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The uniaxial strain test - a simple method for the 
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Abstract. The application of cellular materials in load-carrying and security-relevant structures requires
the exact prediction of their mechanical behavior, which necessitates the development of robust simulation
models and techniques based on appropriate experimental procedures. The determination of the yield
surface requires experiments under multi-axial stress states because the yield behavior is sensitive to the
hydrostatic stress and simple uniaxial tests aim only to determine one single point of the yield surface.
Therefore, an experimental technique based on a uniaxial strain test for the description of the influence of
the hydrostatic stress on the yield condition in the elastic-plastic transition zone at small strains is
proposed and numerically investigated. Furthermore, this experimental technique enables the determination
of a second elastic constant, e.g., Poisson’s ratio. 
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1. Introduction

Cellular metals, e.g., metal foams (cf. Fig. 1), exhibit unique mechanical and physical properties
that differ strongly from classical solid materials and are currently being considered for use in
lightweight structures such as cores of sandwich panels or as passive safety components of
automobiles, (Gibson and Ashby 1997). Interesting combinations of their mechanical and physical
properties, such as relatively high stiffness in conjunction with very low weight or high gas
permeability combined with high thermal conductivity, offer the possibility for new future-oriented
multifunctional applications, e.g., in aviation and space technology. 

The mechanical properties of cellular metals, in particular their resistance to plastic deformation,
the evolution and progress of damage and fracture within the material, are determined by the
microstructure and the cell wall material, respectively. The most important structural parameters
which characterise a cellular metal are the morphology of the cell (geometry, open or closed cell),
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the topology, the mean cell size and the relative density ρ /ρSolid (the macroscopic density ρ divided
by that of the solid material of the cell wall ρSolid, (Ashby et al. 2000). However, there are still
technological problems related to the control of the structure and properties of the cellular material,
which remain to be solved. The vast majority of existing techniques do not allow for precise control
of shape, size and distribution of the pores. That brings about a wide scatter in mechanical and
other characteristics of the materials and components. 

A schematic uniaxial compression stress-strain curve for cellular metal is shown in Fig. 2. It
shows linear elasticity at low stress, followed by an elastic-plastic transition zone, which is followed
by a long collapse plateau, truncated by a regime of densification in which the stress rises
exponentially. Each of these four regions requires its own constitutive equation since the
deformation mechanisms are quite different. Many investigations focus on the large deformations
taking place in zones 3 and 4 where the inelastic behavior is governed by buckling, collapsing, and
crushing of cells (Kiser et al. 1999, Hartmann et al. 1998, Balch and Dunand 2002, Gong and
Kyriakides 2005). The initial yield stress k is equated in many analytical models with the plateau
stress kplat , so that the transition zone, which can be clearly distinguished in certain cellular
materials, remains unconsidered (e.g., in the analytical model by Ashby et al. 2000). Relationships
for the elastic and plastic (plateau) behavior of low-density foams are given in Gibson and Ashby
(1997). However, the elastic-plastic transition zone is extremely important for the deformation

Fig. 1 Different types of cellular materials: (a) Closed-cell metal foam (ALPORASR), (b) Hollow alumina
spheres embedded in a magnesium matrix, (Körner and Singer 2000), (c) Hollow sphere foam
Fe0.88Cr0.12, (Körner and Singer 2000) 

Fig. 2 Schematic uniaxial stress-strain curve for a metal foam in compression 
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behavior of composite structures. Therefore, the plane strain test is proposed in this paper to
investigate the elastic-plastic transition zone. 

The experimental determination of material properties of cellular materials is quite complicated
since classical extensometers or strain gages are difficult to attach on the cellular surface which is
extremely rough and structured. Young’s modulus and the flow curve can be determined based on
classical uniaxial tensile or compression tests (Papka and Kyriakides 1994, 1998, Gong et al. 2005).
However, the determination of a second elastic constant, e.g., Poisson’s ratio, is extremely difficult
because the measurement of the transversal strains with classical methods is not possible. It is quite
difficult to attach extensometers or strain gages on the cellular surface which is rough and extremely
structured (cf. Fig. 1). 

