeeb and Binienda (1999), Erdogan and Wu (1996) contain the

stress singularities near the crack tips. This phenomenon is not reasonable according to the physical

nature. As a result of this, beginning with Griffith, all fracture criteria in practice today based on

other considerations, e.g., energy, the J-integral (Rice 1968) and the strain gradient theory (Xia and

Hutchinson 1996).

To overcome the stress singularity in the classical elastic fracture theory, Eringen (1977, 1978,

1979) used nonlocal theory to discuss the stress near the tip of a sharp line crack in an isotropic

elastic plate subject to uniform tension, shear and anti-plane shear, and the resulting solutions did

not contain any stress singularities. This allows us to use the maximum stress as a fracture criterion.

In contrast to these local approaches, of zero-range internal interactions, the modern nonlocal

continuum mechanics originated and developed in the last four decades. Edelen (1976) contributed

some mathematical formalism while Green and Rivilin (1965) simply enunciated some postulates

for the non-local theory. On the other hand, Eringen (1976) contributed not just the complete

physics and mathematics of the non-local theory but also, in addition, shaped the theory into a

concrete form making it viable for practical applications to boundary value problems. According to

nonlocal theory, the stress at a point X in a body depends not only on the strain at point X but also

on that at all other points of the body. This is contrary to the classical theory that the stress at a

point X in a body depends only on the strain at point X. In Pan and Takeda (1998), the basic theory

of nonlocal elasticity was stated with emphasis on the difference between the nonlocal theory and

classical continuum mechanics. The basic idea of nonlocal elasticity is to build a relationship

between macroscopic mechanical quantities and microscopic physical quantities within the

framework of continuum mechanics. The constitutive theory of nonlocal elasticity has been

developed in Edelen (1976), in which the elastic modulus is influenced by the microstructure of the

material. In Pan and Xing (1997), Pan and Takeda (1997), it has been found that the microstructure

of the material not only affects the constitutive equation, but also the basic balance laws and

boundary conditions. Other results have been given by the application of nonlocal elasticity to the

fields such as a dislocation near a crack (Pan 1992, 1994), solid defects (Pan 1996, Pan and Fang

1996) and fracture mechanics problems (Pan 1995, Pan and Fang 1993). The literature on the

fundamental aspects of nonlocal continuum mechanics is relatively extensive. The results of those

concrete problems that were solved display a rather remarkable agreement with experimental

evidence. This can be used to predict the cohesive stress for various materials and the results close

to those obtained in atomic lattice dynamics (Eringen and  Kim 1974, 1977). Likewise, a nonlocal

study of the secondary flow of viscous fluid in a pipe furnishes a streamline pattern similar to that

obtained experimentally by Eringen (1977). Other examples of the effectiveness of the nonlocal

approach are: (i) prediction of the dispersive character of elastic waves demonstrated experimentally

(and lacking in the classical theory) (Eringen 1972) and (ii) calculation of the velocity of short Love

waves whose nonlocal estimates agree better with seismological observations than the local ones

(Nowinski 1984). Several nonlocal theories have been formulated to address strain-gradient and size
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effects (Forest 1998). Recently, some fracture problems (Zhou et al. 1999, Zhou and Shen 1999,

Zhou et al. 2003, Zhou and Wang 2003, Sun and Zhou 2004) in an isotropic elastic material and the

piezoelectric material have been studied by use of nonlocal theory with a somewhat different

method. However, to our knowledge, the scattering of harmonic elastic anti-plane shear waves by

two collinear cracks in functionally graded materials has not been studied by use of the nonlocal

theory. Thus, the present work is an attempt to fill this information needed. Here, we just attempt to

give a theoretical solution for this problem.

In the present paper, the scattering of harmonic elastic anti-plane shear waves by two collinear

cracks in functionally graded materials is investigated by use of nonlocal theory with Schmidt

method (Morse and Feshbach 1958, Yan 1967). The traditional concepts of the non-local theory are

extended to solve the dynamic fracture problem of functionally graded materials. The Fourier

transform is applied and a mixed boundary value problem is reduced to a pair of triple integral

equations. To solve the triple integral equations, the displacement on the crack surfaces is expanded

in a series of Jacobi polynomials. Numerical solutions are obtained for the stress fields near the

crack tips. 

