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Abstract. The stresses and deflections in a laminated rectangular plate under thermal vibration are
determined by using the moving least squares differential quadrature (MLSDQ) method based on the first
order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained
through a fast computation of the MLS shape functions and their partial derivatives. By using this
method, the governing differential equations are transformed into sets of linear homogeneous algebraic
equations in terms of the displacement components at each discrete point. Boundary conditions are
implemented through discrete grid points by constraining displacements, bending moments and rotations
of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting
these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for
stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical
results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating
the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of
sinusoidal temperature including shear deformation with a few grid points.

Key words: differential quadrature method; moving least-squares method; thermal vibration; laminated
plate; shear deformation.

1. Introduction

Laminated plates made of advanced fiber-reinforced composite materials are extensively used in

mechanical, civil, nuclear and aerospace structures due to their excellent advantages. As one of the

excellent properties, the strength and stiffness of the plate can be tailored to satisfy the given

requirements through proper arrangement of stacking sequence, fiber orientation, thickness and

material properties of each layer. However, various coupling effects such as stretching-bending,

stretching-shearing, and bending-twisting couplings, etc., diminish the stiffness of the plate, and

induces many complexities in analyzing behaviors of such plate. Furthermore, composite structures

are usually influenced by thermal and moisture environment significantly. So it is very important to

have a good understanding of the dynamic behaviors of these structural components in the design

and performance evaluation of mechanical systems.
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Analytical and numerical techniques for determining the vibration characteristics of laminated

pates have been well developed and widely studied. For examples, Baharlou and Leissa (1997)

presented an analysis of vibration and buckling of generally laminated plate having various

boundary conditions using Ritz method, based on the classical plate theory. Kabir and Chaudhuri

(1994, 1999) developed a boundary continuous generalized Navier’s approach, and presented an

analytical solution for free vibration of arbitrarily laminated plate with clamped and simply

supported boundary conditions, in which the effect of shear deformation was considered. However,

few of them have been conducted on the thermal vibration analysis of arbitrarily laminated plates.

In this area, Wang and his colleagues have made great deal of works in the study of dynamic

response of inter-laminar stresses in laminated composite plates under thermal environment (Wang

and Zhang 2005, Wang et al. 2005). The plane stresses were calculated by using geometric

equations and generalized Hooke’s law. The interlaminar stresses were evaluated by integrating the

3-D equations of dynamic equilibrium, and utilizing given boundary conditions and continuity

conditions between layers. In their studies, the temperature field was assumed to be linear functions

of x, y and z, and an exponent function of time t. Based on higher order shear deformation theory

and general Von Karman type equation of motion, Huang and Shen (2004) investigated the

nonlinear vibration and dynamic response of shear deformable laminated plates in hygrothermal

environments. Various factors such as temperature rise, the degree of moisture concentration, the

fiber volume fraction on natural frequencies, nonlinear to linear frequency ratios and dynamic

response were carefully studied. In their work, the temperature field was assumed to be uniform

distribution over the plate surface and through the plate thickness.

In this paper, the response of a simply supported laminated rectangular plate udder thermal

vibration is studied by employing a novel numerical solution technique, the moving least squares

differential quadrature (MLSDQ) method. As an efficient and accurate global solution technique, the

differential quadrature (DQ) method were first introduced by Bellman and his associates (1971,

1972), for solving linear and nonlinear differential equations with a little computational cost. Since

then, there have been numerous developments and applications of the method in structural

mechanics (Bert and Malik 1996, Liew et al. 1996, Malik and Bert 1998). However, further

application of the method has been greatly restricted by the disadvantage that it cannot be directly

used to solve problems with discontinuities or with complex domains, since the grid points used in

DQ method must be distributed in a regular manner in order to express the weighting coefficients

explicitly. Although these problems can be solved by the domain-superposition technique for

discontinuous geometric boundaries and the domain transformation technique for irregular shaped

domains, it may cause a significant loss of efficiency and simplicity, especially for problems

involving irregular geometries and higher order partial derivatives. To overcome these drawbacks,

Liew et al. (2002, 2003) developed a new kind of numerical method, the MLSDQ method to solve

the static and buckling problems of shear deformable plate. The moving least squares differential

quadrature method is a combination of the general differential quadrature method and the element-

free Galerkin method. In MLSDQ method, the weighting coefficients of quadrature approximation

are calculated directly from the partial derivatives of shape functions used in the element-free

Galerkin method. Since the grid points used in moving least squares differential quadrature method

can be arbitrarily located, it can be easily used to solve problems having complex domains. In the

present paper, this method is employed to study the thermal vibration problems of laminated

composite plates having simply supported boundary conditions. The temperature field is assumed to

be sinusoidal of coordinates x and y, and of time t, while linearly in the plate thickness direction.
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The suitability, efficiency, simplicity and convergence properties of this method are all demonstrated.