The experimental investigation of cellular solids has been studied in numerous research projects
and different approaches to obtain complex stress states are reported in the scientific literature.
However, an experimental specimen needs to comprise a representative volume and therefore must
consist of a minimum amount of unit cells to avoid any edge effects and to represent macroscopic
values. Classical test methods such as thin-walled tubes (Lefebvre et al. 1983) or simple shear tests
(Rauch 1998) are difficult to achieve with respect to the specimen size as the evaluation procedures
of these test methods require thin specimens. A tube specimen of a cellular material with, for
example, 10 or more cells over the tube thickness can no longer be considered as thin and the
assumption that the shear stress is constant over the thickness no longer holds. One possible way to
outcome this problem is the generation of multiaxial stress states by using complex apparatus. For
example, an enhanced Arcan test for biaxial testing of cellular solids is presented in Mohr and
Doyogo (2003). However, the enhanced Arcan test requires the manufacturing of tapered specimens
to avoid the heterogeneity problem (Wierzbicki and Doyoyo 2003). A triaxial system for
axisymmetric stress (Deshpande and Fleck 2000) and a special loading system for biaxial and
hydrostatic tension are used in Deshpande and Fleck (2001) and allow for the determination of the
initial yield surface of porous materials. A similar axisymmetric test in conjunction with biaxial
compression-compression tests are applied in Gioux et al. (2000). Here, the yield surfaces are
determined for different commercial metal foams and aluminium honeycomb. A disadvantage of the
axisymmetric testing method is that the practical realization requires a shim around the porous
material in order to apply a hydrostatic pressure on the specimen. The shim carries a part of the
effective load and therefore alters the measured data (Gioux et al. 2000). In Öchsner et al. (2003), a
plane strain state realized due to a biaxial testing machine is proposed and the experimental
realization is described in Öchsner et al. (2005). However, the realization of the above mentioned
methods is connected with complex and expensive experimental equipment and might be not
available in standard test laboratories. Therefore, a method based on a uniaxial strain test which is
easy to realize in a universal testing machine is proposed in the following. This test aims not only
to determine a second elastic constant but also further parameters of the yield criterion. The method
is demonstrated based on a regular model structure by numerical simulation. 

2. Constitutive modelling of porous materials

2.1 Elastic behavior

Under the classical assumptions of isotropy, small strains and linear relationships between the
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second-order tensor σij and the strain tensor εij, the elastic stress-strain relation is given by general
Hooke’s law 

(1)

where E is Young’s modulus, Cijkl the fourth-order stiffness moduli tensor and ν Poisson’s ratio. In a
uniaxial tension or compression test, the only non-zero component σxx causes axial strain εxx and
transverse strains εyy = εzz. Thus, one can determine the elastic constants, i.e., Young’s modulus and
Poisson’s ratio from Eq. (1). 

2.2 Plastic behavior

The classical assumption from solid materials, i.e., that the plastic behavior is incompressible,
does no longer hold in the case of cellular materials. The plastic behavior is pressure-sensitive due
to the cellular structure even when the pure base material is independent of the hydrostatic pressure
in the plastic range. Therefore, the yield condition F needs to incorporate the hydrostatic pressure: 

(2)

where  (~hydrostatic stress) is the first invariant of the spherical stress tensor , = sijsji

the second invariant of the deviatoric stress tensor sij and qij the tensor of hardening parameters
which includes the variables for isotropic and kinematic hardening. In many cases, Eq. (2) can be
expressed for pressure-sensitive materials in the following additive form 

(3)

where the classical yield condition (~ ) for solid metals is additively supplemented with an
expression which incorporates the hydrostatic stress (~ ). In Eq. (3), fi (i = 1, 2, 3) are arbitrary
scalar functions,  is the equivalent plastic strain (Chen and Hahn 1988), ks is the yield stress
under pure shear load and the parameter α weights the influence of the hydrostatic stress. It should
be mentioned here that the yield stress ks can be obtained from torsion tests (pure shear) or be
calculated from the uniaxial tensile yield stress but the determination of α requires the realization of
multi-axial stress states. Known examples for the yield condition based on Eq. (3) are e.g., the
classical von Mises (cf. Eq. (4)) or Drucker-Prager (cf. Eq. (5)) yield condition or the Mahrenholz
condition (Mahrenholtz and Ismar 1979, 1981) (cf. Eq. (6)) which has been successfully applied in
Öchsner et al. (2003) for the description of the elastic-plastic transition behavior of cellular metals. 
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2.3 Uniaxial strain test

Under the classical assumption of small strains, the total strain increment dεij is assumed to be the
sum of the elastic strain increment  and the plastic strain increment 

(7)

where the elastic strain increment can be obtained from Hooke’s law (1) and the plastic strain
increment increment from the associated flow rule (Chen and Hahn 1988)