2. The crack model

It is assumed that there are two collinear symmetric cracks of length 1 − b along the x-axis in

functionally graded material plane as shown in Fig. 1. 2b is the distance between the two cracks

(The solution of two collinear cracks of length c − b in the functionally graded materials can

easily be obtained by a simple change in the numerical values of the present paper for crack

length 1 − b/c.c > b > 0). A Cartesian coordinate system (x, y) is positioned as shown in Fig. 1. In

this paper, the harmonic elastic stress wave is vertically incident. Let ω be the circular frequency of

the incident wave.  is the mechanical displacement.  is the anti-

plane shear stress field. Because the incident wave is the harmonic anti-plane shear stress wave, all

field quantities of  and  can be assumed to be of the forms as follows:

(1)

In what follows, the time dependence of  will be suppressed but understood. Here, the

standard superposition technique was used in the present paper. As discussed in Eringen (1979),

w0 x y t, ,( ) τzk0 x y t, ,( ) k x y,=( )

w0 x y t, ,( ) τzk0 x y t, ,( )

w0 x y t, ,( ) τzk0 x y t, ,( ),[ ] w x y,( ) τzk x y,( ),[ ]e iω t–

=

e
iω t–

Fig. 1 Geometry and coordinate system for two collinear cracks
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Zhou and Shen (1999) and Srivastava et al. (1983), the boundary conditions can be written as

following (In this paper, we just consider the perturbation stress fields): 

(2)

(3)

(4)

where  is a magnitude of the incident wave.

3. Basic equation of non-local function graded materials

In the absence of body forces, the basic equations of anti-plane shear fracture problem in the

functionally graded materials can be written as follows:

(5)

(6)

(7)

where . ρ(y) is the material density.

The only difference from the classical elasticity is in the stress constitutive Eqs. (6)-(7), the stress

 and , at a point (x, y) depend on the  and , at all points of the

body. For the functionally graded materials anti-plane shear problem there exits only a materials

parameter . In Eringen and Kim (1974, 1977), Eringen (1977), we obtained the

form of  for which the dispersion curves of plane elastic waves coincide with

those known in lattice dynamics. Among several possible curves the following has been found to be

very useful

(8)

Crack problems in the functionally graded materials do not appear to be analytically tractable for

arbitrary variations of material properties. Usually, one tries to generate the forms of the

functionally graded materials for which the problem becomes tractable. Similar to the treatment of

the crack problem of the isotropic functionally graded materials in Erdogan and Wu (1997), Delale

and Erdogan (1988), Chen (1990), Ozturk and Erdogan (1996), we assume the material properties

are described by:

τyz x 0
+,( ) τyz x 0

–,( ) τ0 x( ),  b x 1≤ ≤ ,  y– 0= = =

w x 0
+,( ) w x 0

–,( ) 0,  x b< x 1>, ,  = = y 0=

w x y,( ) 0,  for  x
2

y
2

+( )
1/2

∞→=

τ0 x( )

∂τxz

∂x
---------

∂τyz

∂y
---------+ ρ y( )ω2

w x y,( )–=

τxz x y,( ) μ* x′ x– y′ y–,( )∂w x′ y′,( )
∂x′

------------------------ x ′ y′dd
∞–

∞

∫∞–

∞

∫=

τyz x y,( ) μ* x′ x– y′ y–,( )∂w x′ y′,( )
∂y′

------------------------ x ′ y′dd
∞–

∞

∫∞–

∞

∫=

ρ y( )ω2
w x y,( )e iωt–

– ρ y( )
∂

2
w0 x y t, ,( )

∂ t
2

----------------------------- ρ y( )∂
2

w x y,( )e iωt–( )

∂ t
2

-------------------------------------= =

τxz x y,( ) τyz x y,( ) ∂w x y,( )
∂ x

---------------------
∂w x y,( )

∂ y
---------------------

μ* x′ x– y′ y–,( )
μ* x′ x– y′ y–,( )

μ* x′ x– y′ y–,( ) α x′ x– y′ y–,( )μ y′( )=
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(9)

where μ0 and ρ0 are the shear modulus and the mass density along y = 0, respectively. They are

constants. λ is the functionally graded parameter. This is a purely mechanics assumption.  is

the case for the functionally graded materials. When λ = 0, it will return to the homogenous

piezoelectric material case. 