Also, some new results are presented to study the influence of the relative thickness on the

deflection and stress amplitudes of the plate at different time.

2. The MLSDQ method

Consider a domain in the space Ω discretized by a set of discrete points . In the

generalized differential quadrature (DQ) or the differential cubature (DC) method. The value of a

partial derivative of a certain function u(x) at a discrete point xi can be approximate as a weighted

linear sum of discrete function values chosen within the overall domain of a problem. 

(1)

where  denotes a linear differential operator which can be any orders of partial derivatives or their

combinations, cij are the weighting coefficients, and uj are the nodal function values. According to

Civan (1994), the weighting coefficients cij can be determined by solving a set of linear algebraic

equations which can be obtained by selecting N monomials from a set of polynomial basis and

substituting them into Eq. (1). For regular node patterns, explicit expressions of weighting

coefficients can be obtained for the first, second and higher derivatives using the Lagrangian

interpolation polynomials. 

In this paper, the weighting coefficients are directly computed from the partial derivatives of

shape functions used in the moving least squares method. Following Belytschko et al. (1994), we

have

(2)

where pi(x) is a finite set of basis functions and ai(x) are the unknown coefficients, m denotes the

total number of basis functions. In this work on 2-D problems, the intrinsic polynomial basis with

m = 6 is quadratic, i.e.,

(3)

The coefficients ai(x) are functions of the spatial coordinates, and they can be obtained by

minimizing a weighted, discrete L2 normal defined as

(4)

where n is the number of nodes in the neighborhood of x and ui is the nodal parameter of u(x) at

point xi.  is a positive weight function which decreases as  increases. It

always assumes unity at the sampling point x and vanishes outside the domain of influence of x.

The size of the domain of influence, or support size, determines the number of discrete points n in

the domain of influence.
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The extremum of J(a) with respect to a(x) results in the following linear equations

(5)

from which

(6)

where

Substituting Eq. (6) into Eq. (2), the approximate function uh(x) can then be expressed in terms of

the shape function as 

(7)

where the nodal shape function φi(x) is given by

(8)

Using Eq. (7), the weighting coefficients defined in the DQ method can be computed directly. For

instance, we have

(9)

where  is the weighting coefficients of the first order derivative of u(x) in the x direction at

any point x with respect to node xj. If the node xi is chosen as the sample point, the derivative at

this node becomes

(10)

and the weighting coefficients cij associated with the first order derivative of u(x) defined in Eq. (1)

can be expressed as

(11)
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3. Determination of weighting coefficients

From Eq. (11), one can obtain the weighting coefficients directly by calculating the partial

derivative of shape function φi(x). However, inversions of matrix A(x) and its partial derivatives are

too time consuming, and the matrix A(x) will be highly ill-conditioned when a higher basis is used.

In order to cut down the computational cost and alleviate the ill-conditioning of matrix A(x), the

following numerical procedure is used. First, we define

(12)

then Eq. (8) can be rewritten as 

(13)

Thus, the effort to compute the shape function and its partial derivatives is reduced to the

determination of the coefficients vector λ(x) and its partial derivatives. The coefficients λ(x) can be

solved by a normal LU decomposition and back substitution, which requires fewer computations

than the inversion of A(x). Moreover, the partial derivatives of λ(x) in any order can be calculated

by using the same matrix after LU decomposition. For examples, we have

(14)

(15)

So, only back substitution is required to obtain the derivatives of λ(x). The weighting coefficients in

DQ method can be obtained accordingly using Eqs. (11) and (13).
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Fig. 1 Geometric and laminate configurations of a
rectangular plate

Fig. 2 Regular grid point pattern for square plate
problem
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4. Basic governing equations

Consider a thick laminated rectangular plate of uniform thickness h, length a and width b as

shown in Fig. 1. The displacement fields of the first order shear deformation theory is assumed of

the form (Jonnalagadda et al. 1994)

(16)

where  and  are the displacement components along the x, y, z directions, respectively, at

point (x, y, z) of the plate thickness; u, v, w denote the displacement components along the x, y, z

directions, respectively, at point in the middle plane; ψ1, ψ2 are rotations of the normal about the y,

x axes; respectively.