(8)

Application of the chain rule with respect to the stress vector σij gives the derivative of the scalar
yield criterion (3) as: 

(9)

If Hooke’s law (1) is applied for the elastic component and the associated flow rule (8) for the
plastic component, the complete stress-strain relationship for a material obeying a yield criterion of
form (3) is expressed as 

(10)

For the uniaxial strain (no wall friction, principal directions are I, II, III, cf. Fig. 3), we have 

(11)
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Fig. 3 Experimental realization of the uniaxial strain 
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(12)

(13)

where σI and εI can be directly measured during the experiment due to a load cell and an
extensometer. Using Eqs. (11)-(13) with the associated flow rule (8) and Eq. (10), the increments of
the plastic strains are given by: 

(14)

(15)

Dividing Eq. (14) by (15) and rearranging, the parameter α is obtained as 

(16)

For small plastic strains (respectively at the beginning of the yielding), the quotient is << 1
(respectively = 0) and the quantity α can be approximated by 

(17)

The increments of plastic strain can be determined from Eq. (7) as 

(18)

(19)

(20)

while the elastic strain increments can be obtained from Hooke’s law (1). 
In the hardening theory of plasticity, the hardening parameter in the yield criterion can be related

to the experimental uniaxial stress-strain curve. To this end, one needs to define a stress variable,
called effective stress, which is a function of the stresses and some strain variables, called effective
strain, which is a function of the plastic strains, so that they can be plotted and used to correlate the
test results obtained by different loading conditions. Since the effective stress should reduce to the
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stress σI in a uniaxial test, i.e., , it follows that the function f must be a constant c

multiplied by the effective stress σeff to a power n (Chen and Hahn 1988) 

(21)

For the uniaxial test with σeff = σI; σII = σIII = 0 and , coefficient comparison,
i.e., 

(22)

gives the parameters c and n. The effective plastic strain increment  can be defined in terms of
the plastic work per unit volume in the form 

(23)

It follows from Eq. (23) using Eq. (1) and the results from Eq. (22) that in the case of the uniaxial
strain the effective plastic strain increment is given by the following equation 

(24)

Finally, it should be mentioned here that the elastic range is independent of the yield criterion and
the following incremental relation can be directly derived based on Hooke’s law as 

(25)

where  is known as the constrained modulus. The last equation may play an important role

for the experimental determination of the elastic material parameters of cellular materials. If
Young’s modulus E is obtained from an uniaxial tensile or compression test, then Poisson’s ratio ν
can be calculated from the slope dσI /dεI in the elastic range of a uniaxial strain test. Using the well-
known relationships between elastic constants (e.g., Chen and Hahn 1988), Eq. (25) can be
rewritten as: 

(26)

3. Finite element simulation

The FE simulation is performed with the commercial FE code MSC.Marc. Corresponding to the
two different approaches, FE models for the unit cell and the homogenised structure are generated. 

In the following, a periodic arrangement of cells (= infinite number) is considered where the
influence of the free boundary can be disregarded. The FE model for the unit cell approach is
shown in Fig. 4. The geometry corresponds to a cellular structure with the relative density ρrel =
ρ/ρsolid = 0.7. In order to reduce the number of unknowns and consequently the required computing
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time, only a typical repeating portion (unit cell) has been modelled. This simplification is applicable
due to the symmetry of the geometry and the applied loads. Consequently, in order to simulate the
behavior of the whole structure, i.e., periodic, certain symmetric boundary conditions must be
introduced (Öchsner et al. 2003, Öchsner and Lamprecht 2003). Besides the reflective symmetric
boundary conditions modelling the influence of the residual pore cell, repetitive symmetric
boundary conditions are defined. They are imposing for the periodic case of adjacent cells the
restriction that all nodes on a certain surface have the same displacement perpendicular to this
surface. Two load cases can be distinguished: Fig. 4(a) shows the geometry with the boundary
conditions according to a uniaxial compression test. In load case 4(b), the uniaxial strain is realized
by inhibiting the deformation of the unit cell in the II- and III-direction. The material parameters of
the structure’s cell walls correspond to the aluminum alloy AlCuMg1. The plastic behavior of the

Fig. 4 FE model for the unit cell approach: (a) Uniaxial compression, (b) Uniaxial strain 

Fig. 5 Illustration of the idealized and homogenized FE model 

Fig. 6 Illustration of the homogenized FE model corresponding to the physical experiment 
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matrix material is described by the von Mises yield criterion (cf. Eq. (4)) and the corresponding
associated flow rule. Furthermore, isotropic hardening is assumed for the matrix material where the
equivalent plastic strain is taken as the isotropic hardening parameter (cf. Fig. 7, ).
The macroscopic stresses were obtained by summing up all the nodal reaction forces where a
displacement boundary condition was prescribed and then dividing this value by the initial cross
sectional area. 

