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Abstract. In the existing reports regarding free transverse vibrations of the Euler-Bernoulli beams, most
of them studied a uniform beam carrying various concentrated elements (such as point masses, rotary
inertias, linear springs, rotational springs, spring-mass systems, …, etc.) or a stepped beam with one to
three step changes in cross-sections but without any attachments. The purpose of this paper is to utilize
the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of the
multiple-step Euler-Bernoulli beams carrying a number of lumped masses and rotary inertias. First, the
coefficient matrices for an intermediate lumped mass (and rotary inertia), left-end support and right-end
support of a multiple-step beam are derived. Next, the overall coefficient matrix for the whole vibrating
system is obtained using the numerical assembly technique of the conventional finite element method
(FEM). Finally, the exact natural frequencies and the associated mode shapes of the vibrating system are
determined by equating the determinant of the last overall coefficient matrix to zero and substituting the
corresponding values of integration constants into the associated eigenfunctions, respectively. The effects
of distribution of lumped masses and rotary inertias on the dynamic characteristics of the multiple-step
beam are also studied.

Keywords: multiple-step beam; lumped mass; rotary inertia; exact natural frequency; mode shape;
integration constants.

1. Introduction

For the (non-uniform) stepped beams, Balasubramanian and Subramanian (1985), Subramanian

and Balasubramanian (1987) and Balasubramanian et al. (1990) investigated the free vibration

characteristics of the single-step beams. Jang and Bert (1989a, 1989b) reported the exact and
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numerical solutions for the natural frequencies of a single-step beam under various boundary

conditions. Laura et al. (1994) presented the experimental results for the natural frequencies of a

single-step beam. Maurizi and Belles (1994) studied the natural frequencies of the one-span beams

with stepwise variable cross-sections. Lee and Bergman (1994) used the elemental dynamic

flexibility method to study the free and forced vibrations of the seven-step beam. Ju et al. (1994)

used a first order shear deformation theory and the corresponding finite element formulation to

analyze the free vibration of two-step beams. De Rosa (1994) and De Rosa et al. (1995) deduced

the free vibration frequencies of a single-step beam by solving the differential equations of motion

and the associated eigenvalues. Naguleswaran found the natural frequencies and mode shapes of an

Euler-Bernoulli beam on classical end supports and with one-step change in cross-section by

equating the second order determinant to zero (2002a), and also the natural frequencies of an Euler-

Bernoulli beam on elastic end supports and with up to three-step changes in cross-sections by

equating the fourth order determinant to zero (2002b). 

For the uniform beams, Hamdan and Abdel (1994) found the exact natural frequencies of a

uniform beam with attached inertia elements. Wu and Chou (1998) found the approximate natural

frequencies and mode shapes of a uniform beam carrying any number of elastically attached lumped

masses by means of the analytical-and-numerical-combined method (ANCM). Later, Wu and Chou

(1999) obtained the exact solution of the similar vibrating system by using the numerical assembly

method (NAM). By means of the same method (NAM), Wu and Chen (2001) studied the free

vibration characteristics of a uniform Timoshenko beam carrying multiple spring-mass systems,

Chen and Wu (2002) and Chen (2003) obtained the exact solutions for the natural frequencies and

mode shapes of the non-uniform (wedge) beams carrying multiple spring-mass system or other

various concentrated elements. Recently, Lin and Tsai (2005) successfully determined the exact

values of natural frequencies and the associated mode shapes of a multi-span uniform beam carrying

a number of point masses with the same NAM.

From the above literature review one sees that the exact solutions for the natural frequencies and

mode shapes of a single-step beam carrying either single or multiple lumped masses or a multiple-

step beam without any attachments have been obtained. However, little was found in the literature

regarding the exact solutions for the natural frequencies and mode shapes of a multiple-step beam

carrying either single or multiple lumped masses and rotary inertias. Therefore, this paper adopts the

numerical assembly method (NAM) to investigate the free vibration characteristics of a multiple-

step beam carrying a number of lumped masses and rotary inertias. 