Substituting displacement field (16) into linear strain-displacement relations, yield the strain-

displacement relationship 

(17)

where

(18)

The stress resultants is related to the strain components by

(19)

where,  denote the coefficients of stretching, stretching-bending coupling

and bending stiffness, respectively;  denote the coefficients of shearing stiffness.

These coefficients are given as 
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(21)

where αx and αy are the coefficients of thermal expansion, αxy is the coefficient of thermal shear.

Based on the first order shear deformation theory, the dynamic equilibrium equation of the plate

under thermal load given in terms of the plate displacements is expressed as Whiney (1987). 

(22)

where Lij, respectively, are the linear differential operators such as

(23)
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(24)

where, ρ denotes density of a layer. Pi (i = 1, 2, ... 5) are the combinations of the partial derivatives

of the temperature force resultants with respect to x and y, which are as follows

(25)

For no heat generation, linear and uncouple case of thermo-mechanics, the temperature

distribution in the plate is governed by the following steady state heat conduction equation

(Hetnaski 1986)

(26)

where K is the coefficient of thermal conductivity. 

In this work, the time-dependent temperature difference T is assumed linear in the thickness

direction and is designated by . For simplicity of computation, we

further assume T is a sinusoidal function in the plate plane, i.e.,
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where ς is the frequency of applied heat flux. Substituting Eq. (27) into Eq. (26), one obtains
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where

(32)

Substituting Eq. (30) into Eq. (29), the boundary condition can be written as (takes the edges x = 0,

a as an example)

(33)