For the homogenized model of the uniaxial strain, axis-symmetric models are generated (cf. Figs. 5
and 6). The discretization of the specimen consists of axis-symmetric elements. The whole mesh of
the specimen comprises in total 600 four node, iso-parametric elements with bilinear interpolation
functions. To these elements, the effective material parameters obtained in the unit cell approach
have been assigned. The load case shown in Fig. 5 is identical with the one defined for the uniaxial
strain of the unit cell. In Fig. 6, the FE model has been extended by simulating the influence of the
outer tube under the aspect of friction (μ) and finite stiffness of the tube material Etube. 

3.1 Unit cell approach

The results of the uniaxial compression test allow for the determination of different material
parameters. According to Eq. (1), Young’s modulus E and Poisson’s ratio ν of the structure (not to
be confused with the characteristic values of the base material denoted by index s ‘solid’: Es =
42780 N/mm2, νs = 0.2784) can be obtained. 

Besides the uniaxial compression test, the load case of uniaxial strain is investigated. According to
Eq. (16), the parameter α is evaluated for the Mahrenholz yield condition. Furthermore, the uniaxial
tensile yield stress kt = σeff is determined. The results are shown in Fig. 7 in dependence of the
equivalent plastic strain . 

The slope of the parameter α converges with increasing equivalent plastic strain to a constant
value. Thus, the material remains in the investigated plastic range (cf. Fig. 2, region 2)
compressible. The isotropic hardening of the structure is described by the constant increase of the
tensile yield stress kt. For the application of these material parameters in the numerical code, both
curves have been approximated by polynomials  and . 
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Fig. 7 Results from the unit cell approach 
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3.2 Homogenized material

In order to model larger parts of a cellular geometry, the structure has to be homogenized. The
homogenization implies the assignment of the attributes of the cellular material to solid elements.
The aim is to describe the response of bigger structures to non-symmetric loads without modelling
the microstructure of each cell, which would fast exceed the resources of the available computer
hardware. Instead of modelling the microstructure, the cellular structure is generated with few solid
elements which exhibit the same properties and doing so, a much lower number of unknowns and
therefore computing time is achieved. The definition, respectively allocation of the material
attributes, in particular  and  and implementation of the yield condition (6), is done
with the Fortran User Subroutine UVSCPL of the MSC.Marc code. This routine allows very general
material laws to be implemented, by updating e.g., the inelastic strain and the stress increment
(Documentation 2003). Details of the implementation of the constitutive equation based on the fully
implicit backward Euler scheme are given in Öchsner and Lamprecht (2003). Furthermore, Young’s
modulus E and Poisson’s number ν, obtained from the uniaxial tension test, are defined. 

First, the homogenized model is investigated with the boundary conditions illustrated in Fig. 5.
These boundary conditions are equivalent to the uniaxial strain test of the unit cell approach.
Therefore, identical results for the evaluated material parameters, e.g., ν, E, α, ... are obtained. 

In Fig. 8, the correlation of the plasticity parameter α is exemplarily demonstrated. First, the slope
of the input polynomial , gained in the unit cell approach, as a function of the equivalent
plastic strain  is drawn. In addition, α obtained by the postprocessing of the FE results of the
homogenized model is visualized. Except for a minor deviation in the case of small  both slopes
coincide. Consequently, it can be concluded that the homogenization is valid under the chosen
parameters. 

In the second step, the influence of certain phenomena occurring in the experimental realization is
investigated (cf. Fig. 6). In the physical experiment, the constraining of the axial deformation is
obtained by means of a tube. This tube is characterized by a finite stiffness  Etube which leads to a
small deformation of the specimen in the radial direction. In the case of the idealized definition of
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Fig. 8 Scope of α obtained by the uniaxial cell approach (Polyoma) and the homogenized model 
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the boundary conditions according to Figs. 4 and 5, this deformation has been neglected. In the
following, different ratios Er = Etube/E are considered and the disturbance on the material parameter
α is analyzed. 