2. Equation of motion and displacement function

Fig. 1 shows the sketch of a pinned-pinned beam with S-step changes in cross-sections and

carrying K lumped masses and R rotary inertias. The points corresponding to the locations of the S-

step changes in cross-sections, K lumped masses or R rotary inertias are referred to as “stations”.

Where mk (k = 1~K) is the lumped mass (●), Jr (r = 1~R) is the rotary inertia, ss (s = 1~S) is the

numbering for the step change in cross-section and N is the total number of stations. Clearly, the

total number of stations is given by N = S + K + R − H with H denoting the total number of

overlapped stations for step changes in cross-sections, lumped masses and/or rotary inertias. In other

words, H is the difference between (S + K + R) and the total number of stations occupied by all the

step changes in cross-sections, lumped masses and/or rotary inertias, N. 
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The differential equation of motion for the i-th beam segment is given by

(1)

where E is Young’s modulus, Ii is moment of inertia of the cross-sectional area of the beam

segment i,  is the mass per unit length of the beam segment i, and yi (x, t) is the transverse

displacement at position x and time t shown in Fig. 1.

For free vibration one has

 (2)

where Yi(x) is the amplitude of yi (x, t), ω is the natural frequency of the beam, and .

Substitution of Eq. (2) into Eq. (1) gives:

(3)

where

 (4a)

or

 (4b)

with

 (4c)

In Eqs. (4a) to (4c), the subscripts v and i denote the v-th vibration mode and i-th beam segment,

respectively. 
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Fig. 1 Sketch for a pinned-pinned beam with S-step changes in cross-sections and carrying K lumped masses
and R rotary inertias
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The solution of Eq. (3) takes the form:

(5)

Which represents the displacement function for the i-th beam segment located at the left side of i-th

station. 

3. Determination of the natural frequencies and mode shapes

At the arbitrary station p located at x = xp (see Fig. 1), from Eq. (5) one has 

(6)

(7)

(8)

(9)

with

(10)

In Eqs. (7), (8) and (9), the primes refer to differentiation with respect to the coordinate x and

Ωv, p represents the dimensionless frequency parameter for the p-th beam segment corresponding to

the v-th vibration mode.

The continuity of deformations and the equilibrium of moments and forces require that:

(11a)

 (11b)

(11c)

(11d)

with

(12a-c)

mp and Jp are respectively the p-th lumped mass and rotary inertia, while  and  denote the

mass per unit length of the 1st and p-th beam segment respectively. 
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Substitution of Eqs. (6)-(9) into Eqs. (11a)-(11d) leads to

 

(13a)

(13b)

  (13c)

(13d)

Writing Eqs. (13a)-(13d) in matrix form, one has

 (14)

where 

(15)

and the coefficient matrix [Bp] is placed in Appendix at the end of this paper.

If the left-end support of the beam is pinned (as shown in Fig. 1), then the boundary conditions

are:

 (16a,b)

From Eqs. (6), (8) and (16), it can be shown that
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where:

 (19)

(20)

Similarly, if the right-end support of the beam is pinned, then the boundary conditions are given by

  (21a,b)

Substituting Eqs. (6) and (8) into Eq. (21) gives

(22a)

(22b)

or

(23)

where

(24)

 

 (25)

   

For a cantilever beam, the boundary conditions are given by

 (26a,b)

 (27a,b)

From Eqs. (6), (7), (8), (9), (26) and (27), one obtains the following boundary coefficient matrices
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For a free-clamped beam, the boundary conditions are given by

 (30a,b)

 (31a,b)

From Eqs. (6), (7), (8), (9), (30) and (31), one has the associated boundary coefficient matrices

 (32)

(33)

In the foregoing equations, N denotes the total number of intermediate stations (see Fig. 1) and q

denotes the total number of equations for the integration constants. They have the following

relationship 

(34)

From the above derivations, it is evident that one may obtain four equations from each intermediate

station. In addition, one may obtain two equations from the left-end station and the right-end station

of the beam, respectively. Therefore, the total number of equations q is given by Eq. (34):

.

