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Abstract. A new approach using the differential quadrature method (DQM) is derived for analysis of
non-uniform beams resting on nonlinear media in this study. The influence of velocity dependent viscous
damping and strain rate dependent viscous damping is investigated. The results solved using the DQM
have excellent agreement with the results solved using the FEM. Numerical results indicated that the
DQM is valid and efficient for non-uniform beams resting on non-linear media.
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1. Introduction

Beams on nonlinear elastic foundations are found in many engineering application. The static and

dynamic behavior of non-uniform beam resting on nonlinear elastic foundation is an important topic

in structural engineering and several authors have studied it in the past. Tsai and Westmann (1967),

Lin and Adams (1987), Weitsman (1970, 1972) studied the static behavior of beams resting on a

tensionless elastic foundation. Static analysis of thick, circular and rectangular plates resting on a

tensionless elastic foundation have been performed by Akbarov and Kocaturk (1997), Celep

(1998a,b), Shen and Yu (2004), Li and Dempsey (1988), Mishra and Chakrabarti (1996), Silva et al.

(2001), Xiao (2001), and Hong et al. (1999). Ma (2004) considered positive solutions for a fourth-

order differential equation with nonlinear boundary conditions modeling beams on elastic

foundations. Sharma and DasGupta (1975) studied the bending problem of axially constrained

beams on nonlinear Winkler-type elastic foundations using Green’s functions. Beaufait and Hoadley

(1980) solved the problem of elastic beams on linear foundation using the midpoint difference

method. Kuo and Lee (1994) investigated the deflection of non-uniform beams resting on a

nonlinear elastic foundation using the method of perturbation. Chen (1998) presented the numerical

results of the solutions of beams on elastic foundation using the DQEM. In this paper, a new

approach using the differential quadrature method (DQM) with its easy to use and the more efficient

used to simulate non-uniform beam resting on nonlinear media. The DQM is a numerical

technology for solving differential equations. In this study, the DQM was employed to formulate the
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problems in matrix form. The Chebyshev-Gauss-Lobatto point distribution on each beam is

employed. The integrity and computational efficiency of the DQM in this problem will be

demonstrated through a series of case studies. The effect of the sample point number on the

numerical results is studied. To the author’s knowledge, very few published papers in the literature

have presented the mechanical behavior of non-uniform beams resting on nonlinear media using the

DQM.

2. The differential quadrature method

Most science and engineering problems are governed by a set of differential equations. The static

and dynamic solutions for many complicated structures have now become achievable using the

finite difference method, the finite element method, the finite volume method and the boundary

element method. However, to look for an alternative efficient technique is still of prime interest.

The concept of the DQM was introduced by Bellman and Casti (1971), Bellman et al. (1972). The

DQM has been used extensively to solve a variety of problems in different fields of science and

engineering. The DQM has been shown to be a powerful contender in solving initial and boundary

value problems and thus has become an alternative to the existing methods. Chen and Zhong (1997)

pointed out that the DQM is more efficient for nonlinear problems than the traditional finite element

and finite difference methods. Quan and Chang (1989a,b) applied Lagrange interpolated

polynomials as test function obtained explicit formulations to calculate the DQ weighting

coefficients. The key procedure in the DQM lies in the determination of the DQ weighting

coefficients. The DQM has been used extensively to solve a variety of engineering problems. One

of the fields among which one can find extensive applications of DQM is structural mechanics. Bert

et al. (1988), Bert and Malik (1996a,b), Bert et al. (1993, 1994a,b), Malik and Bert (1996, 1995),

Striz et al. (1994), Du et al. (1996), Sherbourne and Pandey (1991), Jang et al. (1989), Feng and

Bert (1992), Chen et al. (2000), Tomasiello (1998) analyzed static and free vibration of beams and

rectangular plates using the DQM. Bert and Malik (1996b) reviewed the recent development of

DQM in computational mechanics.

The DQM is employed in the present study. The basic concept of the DQM is that the derivative

of a function at a given point can be approximated as a weighted linear sum of the functional values

at all of the sample points in the domain of that variable. The differential equation is then reduced

into a set of algebraic equations using this approximation. The number of equations is dependent

upon the selected number of the sample points. The accuracy of the solution using in this method

may be improved by increasing the number of sample points as for any polynomial approach.