Substituting Eqs. (8)-(9) into Eqs. (6)-(7) yield

(10)

where (11)

The expression (11) is the classical constitutive equations for the functionally graded materials.

4. The dual integral equation 

Substituting Eqs. (6)-(7) into Eq. (5) and using Green-Gauss theorem leads to

(12)

Here the surface integral may be dropped since the displacement field vanishes at infinity. 

As mentioned in Eringen (1979), it can be obtained that . What now

remains is to solve the integrodifferential Eq. (12) for the function . It is impossible to

obtain a rigorous solution at the present stage. It seems obvious that in the solution of such a

problem we encounter serious if not unsurmountable mathematical difficulties and will have to

resort to an approximate procedure. In the given problem, as discussed in Nowinski (1984a,b), Zhou

and Wang (2002), it is assumed that the non-local interaction in the y-direction is ignored. This is a

purely assumption for mathematical tractability. In view of our assumptions, it can be given as

(13)

where . β is a constant and can be obtained by experiment.

a is the characteristic length. The characteristic length may be selected according to the range and

sensitivity of the physical phenomena. For instance, for the perfect crystals, a may be taken as the

lattice parameter. For granular materials, a may be considered to be the average granular distance

and for fiber composites, the fiber distance, etc. In the present paper, a is taken as the lattice

parameter. From Eq. (13), we have

μ y( ) μ0e
λy

, ρ y( ) ρ0e
λy

==

λ 0≠

τkz X( ) α X′ X–( )σkz X′( ) Vd X′( ) k x y,=( )
V
∫=

σkz e
λy

c440w,k  k x y,=( )=

α x′ x– y′ y–,( )μ y′( ) ∂
2
w x ′ y′,( )

∂x′2
---------------------------

∂
2
w x′ y′,( )

∂ y′2
--------------------------- λ

∂ w x′ y′,( )
∂y′

-------------------------+ + x′ y′dd
∞–

∞

∫∞–

∞

∫

1–

b–

∫ b

1

∫+[ ]α x′ x– y′ y–,( ) σyz x′ 0
+,( ) σyz x′ 0

–,( )–[ ] x′d– ρ y( )ω2
w x y,( )–=

σyz x 0
+,( ) σyz x 0

–,( )–[ ] 0=

w x y,( )

α x′ x– y′ y–,( ) α0 x′ x–( )δ y′ y–( )=

α0 x′ x–( ) =
1

π
------- β/a( )exp β/a( )2 x′ x–( )2–[ ]
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(14)

almost everywhere.

To solve the problem, the Fourier cosine transform of Eq. (14) with x can be given as follow:

(15)

A superposed bar indicates the Fourier cosine transform through the paper. 

From Eq. (13), we have

(16)

Because of the symmetry, it suffices to consider the problem for . The solution of

Eq. (15) satisfying Eq. (4) can be given as follow

(17)

where , . A(s) is an unknown function to be determined

from the boundary conditions.