The integration constants relating to the left-end support and those relating to the right-end

support of the beam are determined by Eqs. (18) and (23), respectively, while those relating to the

intermediate stations (i.e., 1 to N ) are determined by Eq. (14). The associated coefficient matrices

are given by [BL], [Bp], [BR] as may be seen from Eqs. (19), (A1) (in Appendix) and (24),

respectively. In the last three equations, the identification number for each element of the last three

coefficient matrices is indicated at the top side and right side of each matrix. Therefore, using the

numerical assembly technique as done by the conventional finite element method, an equation for

all the integration constants of the entire beam can be obtained, i.e.,

 (35)

Non-trivial solution of Eq. (35) requires that:

 (36)

Which is the frequency equation for the present problem.

In this paper, the half-interval method (Epperson 2003) is used to determine the natural

frequencies of a beam with S-step changes in cross-sections, carrying K lumped masses and R

rotary inertias, ωv (v = 1, 2, ...). For each natural frequency ωv , the corresponding integration

constants can be obtained from Eq. (35). Substitution of these integration constants into the

displacement functions of the associated beam segments will yield the corresponding mode shape of

the beam.
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4. Numerical results and discussions

Before performing the free vibration analysis of a beam with S-step changes in cross-sections,

carrying K lumped masses and R rotary inertias, the reliability of the theory and computer program

developed for this paper are confirmed by comparing the present results with those obtained from

the existing literature or the conventional finite element method (FEM). Here, the two-node beam

elements are used in the FEM and the entire beam is subdivided into 40 beam elements. Since each

node has two degrees of freedom (DOF’s), the total DOF for the entire beam is given by

2(40 + 1) = 82.

4.1 Reliability of the developed computer program 

The first example studied in this paper is a uniform cantilever beam carrying two lumped masses:

the first one is m1 with rotary inertia J1 located at an intermediate point ξ1 = x1/L = 0.5, and the

second one is m2 with rotary inertia J2 at the free end ξ2 = x2/L = 1.0. The corresponding

dimensionless parameters are

Table 1 shows the lowest five frequency parameters of the beam, 

(v = 1 to 5). It is seen that the current numerical results are in good agreement with those given by

Hamdan and Abdel (1994). 

The second example studied is a pinned-pinned beam with three-step changes in cross sections

located at ξ1 = 0.25, ξ2 = 0.55 and ξ3 = 0.80, respectively. It is evident that a three-step beam is

composed of four beam segments. Three types of cross-sections for the four beam segments are

investigated. For the first type, the four beam segments have the same depths h but different widths

bi (i = 1 to 4), so that

= 1.0, 0.8, 0.65, 0.25 (first type) (37)

The second type of the stepped beam is similar to the first one, the only difference is that the four

beam segments have the same widths b but different depths hi (i = 1 to 4), so that

(second type) (38)
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---------- 5.0=   J1
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------------ 1.0=   m2
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EI2

EI1
-------- 1= =,=,=,=,=

Ωv 1,

ωv m1L
4
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⎛ ⎞
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-----= =

εi

EiIi

E1I1
----------

hi

h1

-----⎝ ⎠
⎛ ⎞

3

1.0 0.8( )3 0.65( )3 0.25( )3, , ,= = =

Table 1 Five lowest five frequency parameters of the uniform cantilever beam carrying two lumped masses and
rotary inertias with = 5.0,  at ξ1 = 0.5, and  at ξ2 = 1.0 (Example 1)

Methods
Frequency parameters,  

Ω1,1 Ω2,1 Ω3,1 Ω4,1 Ω5,1

Present 0.752515 1.383354 2.137078 2.708819 9.480262

Hamdan and Abdel (1994) 0.752515 1.383353 2.137078 2.708818 9.480262

m1

* J1

* 1.0= m2

* 5.0= , J2

* 1.0=

Ωv 1,
ω v m1L

4
/ EI1( )⎝ ⎠

⎛ ⎞ 1/2
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For the third type of the stepped beam, the four beam segments have circular cross-sections with

diameters di (i = 1 to 4), so that

(third type)  (39)

In Eqs. (37)-(39), it has been assumed that the materials of the four beam segments are the same,

i.e., Ei = E1 (i = 1 to 4). Table 2 shows the lowest five frequency parameters of the three-step beam,

(v = 1 to 5). It is seen that the current numerical results are also in good

agreement with those of Naguleswaran (2002b). 