The stresses in the kth layer are expressed as

F1 Q11

k( )
αx

k( )
Q12

k( )
αy

k( )
Q16

k( )
αxy

k( )
+ +[ ] πT̃

2ah
--------- zk

2
zk 1–

2
–( )cos

πx

a
------sin

πy

b
------

k 1=

n

∑=

 Q16

k( )
αx

k( )
Q26

k( )
αy

k( )
Q66

k( )
αxy

k( )
+ +[ ] πT̃

2bh
--------- zk

2
zk 1–

2
–( )sin

πx

a
------cos

πy

b
------

k 1=

n

∑+

F2 Q16

k( )
αx

k( )
Q26

k( )
αy

k( )
Q66

k( )
αxy

k( )
+ +[ ]πT̃1

2ah
--------- zk

2
zk 1–

2
–( )cos

πx

a
------sin

πy

b
------

k 1=

n

∑=

 Q12

k( )
αx

k( )
Q22

k( )
αy

k( )
Q26

k( )
αxy

k( )
+ +[ ] πT̃

2bh
--------- zk

2
zk 1–

2
–( )sin

πx

a
------cos

πy

b
------

k 1=

n

∑+

F3 0=

F4 Q11

k( )
αx

k( )
Q12

k( )
αy

k( )
Q16

k( )
αxy

k( )
+ +[ ] πT̃

3ah
--------- zk

3
zk 1–

3
–( )cos

πx

a
------sin

πy

b
------

k 1=

n

∑=

 Q16

k( )
αx

k( )
Q26

k( )
αy

k( )
Q66

k( )
αxy

k( )
+ +[ ] πT̃

3bh
--------- zk

3
zk 1–

3
–( )sin

πx

a
------cos

πy

b
------

k 1=

n

∑+

F5 Q16

k( )
αx

k( )
Q26

k( )
αy

k( )
Q66

k( )
αxy

k( )
+ +[ ] πT̃

3ah
--------- zk

3
zk 1–

3
–( )cos

πx

a
------sin

πy

b
------

k 1=

n

∑=

 Q12

k( )
αx

k( )
Q22

k( )
αy

k( )
Q26

k( )
αxy

k( )
+ +[ ] πT̃

3bh
--------- zk

3
zk 1–

3
–( )sin

πx

a
------cos

πy

b
------

k 1=

n

∑+

U 0=   V 0=   W 0=   Θ2 0,=, , ,

B11

∂U

∂ x
-------- B16

∂U

∂ y
-------- B16

∂V

∂ x
------- B12

∂V

∂ y
------- D11

∂Θ1

∂ x
---------- D16

∂Θ1

∂ y
---------- D16

∂Θ2

∂ x
---------- D12

∂Θ2

∂ y
----------+ + + + + + + 0=

σx

k( )
Q11

k( ) ∂U

∂ x
--------

∂Θ1

∂ x
----------z αx

k( )
T–+⎝ ⎠

⎛ ⎞ Q12

k( ) ∂V

∂ y
-------

∂Θ1

∂ y
----------z αy

k( )
T–+⎝ ⎠

⎛ ⎞
+

⎩
⎨
⎧

=

 Q16

k( ) ∂U

∂ y
--------

∂V

∂ x
-------

∂Θ1

∂ y
----------

∂Θ2

∂ x
----------+⎝ ⎠

⎛ ⎞ z+ αxy

k( )
T–+

⎭
⎬
⎫
sinωmnt+



340 Lanhe Wu

(34)

5. Discretization of governing equations and boundary conditions 

Now, let’s discrete the governing equations and the boundary condition equations. First, the plate

is discreted by a finite number of nodes (xi, yi), each of which are associated with five nodal

parameters . Then, a circle of influence can be formed for each discrete point

and the moving least-squares approximation of the displacement components are achieved in the

domain of influence as described in section 2:

(35)

where n is the number of nodes within the domain of influence. It should be noted that n is

dependent on the support size and may be different when different nodes are considered. One

should also note that the nodal parameters are not equal to the physical values at the corresponding

node. This is due to the shape functions used in the moving least squares method do not satisfy the

Kronecker’s delta condition generally, i.e., . Therefore, we have
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(36)

where  for simplicity.

The shape function  and its partial derivatives can be calculated by the fast computation

technique as described in section 3. Thereafter, the weighting coefficients with respect to any order

of partial derivatives of the approximate displacement components can be obtained directly. The

following expressions give the first- and second-order partial derivatives of transverse deflection

component in terms of the DQ discretization:

(37)

Similarly, we have the DQ discretization for other four displacement components. Substituting these

equations into the governing Eq. (31), we obtain the discrete forms of governing equations at point

(xi, yi) as

(38)

where the coefficients  are as follows
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(39)

Similarly, the boundary condition Eq. (33) can be discreted as

(40)

where i is the index number of the points on boundary. 

Also, the stresses in the kth layer at point (xi, yi) are discreted as
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(41)

6. Natural frequency 

The natural frequency of a simply supported laminated plate can be easily determined by

assuming the displacement components as sinusoidal functions

(42)

Substituting these equations into the dynamic Eq. (22) and setting 
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If the plate is vibrating in a certain frequency, Eq. (44) must have non-trivial solutions. Thus the

determinant of coefficient matrix in homogeneous Eq. (44) must be zero, and we can find the

frequency ωmn corresponding to each mode shape.

7. Numerical results and discussion

Combining the discretized governing Eq. (38) at each discrete point in the physical domain and

the boundary condition (40) at each boundary point, and rewriting them in terms of matrix form, we

obtain

(45)

where [K] is the bending stiffness matrix ; {Δ} is the displacement vector, which is expressed as

(46)

where N is the total number of grid points in the overall domain. Solving the linear algebraic Eq. (45),

we can obtain the displacements vector. Moreover, the stresses of the plate can be obtained.

To demonstrate the applicability and efficiency of the MLSDQ method for thermal vibration

analysis of laminated plates, numerical calculations have been performed for a laminated plate with

three cross plys under simply supported boundary conditions. Material properties are 

The temperature change is . In our present work, the following weighing function is used 

(47)

where  is the dimensionless distance from a discrete node  to a

sampling point (x, y) in the domain of support with radius r. For convenience of presentation, a

scaling factor dmax is defined by
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where hm is the grid size, which can be regarded as the average distance between two neighboring

nodes for irregular grid arrangement. For regular grid pattern, it is the adjacent nodal spacing.