Substituting Eq. (17) into Eq. (10), it can be obtained

(18)

Substituting for α from Eq. (13), the integrations may be performed with respect to x' and y' by

noting the integrals (Gradshteyn and Ryzhik 1980)

(19)

Hence

(20)

where ,

So the boundary conditions (2)-(3) can be expressed as:

(21)

α0 x′ x–( ) ∂
2
w x′ y,( )

∂x′2
------------------------- λ

∂ w x′ y,( )
∂y

-----------------------
∂

2
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∂y
2

-------------------------+ + x′
ρ0

μ0

-----ω
2
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∞–

∞

∫

α 0 s( ) s
2
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∂y

---------------------
∂

2
w s y,( )
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2

-----------------------+ +
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-----ω
2
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α 0 s( ) exp
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4β
2

------------–⎝ ⎠
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=

x 0 y ∞<,≥

w x y,( )

2

π
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∞

∫

2
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∞
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⎪
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=
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2
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2
ω

2
/c1

2
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2
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τyz x y,( )
2μ0

π
-------- γe
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A s( ) s α0 x′ x–( ) α0 x′ x–( )+[ ]cos sx′( ) x′d
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∞
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0
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∞
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(22)

It can be obtained that . So Eqs. (21)-(22) will revert to the well-known triple integral

equations of the classical theory for the limit . To determine the unknown function , the

previous pair of triple integral Eqs. (21)-(22) must be solved.

5. Solution of the triple integral equation

The only difference between the classical and nonlocal equations is in the influence function

, it is logical to utilize the classical solution to convert the system Eqs. (21)-(22) to an

integral equation of the second kind, which is generally better behaved. For the lattice parameter

, then  equals to a non-zero constant and Eqs. (21)-(22) reduce to a pair of triple

integral equations for the same problem in classical elasticity. As discussed in Eringen et al. (1977),

the triple integral Eqs. (21)-(22) cannot be transformed into a Fredholm integral equation of the

second kind, because  does not tend to a constant  for . Of course, the triple

Eqs. (21)-(22) can be considered to be a single integral equation of the first kind with discontinuous

kernel. It is well-known in the literature that integral equations of the first kind are generally ill-

posed in sense of Hadamard, i.e., small perturbations of the data can yield arbitrarily large changes

in the solution. This makes the numerical solution of such equations quite difficult. To overcome the

difficult, the Schmidt method (Morse and Feshbach 1958, Yan 1967) is used to solve the triple

integral Eqs. (21)-(22). The displacement w on the crack surface can be represented by the

following series:

(23)

(24)

where an are unknown coefficients, (x) is a Jacobi polynomial (Gradshteyn and Ryzhik

1980). The Fourier transform of Eqs. (23)-(24) are Erdelyi (1954)

(25)

where , 

 and  are the Gamma and Bessel functions, respectively. 
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Substituting Eq. (25) into Eqs. (21)-(22), it can be shown that Eq. (22) are automatically satisfied.

Eq. (21) reduces to

(26)

For a large s, the integrands of Eq. (26) almost all decrease exponentially. So the semi-infinite

integral in Eq. (26) can be evaluated numerically by Filon’s method (Amemiya and Taguchi 1969).

Thus Eq. (26) can be solved for coefficients an by the Schmidt method (Morse and Feshbach 1958,

Yan 1967). Here, it was omitted. It can be seen in Itou (1978), Zhou et al. (1999), Itou (2001).

6. Numerical calculations and discussion

The coefficients an are known, so that the entire stress field can be obtained. However, in fracture

mechanics, it is important to determine the stress τyz in the vicinity of the crack tips. In the case of

the present study, τyz along the crack line can be expressed as:

(27)

When the lattice parameter , the semi-infinite integration and the series in Eq. (27) are

convergent for any variable x, it gives a finite stress all along y = 0, so there is no stress singularity

at crack tips. At ,  is very close to unity, and for ,  possesses finite

values diminishing from a finite value at  to zero at . Since  represents a

crack length of less than 100 atomic distances (Eringen et al. 1977), and for such submicroscopic

sizes, other serious questions arise regarding the interatomic arrangements and force laws, we do

not pursue solutions valid at such small crack sizes. The semi-infinite numerical integrals, which

occur, are evaluated easily by Filon and Simpson’s (Amemiya and Taguchi 1969) methods because

the rapid diminution of the integrands. From Itou (1978), Zhou et al. (1999), Itou (2001), it can be

seen that the Schmidt method is performed satisfactorily if the first ten terms of infinite series to

Eq. (27) are retained.