4.2 A three-step beam with single lumped mass m1

The current Example 3 studies the case of a three-step beam with circular cross-sections (with

diameter ratios = di/d1 = 1.0, 1.5, 2.0 and 3.0) and carrying a lumped mass m1 = 0.45 × 15.3875

= 6.924375 kg. The three-step changes in cross-sections are located at ξ1 = 0.20, ξ2 = 0.50 and

ξ3 = 0.75, respectively. Three types of boundary conditions (P-P, C-F and F-C) along with the next

five cases are investigated: ( =0.45, ξ1 = 0.35), (  = 0.45, ξ1 = 0.60) and (  = 0.45, ξ1 = 0.90).

Where P, C and F represent the abbreviations of pinned, clamped and free, respectively.

The dimensions of the three-step beam for the finite element analysis are shown in Fig. 2. From

the figure one sees that d1 = 0.05 m, d2 = 0.075 m, d3 = 0.10 m and d4 = 0.15 m; L1 = 0.2 m, L2 =

0.3 m, L3 = 0.25 m and L4 = 0.25 m. It is evident that the total length of the stepped beam is

L = L1 + L2 + L3 + L4 = 1.0 m; the locations for the step changes in cross-sections are ξ1 = 0.20, ξ2 =

0.50 and ξ3 = 0.75; the diameter ratios are = di/d1 = 1.0, 1.5, 2.0 and 3.0. For the four uniform

beam segments, the cross-sectional areas are: , 44.17875 × 10−4,

78.540 × 10−4 and 176.715 × 10−4 m2; the area moments of inertia are: Ii = 3.067969 × 10−7,

15.53159 × 10−7, 49.0875 × 10−7 and 248.50547 × 10−7 m4; the mass per unit length are: 

= 15.38756, 34.6220, 61.55023 and 138.4880 kg/m with mass density ρ = 7.8368 × 103 kg/m3.

Besides, the Young’s modulus is E = 2.069 × 1011 N/m2. The reference mass is  kg

and the reference rotary is = 15.38756 kg-m2. Each beam segment is subdivided into ten

beam elements; therefore, the lengths for each beam element in each beam segment are 0.02, 0.03,

0.025 and 0.025 m, respectively.

Table 3 shows the effect of locations of the single lumped mass m1 on the lowest five natural

εi

EiIi

E1I1
----------

di

d1

-----⎝ ⎠
⎛ ⎞

4

1.0 0.8( )4 0.65( )4 0.25( )4, , ,= = =

Ωv 1,

ωv m1L
4/ EI1( )( )1/2=

di
*

m1

* m1
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*

di
*

Ai πd i

2
/4 1.9635 10

4–×= =

πd i

4
/64 =

mi ρAi=

m1L 15.38756=

m1L
3

Table 2 The lowest five frequency parameters of the pinned-pinned beam with three-step changes in cross

sections, (v = 1 to 5)  

Stepped 
beams

Methods
Frequency parameters, 

Ω1,1 Ω2,1 Ω3,1 Ω4,1 Ω5,1

Type 1
cf. Eq. (37)

Present 3.09682 6.18383 9.34252 12.60534 15.81630

Naguleswaran (2002b) 3.09682 6.18383 9.34252 - -

Type 2
cf. Eq. (38)

Present 2.24074 4.63823 7.43284 9.92892 11.81239

Naguleswaran (2002b) 2.24074 4.63823 7.43284 - -

Type 3
cf. Eq. (39)