For a function f (x), DQM approximation for the mth order derivative at the ith sampling point is

given by (Bert and Malik 1996, Bert et al. 1993, 1994a)

for (1)

in which N is the number of sample points, xi is the location of ith sampling point in the domain,
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f (xi) is the functional value at point xi, and  are the DQ weighting coefficients of mth order

differentiation attached to these functional values.

In order to overcome the numerical ill-conditions in determining the DQ weighting coefficients

, a Lagrangian interpolation polynomial was (Bert and Malik 1996, Bert et al. 1993, 1994a)

for (2)

where

        for 

 

Substituting Eq. (2) into Eq. (1) leads to

for  and (3)

and

for (4)

Once the sample points, i.e., xi for , are selected, the coefficients of the DQ

weighting matrix can be obtained from Eqs. (3) and (4). It should be emphasized that the number of

the test functions must be greater than the highest order of derivative in the governing equations,

i.e., N > m. The DQ weighting coefficients of second-, third-, and fourth-order derivatives in the

DQM,  may be computed by (Bert and Malik 1996, Bert et al. 1993, 1994a)

  for (5)
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The computational domain of a non-uniform beam is . A mesh generation is needed to
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for  (8)

The boundary points of the non-uniform beams are defined as

(9)

(10)

The above mesh point distribution is Chebyshev-Gauss-Lobatto point distribution.

3. Bending behavior of the non-uniform beam resting on nonlinear media

Fig. 1 shows the fixed-free beam resting on nonlinear media. It is assumed that the behavior of

the beam follows the Euler-Bernoulli hypothesis and that the beam rests on a nonlinear elastic

foundation. The strain energy of the non-uniform beam resting on nonlinear media can be simplified

as

(11)

where k0 and μ are the parameters of the foundation. With considering the load, the virtual work

 done by the non-uniform beam can be derived as

(12)

where E is Young’s modulus of the non-uniform beam. I(x) is the moment of inertia of cross-

sectional area of the non-uniform beam. L is the length of the beam. w(x) is the load. Load w(x)

acts on x = 0~L in the beam. Substituting Eqs. (11) and (12) into the principle of the total potential

energy 
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Fig. 1 The geometry of the cantilever beam resting on nonlinear foundation
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Solving above equation, the equation of the non-uniform beam resting on nonlinear media is

(14)

The corresponding boundary conditions of the clamped-free non-uniform beam are

(15)

(16)

(17)

(18)

By employing the differential quadrature method, Eq. (1) is substituted into Eq. (14) leads to
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 for (23)

4. Dynamic behavior of the non-uniform beam resting on nonlinear media

The kinetic energy of the non-uniform beam resting on nonlinear elastic foundation can be

derived as 

(24)

where ρ is the density of the non-uniform beam and A is the cross-sectional area of the non-uniform

beam. For generality, the velocity dependent viscous damping and strain rate dependent viscous

damping effects have been considered in the formulation of equation of motion. The velocity
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velocity of the non-uniform beam. With considering of the velocity dependent viscous damping and
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differential equation. The boundary conditions of the clamped-free beam are

(28)

(29)

(30)

(31)

By employing the DQM, Eq. (1) is substituted into Eq. (27) leads to
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The boundary conditions at the free end can be rearranged into the following discrete forms.

for (35)

for (36)

5. Results and discussion

Fig. 2 displays the deflection of fixed-free beam under the load w = 10 N/m solved using the

DQM and the FEM. The material properties and the geometric dimensions of the beam are

, L = 9.0 m, k0 = 600.0 N/m and I = 4.5 × 10−4 m4. The feasibility of DQM for

the non-uniform beams resting on nonlinear media is studied first. We use the static analysis of a

uniform beam resting on nonlinear elastic foundation as an example to demonstrate the high

accuracy of the DQM results and the effect of mesh point number. Different number of sample

points for the non-uniform beam, i.e., 5, 6, 7, 8, 9, 11 and 13, are selected for accuracy analysis.
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Fig. 2 The deflections of clamped-free beam solved using various sample points
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2.934 seconds is required for using the FEM in the similar problem. Results indicate that the DQM

is valid for solving such an engineering problem without using a large number of degrees of

freedom. Figs. 3 and 4 show the deflections of clamped-free beam and simply supported beam for

various loads, respectively. The material properties and the geometric dimensions of the beam are