The results are plotted in Figs. 2-8. The following observations are very significant:

(i) The traditional concepts of the non-local theory are extended to solve the dynamic fracture

problem of functionally graded materials. The nonlocal elastic solutions yield a finite hoop stress at

the crack tips, thus allowing us to use the maximum stress as a fracture criterion. The maximum

stress value does not occur at the crack tips, but slightly away from it as shown in Figs. 2-4. This

phenomenon has been thoroughly substantiated by Eringen (Itou 1978). The maximum stress value

is finite. The distance between the crack tip and the maximum stress point is very small, and it

depends on the crack length, the material properties and the lattice parameter. Contrary to the

classical elasticity solution, it is found that the present results converge to the classical ones when

far away from the crack tips as shown in Figs. 2-4. Simultaneously, for the nonlocal solution, the

smaller the lattice parameter is, the more closer to the classical solution as shown in Figs. 2-4.

(ii) The stress of τyz does not depend on the shear modulus as shown in Eqs. (26)-(27). However,

the stress of τyz depends on the crack length, on the frequency of the incident waves, the parameter

4μ0

π
-------- anFn

γ

s
--e

s
2

4p
------–

Gn s( )Jn 1+ s
1 b–

2
------------⎝ ⎠
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0

∞

∫
n 0=
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∑ τ0, b x 1≤ ≤=

τyz x 0,( )
4μ0

π
--------– anFn

γ
s
--e

s
2

4p
------–

Gn s( )Jn 1+ s
1 b–

2
------------⎝ ⎠

⎛ ⎞ cos sx( ) sd
0

∞

∫
n 0=

∞

∑=

a 0≠

b x 1< < τyz/ τ0–( ) x 1> τyz/τ0
x 1= x ∞= a/β 1/100>
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Fig. 2 The stress along the crack line versus x for b = 0.1, ω/c1 = 0.2, λ = 0.2 and a/β = 0.001 

Fig. 4 The local enlarge graph of Fig. 2 near the
crack left tip 

Fig. 3 The local enlarge graph of Fig. 2 near the
crack right tip 

Fig. 5 The stress at the crack tips versus b for a/β
= 0.001, λ = 0.2 and ω/c1 = 0.2

Fig. 6 The stress at the crack tips versus λ for a/β
= 0.001, ω/c1 = 0.2, and b = 0.1
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describing the functionally graded materials and the lattice parameter of the materials. This is the

same as the anti-plane shear fracture problem in the isotropic homogeneous materials.

(iii) The stress at the crack tips becomes infinite as the lattice parameter distance . This is

the classical continuum limit of square root singularity. 

(iv) The value of the stress τyz at the crack tips increases with increase of the crack length as

shown in Fig. 5, i.e., the interaction of two collinear cracks increases with decrease of distance

between two cracks. It can be also obtained that the left tip’s stress fields are greater than the right

tip’s ones for the right crack as shown in Fig. 2 and Fig. 5.

(v) The effect of the parameter describing the functionally graded materials on the stress field near

the crack tips decreases with increase of the parameter describing the functionally graded materials

as shown in Fig. 6. This means that, by decreasing the gradient parameter of FGMs, the dynamic

stress fields near the crack tips can be reduced.

(vi) The dynamic stresses of τyz tend to increase with the frequency reaching a peak and then to

decrease in magnitude as shown in Fig. 7. From the results, it can be concluded that the stress fields

near the crack tips can be deduced by adjusting the frequency of incident waves in engineering

practices.

(vii) The effect of the lattice parameter of the functionally graded materials on the stress field near

the crack tips decreases with increase of the lattice parameter as shown in Fig. 8.
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The nonlocal theory solution for two collinear cracks 73

References

Amemiya, A. and Taguchi, T. (1969), Numerical Analysis and Fortran, Maruzen, Tokyo.
Bao, G. and Cai, H. (1997), “Delamination cracking in functionally graded coating/metal substrate systems”,

ACTA Materialia, 45, 1055-1066.
Chen, Y.-F. (1990), “Interface crack in nonhomogeneous bonded materials of finite thickness”, Ph.D.