Present 1.88817 4.61149 7.60874 9.89280 11.67232

Naguleswaran (2002b) 1.88817 4.61149 7.60874 - -

Ωv 1,
ω v m1L

4/ EI1( )( )1/2=

Ωv 1,
ω v m1L

4
/ EI1( )⎝ ⎠

⎛ ⎞ 1/2

=
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Table 3 The lowest five natural frequencies, ωv (v = 1 to 5), of the stepped beam with three changes in cross-
sections at ξi = 0.20, 0.50 and 0.75, respectively, and diameter ratios = di/d1 = 1.0, 1.5, 2.0 and
3.0, carrying a lumped mass m1 = 6.924375 kg

Boundary
conditions

ξ1 Methods
Natural frequencies, ωv (rad/sec)

ω 1 ω 2 ω 3 ω 4 ω 5

P-P

*
Present 892.7602 4024.4722 9293.2685 18128.6892 27828.3603

FEM 892.7596 4024.4722 9293.2896 18128.8626 27829.0470

0.35
Present 782.2295 3744.5658 8733.2095 16325.5368 27356.3545

FEM 782.2244 3744.5427 8733.1699 16325.5208 27356.8624

0.60
Present 814.8855 3895.4797 9262.9433 16943.4370 26259.2843

FEM 814.8802 3895.4562 9262.9043 16943.4544 26259.7265

0.90
Present 886.4703 3983.8521 9147.6858 17817.2618 27010.3220

FEM 886.4646 3983.8274 9147.6480 17817.3103 27010.7490

C-F

*
Present 103.3811 1652.2970 5919.9740 11924.6451 21941.7090

FEM 103.3809 1652.2960 5919.9785 11924.6964 21942.0237

0.35
Present 102.6549 1427.9478 5409.7267 11440.0148 19430.3791

FEM 102.6542 1427.9392 5409.6945 11439.9872 19430.4076

0.60
Present 100.2587 1533.2898 5668.6573 11924.1645 20764.9942

FEM 100.2580 1533.2801 5668.6265 11924.1392 20765.0905

0.90
Present 95.4624 1627.4501 5896.3799 11916.6307 21937.6118

FEM 95.4619 1627.4396 5896.3477 11916.6065 21937.7862

F-C

*
Present 1018.2807 3469.5860 7309.9117 12695.6389 22027.8868

FEM 1018.2734 3469.5625 7309.8727 12695.6118 22028.0544

0.35
Present 912.3872 3163.8253 7021.6204 12082.6956 19666.4953

FEM 912.3813 3163.8052 7021.5817 12082.6655 19666.5255

0.60
Present 1008.8454 3216.6350 6827.7898 12635.4980 21031.0933

FEM 1008.8388 3216.6148 6827.7548 12635.4773 21031.1883

0.90
Present 1018.2541 3467.7555 7293.1052 12612.0217 21837.7789

FEM 1018.2474 3467.7331 7293.0666 12611.9953 21837.9381

*For the case of m1 = 0.

di

*

Fig. 2 The dimensions of the three-step beam for the finite element analysis 
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frequencies of the three-step beam, ωv (v = 1 to 5). In addition to the NAM results, Table 3 also

shows the FEM results for comparisons. It is observed that an excellent agreement exists between

the two sets of results. Besides, the lowest five natural frequencies of the C-F beam are much

smaller than those of the F-C beam. This is a reasonable result, because the cross-section of fixed

end of the C-F beam is much smaller than that of the F-C beam, for the stepped beam shown in

Fig. 2.