Firstly, the convergence of the present method is carried out. Since the governing equations have

the second order partial derivatives with respect to x and y, the basis function should be at least of

the same order of completeness, i.e., the monomial basis should be selected from a quadratic order

polynomial or higher. For simplicity, the completeness order of the basis functions  is taken to be

2 in our computation. The grid point pattern used in this study is distributed regularly as shown in

Fig. 2. The convergence characteristics of center deflection parameter  for

such a plate at time t = 1s, m = n = 1, are presented in Table 1, respectively, as the distribution is

increased from 9 × 9 to 15 × 15 discrete nodes at various scaling factors dmax. It is seen from this
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Table that with increasing the number of grid points, the center deflection is converged to certain

values monotonically for different scaling factor dmax. However, the convergence rate for a larger

scaling factor is faster than that for a lower one, whatever the thickness of the plate. Generally

speaking, in order to avoid the matrix singularity and ensure smoothness of the MLS shape

functions and its partial derivatives, more discrete points in the influence domain, i.e., larger support

size than the lower case, should be used. It is also found that the convergence rate is better for a

thick plate than for a thin plate, when the same grid point and the same scaling factor are used. For

a thin plate (h/a = 0.01) with a scaling factor dmax = 4, the relative discrepancy of the center

deflection between grid 9 × 9 and 15 × 15 is 4.7%, 3.3% and 1.7%, respectively, for the aspect ratio

a/b = 0.5, a/b = 1 and a/b = 2; while for a thick plate with the same scaling factor, the relative

discrepancy of the center deflection is 3.8%, 2.0% and 1.4%, respectively, for the same aspect ratio.

In the following studies, 11 × 11 grid points and the scaling factor dmax = 5 are used for saving the

computation time.

Table 1 Convergence characteristics of center deflections W* at t = 1s for a three layered cross ply laminated
square plate having four simply supported boundary conditions (E1 = 25E2, G12 = G13 = 0.5E2,
G23 = 0.2E2, ν = 0.25)

dmax N
h/a = 0.01 h/a = 0.2

a/b = 0.5 a/b = 1 a/b = 2 a/b = 0.5 a/b = 1 a/b = 2

4 9 × 9 0.8134e-5 0.9615e-5 0.1559e-4 0.120878 0.388801 0.507802

11 × 11 0.8358e-5 0.9742e-5 0.1565e-4 0.121615 0.393688 0.512106

13 × 13 0.8439e-5 0.9937e-5 0.1579e-4 0.123478 0.396840 0.514391

15 × 15 0.8540e-5 0.9945e-5 0.1586e-4 0.125756 0.396837 0.515227

5 9 × 9 0.8402e-5 0.9733e-5 0.1453e-4 0.123402 0.389429 0.508269

11 × 11 0.8483e-5 0.9867e-5 0.1565e-4 0.126697 0.394415 0.513367

13 × 13 0.8559e-5 0.9955e-5 0.1589e-4 0.127423 0.397638 0.514692

15 × 15 0.8563e-5 0.9986e-5 0.1618e-4 0.128682 0.398825 0.518887

6 9 × 9 0.8412e-5 0.9941e-5 0.1455e-4 0.126568 0.392147 0.509089

11 × 11 0.8506e-5 0.9896e-5 0.1582e-4 0.128943 0.395289 0.512728

13 × 13 0.8528e-5 0.9968e-5 0.1604e-4 0.128627 0.396467 0.515555

15 × 15 0.8566e-5 0.9984e-5 0.1618e-4 0.128874 0.398895 0.518869

Table 2 Comparisons of center deflections W * at t = 1 sec for a three layered cross ply laminated square plate
having four simply supported boundary conditions at lowest heat flux frequency ζ under various
vibration mode (E1= 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, ν = 0.25)

h/a 0.01 0.02 0.05 0.1 0.2

ω11 Present solutions 0.986775e-5 0.163125e-3 0.148074e-2 0.200838e-1 0.394415

Hong et al. (2003) 0.102052e-4 0.163578e-3 0.148182e-2 0.200950e-1 0.399904

ω22 Present solutions 0.101485e-4 -0.845964e-5 0.174381e-2 0.637205e-1 0.796148

Hong et al. (2003) 0.103904e-4 -0.867549e-5 0.177562e-2 0.639221e-1 0.798220

ω33 Present solutions 0.105479e-4 0.431389e-4 0.331446e-2 0.130706 1.12038

Hong et al. (2003) 0.106990e-4 0.4321174-4 0.333286e-2 0.130818 1.12156
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Next, comparison studies are also made for the center deflections W * of a simply supported

square plate. The material properties and the plate size as well as the stacking sequence of the plate

are all the same with those in convergency studies. The results are tabulated in Table 2. It is found

that the present results are in close agreement with those given by Hong et al. using the GDQ

method.