Dissertation, Lehigh University.
Delale, F. and Erdogan, F. (1988), “On the mechanical modeling of the interfacial region in bonded half-planes”,

J. Appl. Mech., ASME, 55, 317-324.
Edelen, D.G.B. (1976), Nonlocal Field Theory. In: A.C. Eringen (ed.), Continuum Physics. 4. New York,

Academic Press, 75-204.
Erdelyi, A. (ed), (1954), Tables of Integral Transforms, McGraw-Hill, New York. 1.
Erdogan, F. and Wu, B.-H. (1997), “The surface crack problem for a plate with functionally graded properties”,

J. Appl. Mech., 64, 449-456.
Erdogan, F. and Wu, H.-B. (1996), “Crack problems in FGM layer under thermal stress”, J. Thermal Stress, 19,

237-265.
Eringen, A.C. (1972), “Linear theory of nonlocal elasticity and dispersion of plane waves”, Int. J. Eng. Sci., 10,

425-435.
Eringen, A.C. (1976), Nonlocal Polar Field Theory. In: A.C. Eringen (ed.), Continuum Physics. 4. Academic

Press, New York, 205-267.
Eringen, A.C. (1977), “Continuum mechanics at the atomic scale”, Crystal Lattice Defects, 7, 109-130.
Eringen, A.C. (1978), “Linear crack subject to shear”, Int. J. Fracture, 14, 367-379.
Eringen, A.C. (1979), “Linear crack subject to anti-plane shear”, Eng. Fracture Mech., 12, 211-219.
Eringen, A.C. (1983), “Interaction of a dislocation with a crack”, J. Appl. Phys., 54, 6811-6817.
Eringen, A.C. and Kim, B.S. (1974), “On the problem of crack in nonlocal elasticity”, In: P. Thoft-Christensen

(ed.): Continuum Mechanics Aspects of Geodynamics and Rock Fracture Mechanics. Dordrecht, Holland:
Reidel 81-113.

Eringen, A.C. and Kim, B.S. (1977), “Relation between nonlocal elasticity and lattice dynamics”, Crystal Lattice
Defects, 7, 51-57.

Eringen, A.C., Speziale, C.G. and Kim, B.S. (1977), “Crack tip problem in nonlocal elasticity”, J. Mech. Phy.
Solids, 25(4), 339-346.

Forest, B. (1998), “Modelling slip, kind and shear banding in classical and generalized single crystal plasticity”,
ACTA Material, 46, 3265-3281.

Gradshteyn, I.S. and Ryzhik, I.M. (1980), Table of Integrals, Series and Products, Academic Press, New York.
480.

Green, A.E. and Rivilin, R.S. (1965), “Multipolar continuum mechanics: Functional theory. I”, Proc. of The
Royal Society of London A, 284, 303-315.

Itou, S. (1978), “Three dimensional waves propagation in a cracked elastic solid”, Trans. J. Appl. Mech., ASME,
45, 807-811.

Itou, S. (2001), “Stress intensity factors around a crack in a non-homogeneous interface layer between two
dissimilar elastic half-planes”, Int. J. Fracture, 110, 123-135.

Jin, Z.-H. and Batra, R.-C. (1996), “Interface cracking between functionally graded coating and a substrate under
antiplane shear”, Int. J. Eng. Sci., 34, 1705-1716.

Morse, P.M. and Feshbach, H. (1958), Methods of Theoretical Physics, McGraw-Hill, New York. 926.
Nowinski, J.L. (1984a), “On nonlocal aspects of the propagation of Love waves”, Int. J. Eng. Sci., 22, 383-392.
Nowinski, J.L. (1984b), “On non-local theory of wave propagation in elastic plates”, J. Appl. Mech., ASME, 51,

608-613.
Ozturk, M. and Erdogan, F. (1996), “Axisymmetric crack problem in bonded materials with a graded interfacial

region”, Int. J. Solids Struct., 33, 193-219.
Pan, K.L. (1992), “The image force on a dislocation near an elliptic hole in nonlocal elasticity”, Archive of

Applied Mechacics, 62, 557-564.