4.3 A three-step beam with single rotary inertia J1

The stepped beam studied in this Example 4 is the same as that studied in the last subsection, the

main difference is to replace the single lumped mass m1 by a single rotary inertia J1 = 0.036

Table 4 The key is the same as Table 3 except that the three-step beam carries a rotary inertia J1 = 0.55395
kg-m2 (rather than a point mass m1 = 6.924375 kg in Table 3) 

Boundary
conditions

ξ1 Methods
Natural frequencies, ωv (rad/sec)

ω 1 ω 2 ω 3 ω 4 ω 5

P-P

*
Present 892.7602 4024.4722 9293.2685 18128.6892 27828.3603

FEM 892.7596 4024.4722 9293.2896 18128.8626 27829.0470

0.35
Present 889.4110 2354.2254 6032.1707 12427.5750 19264.7953

FEM 889.4053 2354.2128 6032.1359 12427.5493 19264.8485

0.60
Present 866.5694 3595.9460 5627.8557 14452.8111 20352.4452

FEM 866.5638 3595.9244 5627.8259 14452.8237 20352.4521

0.90
Present 845.8443 3763.2070 8584.0825 17017.5446 25383.1700

FEM 845.8386 3763.1841 8584.0447 17017.5738 25383.4407

C-F

*
Present 103.3811 1652.2970 5919.9740 11924.6451 21941.7090

FEM 103.3809 1652.2960 5919.9785 11924.6964 21942.0237

0.35
Present 102.3529 1610.9016 3018.7304 7700.1450 15900.5995

FEM 102.3522 1610.8910 3018.7145 7700.1052 15900.6236

0.60
Present 102.1794 1500.0450 5227.3188 6950.8433 16948.3215

FEM 102.1788 1500.0357 5227.2887 6950.8110 16948.3977

0.90
Present 102.1571 1404.2976 4898.3108 9891.9714 18948.9587

FEM 102.1564 1404.2890 4898.2843 9891.9373 18949.0352

F-C

*
Present 1018.2740 3469.5633 7309.8641 12695.5561 22027.7432

FEM 1018.2734 3469.5625 7309.8727 12695.6118 22028.0544

0.35
Present 874.7045 2845.0017 4553.1555 9129.4597 15937.9035

FEM 874.6989 2844.9845 4553.1282 9129.4145 15937.9271

0.60
Present 984.3559 3079.4409 6558.0353 7501.8218 17055.6732

FEM 984.3493 3079.4217 6557.9981 7501.7867 17055.7516

0.90
Present 1017.4840 3414.2212 6816.2072 10979.1324 18997.5151

FEM 1017.4771 3414.1990 6816.1713 10979.0971 18997.5742

*For the case of J1 = 0.
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× 15.3875 = 0.55395 kg-m2 located at ξ1 = 0.35, 0.60 and 0.90, respectively. Table 4 shows the

effect of the locations of the single rotary inertia J1 on the lowest five natural frequencies of the

three-step beam, ωv (v = 1 to 5). It is obvious that the results of this paper (obtained from NAM)

are in good agreement with those from FEM. 

4.4 A three-step beam carrying three lumped masses and/or three rotary inertias

The final Example 5 studies the three-step beam as shown in Fig. 2 to carry three identical

lumped masses and/or three rotary inertias. Three types of boundary conditions (P-P, C-F and F-C)

along with the next two cases are studied: (i) The beam carries three identical lumped masses

(m1 = m2 = m3 = 6.924375 kg) only; (ii) The beam carries three identical lumped masses

(m1 = m2 = m3 = 6.924375 kg) together with three identical rotary inertias (J1 = J2 = J3 = 0.55395 kg-

m2). In each case, the locations for the three lumped masses and/or three rotary inertias are: ξ1 =

0.35, ξ2 = 0.60 and ξ3 = 0.90, respectively; the non-dimensional lumped masses are: =

= 0.45 (k = 1, 2, 3); while the non-dimensional rotary inertias are: =

0.036 (r = 1, 2, 3). The lowest five natural frequencies of the three-step beam, ωv (v = 1 to 5), are

shown in Table 5. It is seen that the results of the present paper are in good agreement with those of

FEM, and the rotary inertias have significant influence on the lowest five natural frequencies of the

P-P, C-F or F-C beam.