Fig. 3 The deflections of the clamped-free beam for various loads

Fig. 4 The deflections of the simply supported beam for various loads

Fig. 5 The deflections of the clamped-free beam for various loads
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, L = 9.0 m, k0 = 600.0 N/m, and I = 4.5 × 10−4 m4. It is obvious that deflection

changes significantly for loads and boundary conditions. Fig. 5 illustrates the clamped-free non-

uniform beam deflection for various loads. The material properties and the geometric dimensions of

the beam are, , L = 9.0 m, k0 = 600.0 N/m, I = I0(1 + x/L + (x/L)2) and I0 = 4.5

× 10−4 m4. It is obvious that the deflection of the beam changes significantly with the inertia shape.

Fig. 6 reveals the clamped-free non-uniform beam displacement for various w0. The material

properties and the geometric dimensions of the beam are , L = 9.0 m,

k0 = 600.0 N/m, I = I0(1 + x/L + (x/L)2), I0 = 4.5 × 10−4 m4 and w = w0(1 − x/L). It is obvious that the

deflection of the beam changes significantly for various loads. The results show that it is efficient to

solve the problem of the beam with various bean section shapes and loads using the DQM. 

E 2.4525 107 Pa×=

E 2.4525 10
7

Pa×=

E 2.4525 10
7

Pa×=

Fig. 6 The deflections of the clamped-free beam for various w0

Fig. 7 The tip deflections of the clamped-free beam for load w = u(t − 0.1) N and various velocity dependent
viscous damping
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Fig. 7 denotes the tip deflection of the clamped-free beam for load   and

various velocity dependent viscous damping.  is unit step function.  is defines

as following:

(36)

The material properties and the geometric dimensions of the beam are ,

ρ = 2300 kg/m3, L = 9.0 m, k0 = 600.0 N/m, and I = 4.5 × 10−4 m4. The Newton-Raphson algorithm is

used together. It can be clearly seen that there is a significant reduction in the tip deflection by

increasing the velocity dependent viscous damping. Through simulation they show that damping can

provide reduction in tip deflection response. Fig. 8 displays the stresses near the fixed end of the

clamped-free beam for load  and various velocity dependent viscous damping. It

can be clearly seen that there is a significant reduction in the stress near the fixed end by increasing

the velocity dependent viscous damping. Simulation results show that damping can provide

reduction in beam response. Fig. 9 introduces the tip deflections of the clamped-free beam for load

 and various strain rate dependent viscous damping. It can be clearly seen that

there is a significant reduction in the tip deflection by increasing strain rate dependent viscous

damping. Fig. 10 shows the stresses near the fixed end of the clamped-free beam for loading

 and various strain rate dependent viscous damping. Simulation results show

that damping can provide reduction in the stress response near the fixed end.
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Fig. 8 The stresses near the fixed end of the clamped-free beam for load w = u(t − 0.1) N and various velocity
dependent viscous damping
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Fig. 9 The tip deflections of the clamped-free beam for load w = u(t − 0.1) N and various strain rate dependent
viscous damping

Fig. 10 The stresses near the fixed end of the clamped-free beam for load w = u(t − 0.1) N and various strain
rate dependent viscous damping



Mechanical analysis of non-uniform beams 291

6. Conclusions

The DQM is proposed to analyze non-uniform beams resting on nonlinear elastic foundation

problems in this work. The applicability of the proposed method to the mechanical behavior

analysis of non-uniform beams resting on nonlinear elastic foundation is demonstrated. Accurate

results are obtained for the problems sensitive to grid point number using the DQM. This approach

is convenient for solving problems governed by the fourth or higher order differential equations. In

this approach, only seven sample points are needed to achieve convergence. Excellent agreement

has been obtained between the calculated results solved using the DQM and the FEM. Numerical

results in this work show that the velocity dependent viscous damping and strain rate dependent

viscous damping coefficients have a significant influence on the system’s dynamic. Results with

high accuracy are obtained and fast convergent trend is observed in all study cases. This shows the

applicability and efficiency of the DQM. It is expected that the DQM will find a wide range of

applications. 
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