Figs. 3-5 show the variation of the non-dimensional center deflection amplitude W * =

 with respect to side-to-thickness ratio a/h, under the lowest three vibration

frequencies ω11, ω22, ω33, lowest frequency of applied heat flux ς, at time , for a

square cross ply laminated plate [0o/90o/0o] subjected to thermal vibration of time sinusoidal

temperature distribution. It is found that the transverse deflection amplitude decreases rapidly by

increasing the side-to-thickness ratio a/h, especially in the range a/h < 20. For the cases a/h > 20,

the transverse deflection amplitude changes very slowly. It is also found that with increasing the

vibration frequency from ω11 to ω33, the deflection parameters W * have a slight increase; however,

the differences of the deflection parameters between three vibration frequencies ω11, ω22, ω33 are

very small. 

10hW/ αxT̃a
2( )

t 1 2 … 5s, , ,=

Fig. 4 Center deflection amplitude W* w.r.t. a/h
under ω22, lowest ς at various time

Fig. 3 Center deflection amplitude W* w.r.t. a/h
under ω11, lowest ς at various time

Fig. 3 Center deflection amplitude W* w.r.t. a/h under ω11, lowest ς at various time

Fig. 4 Center deflection amplitude W* w.r.t. a/h
under ω22, lowest ς at various time

Fig. 3 Center deflection amplitude W* w.r.t. a/h
under ω11, lowest ς at various time

Fig. 4 Center deflection amplitude W* w.r.t. a/h under ω22, lowest ς at various time
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Fig. 5 Center deflection amplitude W* w.r.t. a/h under ω33, lowest ς at various time

Fig. 6 Stress amplitude  w.r.t. a/h under ω11, lowest ς at various timeσy
*

Fig. 7 Stress amplitude  w.r.t. a/h under ω22, lowest ς at various timeσy
*
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Figs. 6 and 7 plot the variation curves of the non-dimensional stress  at center

position of the first interface with the side to thickness ratio a/h under the lowest natural frequencies

ω11 and ω22, respectively, of the plate, lowest frequency of applied heat flux ς, at time

, for a square laminated plate with stacking sequence [0o/90o/0o] subjected to thermal

vibration of time sinusoidal temperature distribution. It is seen that the stress  decreases as

increasing the side to thickness ratio. Also, the difference of the stress parameter between ω11 and

ω22 is very small. It is evident that the values of stresses  in ω22 case are almost the same as

those in the case ω11. 

Fig. 8 illustrates the variation trend of the non-dimensional transverse deflection time response

curve with the side x/a under the lowest natural frequency ω11 of the plate, lowest frequency of

applied heat flux ς, at time , for a square cross ply laminated plate [0o/90o/0o]

subjected to thermal vibration of time sinusoidal temperature distribution. The side to thickness ratio

is taken as a/h = 10. It is obvious that the center deflection amplitude increases when x/a changes

from 0.0 to 0.5, then decreases when x/a changes from 0.5 to 1.0. The transverse deflection is

almost on the same curve at time . One can easily find that the largest center deflection

is found at the center of the plate. 

8. Conclusions

In this paper, the moving least-squares differential quadrature method has been applied

successfully to solve the dynamic response for deflections and stresses of a cross ply laminated

moderately thick plate with simply supported boundary conditions, subjected to thermal load which

is a sinusoidal time function. This is the first endeavor to exploit the MLSDQ method for thermal

vibration analysis of thick laminated plates. Several examples have been selected to demonstrate the

convergency and applicability of the present MLSDQ procedures. It has been shown that the

MLSDQ method yields rapidly convergent and accurate solutions for calculating the deflections and

stresses in a multi-layered plate of cross ply laminate with a rectangular domain including shear

deformation with a few grid points. It is also concluded that larger support size than lower one can

often generate results with better accuracy when same discretization and same basis functions are

σy
*

σyh/ αxaE2T̃( )=

t 1 2 … 5s, , ,=

σy
*

σy
*

t 1 2 … 5s, , ,=

t 1 2 3s, ,=

Fig. 8 Deflection amplitude W * distribution along x-axis at y = 0.5b under ω11, lowest ς at various time
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used. Some new results show that the deflection and stress parameters decrease with increasing the

side to thickness ratio a/h, especially in the range a/h < 20. There are very small differences for

deflection parameters and stress parameters between three natural frequencies ω11, ω22, ω33.
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