4.5 Mode shapes of the uniform and stepped beams

Figs. 3(a)-3(d) show the lowest five mode shapes of the P-P beam. Among which, the 1st, 2nd,

mk
*

mk/ m1L( ) Jr
* Jr/ m1L

3( )=

Table 5 The key is the same as Table 3 or Table 4 except that the three-step beam carries three identical
lumped masses (m1 = m2 = m3 = 6.924375 kg) and/or three identical rotary inertias (J1 = J2 =
J3 = 0.55395 kg-m2) located at ξi = 0.35, 0.60 and 0.90 (rather than a point mass m1 = 6.924375 kg in
Table 3 or a rotary inertia J1 = 0.55395 kg-m2 in Table 4) 

Boundary 
conditions

Attachments
mk, Jr

(k = r = 1−3)
Methods

Natural frequencies, ωv (rad/sec) 

ω 1 ω 2 ω 3 ω 4 ω 5

P-P

Present 725.5306 3527.7376 8621.0478 14820.6004 25705.7543

FEM 725.5261 3527.7166 8621.0094 14820.5576 25706.1607

Present 685.8376 2237.3394 3771.3942 8960.8442 12288.7630

FEM 685.8333 2237.3275 3771.3740 8960.8024 12288.7313

C-F

Present 92.4594 1332.3890 5024.9443 11426.3057 18565.7008

FEM 92.4589 1332.3809 5024.9152 11426.2784 18565.6932

Present 90.0470 1120.2259 2867.1507 4124.3826 9165.7599

FEM 90.0464 1120.2196 2867.1356 4124.3611 9165.7186

F-C

Present 905.0332 3007.4001 6370.6800 11951.7122 18764.6077

FEM 905.0278 3007.3810 6370.6445 11951.6854 18764.5978

Present 787.8089 2268.3714 4421.2847 5681.5942 9263.2874

FEM 787.8045 2268.3586 4421.2589 5681.5628 9263.2458

mk

*

mk

* Jr

*,

mk

*

mk

* Jr

*,

mk

*

mk

* Jr

*,
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3rd, 4th and 5th mode shapes are represented by the curves, 
_ _____

, ··············, 
__

_

__
, 

_ _ _ _ _
,

and —·—·—·, respectively. Besides, Fig. 3(a) is for the “uniform” beam (with d = d1) without

attachment, while Figs. 3(b)-3(d) are for the “three-step” beam without attachment, carrying three

lumped masses, and carrying three lumped masses together with three rotary inertias, respectively.

The lowest five mode shapes shown in Figs. 4(a)-4(d) and Figs. 5(a)-5(d) are for the C-F beam and

F-C beam, respectively. Their keys are the same as those for Figs. 3(a)-3(d).

From Figs. 3(a) and 3(b) one sees that the lowest five mode shapes of the three-step beam are

much different from those of the uniform beam, this is because the cross-sections of the stepped

beam change from step to step. From Figs. 3(c) and 3(d) one finds that, for the same three-step

beam, the lowest five mode shapes for the case of carrying three point masses together with three

rotary inertias are also much different from the corresponding ones for the case of carrying three

Fig. 3 The lowest five mode shapes of the P-P (pinned-pinned) beam with the 1st, 2nd, 3rd, 4th and 5th mode
shapes represented by the curves 

_ _____
, ··············, 

__
_

__
, 

_ _ _ _ _
, and —·—·—·, respectively:

(a) uniform beam (with d = d1) without attachment, (b) three-step beam without attachment, (c) three-
step beam carrying three lumped masses, (d) three-step beam carrying three lumped masses and three
rotary inertias 
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point masses only. This will be the reason why the lowest five natural frequencies of a beam

carrying three point masses together with three rotary inertias are much different from the

corresponding ones of the same beam carrying three point masses only as one may see from Table 5.

The foregoing conclusions obtained from Figs. 3(a)-3(d) are also available for Figs. 4 and 5.

5. Conclusions

From this study the following concluding remarks can be made.

1. The stepped beam is one of the important structures in engineering. Because the literature

regarding the “exact” values for the natural frequencies and associated mode shapes of a

multiple-step beam carrying a number of concentrated elements is rare, the theory and the exact

solutions for the examples presented in this paper will be useful for checking the accuracy of

the numerical results obtained from various “approximate” methods.