74 Zhen-Gong Zhou and Biao Wang

Pan, K.L. (1994), “The image force theorem for a screw dislocation near a crack in nonlocal elasticity”, J. Appl.
Phy., 27, 344-346.

Pan, K.L. (1995), “Interaction of a dislocation with a surface crack in nonlocal elasticity”, Int. J. Fracture, 69,
307-318.

Pan, K.L. (1996), “Interaction of a dislocation and an inclusion in nonlocal elasticity”, Int. J. Eng. Sci., 34, 1657-
1688.

Pan, K.L. and Fang, J. (1993), “Nonlocal interaction of dislocation with a crack”, Archive of Appl. Mech., 64,
44-51.

Pan, K.L. and Fang, J. (1996), “Interaction energy of dislocation and point defect in bcc iron”, Radiation Effect
Defects, 139, 147-154.

Pan, K.L. and Takeda, N. (1997), “Stress distribution on bi-material interface in nonlocal elasticity”, Proc. of the
39th JSASS/JSME Structure Conf. Osaka, Japan 181-184.

Pan, K.L. and Takeda, N. (1998), “Nonlocal stress field of interface dislocations”, Archive of Applied Mechacics,
68, 179-184. 

Pan, K.L. and Xing, J. (1997), “On presentation of the boundary condition in nonlocal elasticity”, Mechanics
Research Communications, 24, 325-330.

Rice, J.R. (1968), “A path independent integral and the approximate analysis of strain concentrations by notches
and cracks”, J. Appl. Mech., ASME, 35, 379-386.

Shbeeb, N.-I. and Binienda, W.-K. (1999), “Analysis of an interface crack for a functionally graded strip
sandwiched between two homogeneous layers of finite thickness”, Eng. Fracture Mech., 64, 693-720.

Srivastava, K.N., Palaiya, K.N. and Karaulia, D.S. (1983), “Interaction of shear waves with two coplanar Griffith
cracks situated in an infinitely long elastic strip”, Int. J. Fracture, 23, 3-14.

Sun, Y.G. and Zhou, Z.G. (2004), “Stress field near the crack tip in nonlocal anisotropic elasticity”, European J.
Mech. A/ Solids, 23(2), 259-269.

Xia, Z.C. and Hutchinson, J.W. (1996), “Crack tip fields in strain gradient plasticity”, J. Mech. Phy. Solids, 44,
1621-1648.

Yan, W.F. (1967), “Axisymmetric slipless indentation of an infinite elastic cylinder”, SIAM J. Appl. Math., 15,
219-227.

Zhou, Z.G. and Shen, Y.P. (1999), “Investigation of the scattering of harmonic shear waves by two collinear
cracks using the nonlocal theory”, ACTA Mech., 135, 169-179.

Zhou, Z.G. and Wang, B. (2002), “Investigation of the scattering of harmonic elastic waves by two collinear
symmetric cracks using non-local theory”, J. Eng. Math., 44(1), 41-56. 

Zhou, Z.G. and Wang, B. (2003), “Investigation of anti-plane shear behavior of two collinear impermeable cracks
in the piezoelectric materials by using the nonlocal theory”, Int. J. Solids Struct., 39, 1731-1742.

Zhou, Z.G., Bai, Y.Y. and Zhang, X.W. (1999), “Two collinear Griffith cracks subjected to uniform tension in
infinitely long strip”, Int. J. Solids Struct., 36, 5597-5609.

Zhou, Z.G., Han, J.C. and Du, S.Y. (1999), “Investigation of a Griffith crack subject to anti-plane shear by using
the nonlocal theory”, Int. J. Solids Struct., 36, 3891-3901.

Zhou, Z.G., Wang, B. and Du, S.Y. (2003), “Investigation of anti-plane shear behavior of two collinear
permeable cracks in a piezoelectric material by using the nonlocal theory”, J. Appl. Mech., ASME, 69, 388-
390.