Fig. 4 The lowest five mode shapes of the C-F (clamped-free) beams: (a) for the uniform beam, (b)-(d) for the
three-step beams. Key as Fig. 3 
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2. For a “uniform” beam, its natural frequencies and associated mode shapes in the C-F (clamped-

free) condition are the same as those in the F-C (free-clamped) condition, but this is not true for

a “stepped” beam. Because the natural frequencies of a stepped beam in C-F condition are

much different from those in F-C condition, so are the corresponding mode shapes.

3. Because the rotary inertias have significant influence on the lowest five natural frequencies of

the P-P (pinned-pinned), C-F or F-C beam, the lowest five natural frequencies and the

associated mode shapes of a P-P, C-F or F-C beam carrying a number of point masses together

with their rotary inertias are much different from the corresponding ones of the same beam

carrying the same point masses only.

4. It is believes that, if the gyroscopic effect is negligible, the technique introduced in this paper

can also be applied to determining the critical speed of the stepped shafts. 

Fig. 5 The lowest five mode shapes of the F-C (free-clamped) beams: (a) for the uniform beam, (b)-(d) for the
three-step beams. Key as Fig. 3 
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Appendix

The coefficient matrix [Bp] for Eq. (14) is given by
                          

   (A1)

  (A2)

 (A3)

                      4P 3–             4P 2–           4P 1–               4P

Bp[ ]

sθv p,
  cθv p,     shθv p,

  chθv p,

Ωv p,
cθv p,

  Ωv p,
sθv p,

  – Ωv p,
chθv p,

  Ωv p,
shθv p,

Ωv p,

2

sθv p,
– αpΩv p,

5

cθv p,
  + Ωv p,

2

cθv p,
αpΩv p,

5

sθv p,
  –– Ωv p,

2

shθv p,
αpΩv p,

5

chθv p,
  + Ωv p,

2

chθv p,
αpΩv p,

5

shθv p,
+

σpΩv p,

4

sθv p,
Ωv p,

3

cθv p,
  – σpΩv p,

4

cθv p,
Ωv p,

3

sθv p,
  + σpΩv p,

4

shθv p,
Ωv p,

3

chθv p,
  + σpΩv p,

4

chθv p,
Ωv p,

3

shθv p,
+

=

        4P 1      + 4P 2+  4P 3+          4P 4+

sθv p 1+,
  – cθv p 1+,

  – shθv p 1+,
  – chθv p 1+,

–

Ωv p 1+,
cθv p 1+,

  – Ωv p 1+,
sθv p 1+,

  Ωv p 1+,
chθv p 1+,

  – Ωv p 1+,
shθv p 1+,

–

εPΩv p 1+,

2

sθv p 1+,
  εPΩv p 1+,

2

cθv p 1+,
  εPΩv p 1+,

2

shθv p 1+,
  – εPΩv p 1+,

2

chθv p 1+,
–

εPΩv p 1+,

3

cθv p 1+,
  εPΩv p 1+,

3

sθv p 1+,
  – εPΩv p 1+,

3

chθv p 1+,
  – εPΩv p 1+,

3

shθv p 1+,
–

4P 1–

4P

4P 1+

4P 2+

θv p,
Ωv p,

ξp= sθv p,
sinθv p,

=   cθv p,
cosθv p,

=   shθv p,
sinhθv p,

=   chθv p,
coshθv p,

=, , , ,

θv p 1+,
Ωv p 1+,

ξp= sθv p 1+,
sinθv p 1+,

=   cθv p 1+,
cosθv p 1+,

=   shθv p 1+,
sinhθv p 1+,

=   chθv p 1+,
coshθv p 1+,

=, , , ,

αp Jp
* m1

mp

------⎝ ⎠
⎛ ⎞  σp mp

* m1

mp

------⎝ ⎠
⎛ ⎞  εp

Ip 1+

Ip

---------=,=,–=