The results are illustrated in Fig. 9. As reference values, the input polynomial  is drawn by
the dotted line. For high ratios Er, good coincidence with the reference can be observed. However,
the deviation to the polynomial significantly increases for small values of Er, especially for low
equivalent plastic strains. With increasing , the divergence is decreasing and the slopes converge
towards the exact solution. 

Another important disturbance is the friction between the tube and the specimen. For the simple
stick-slip model, only the friction coefficient μ is required to fully describe the tribological system.
Four different values of μ are investigated for Er = 100 (cf. Fig. 10). 

Independent of the friction coefficient, all slopes of this stiffness ratio start in the same point.

α εeff

p( )

εeff

p

Fig. 9 Influence of the finite tube stiffness on the parameter α

Fig. 10 Dependence of the parameter α on the friction coefficient μ 
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With increasing equivalent plastic strain, the influence of the friction becomes visible. The increase
of the parameter μ yields to higher convergence values for α. 

4. Recommendations for experimental realization

In the following, the physical realization of the proposed experiment is elucidated and, based on
the FE results, recommendations for the minimization of the disturbances are given. 

As shown in Eq. (26), a second elastic value can be determined if e.g., Young’s modulus E is
already available. This possibility is especially interesting for cellular materials. Due to the
condition of their surfaces, the attachment of measuring devices like strain gages or extensometers
to determine the transverse strain in uniaxial compression test is difficult. Thus, ν normally cannot
be calculated according to Eq. (1), like usually done with solid materials. The central aim of the
experiment is to determine the material parameters α and kt as a function of . Therefore,
according to formulae (16) and (24) the following values must be determined: σI = σax, εI = εax, σII

= σIII = σr = σθ. The axial stress σax can be obtained by measuring the force acting on the pressure
foot, e.g. with the aid of a load cell, and dividing this value by the cross section area of the
undeformed specimen. Also the axial displacement and therefore the axial strain εax can be directly
determined by means of an extensometer. However, the radial stress σr cannot be directly measured.
Instead of this, the peripheral strain εθ on the outer surface of the tube might be obtained with the
aid of a strain gage. Based on this value, analytic equations (e.g. Flügge 1962) for thick-walled
cylinders under internal pressure (cf. Fig. 11) allow for the determination of the internal pressure pi ,
which is identical to the radial stress of the specimen σr for r = ri. 

(27)

Hooke’s law in polar coordinates is described in Eq. (27) for a thick walled cylinder. For the outer

εeff

p

E εθ⋅ σθ ν σr⋅– ν σax⋅–=

Fig. 11 Boundary conditions for the thick-walled cylinder 
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surface of the cylinder (r = ra) the radial stress σr is zero. As an additional simplification, one can
introduce that the axial stress σax of the cylinder is identical zero which is perfectly fulfilled in the
case of free ends of the tube and neglected friction. Thus the peripheral stress σθ can be
approximately calculated with the measured value εθ and the known stiffness of the tube material
Etube. 

(28)

Now, formula (28) enables the determination of the internal pressure . Thus, all
required values are available. 

To obtain accurate results, the influence of the disturbing friction and finite stiffness of the tube
material must be minimized. The friction can be significantly reduced by adding a lubricate to the
tribological system created by the surfaces of specimen and tube. In Chengfeng et al. (2001), the
application of room-temperature ionic liquids is investigated. For the contact of steel and
aluminium, the lubricate L106 reduces the high friction coefficient (dry St/Al ) by one
order of magnitude to μ = 0.040. With respect to the surface of the porous material (reservoirs for
the lubricate, hydrodynamic flanks, etc.) even lower values for the friction coefficient can be
expected. Another possible strategy to decrease the negative effect of friction is to reduce the
inhomogeneity of the deformation of the specimen by compacting it from two sides as visualized in
Fig. 12. 

The second major influence is the finite stiffness of the tube material. As shown in section 3.2,
this influence can be minimized by investigating only specimens with relatively low Young’s
modulae. If the stiffness ratio is high, e.g., Er > 100, the observed deviation is small. This
assumption holds normally for commercial metal foams (e.g., ALPORAS, Cymat, ERG) with

, (Ashby et al. 2000). However, as for the tube material typically steel will be
employed, this requirement limits Young’s modulus of the specimen to values below 2100 N/mm2.
Another possibility is the increase of the outer diameter of the steel tube. The higher structural
stiffness of the tube leads to better results for rising ratios rtube/rspecimen (cf. Fig. 13). 

In order to estimate the influence of the disturbance as well as to have a possibility for the
correction of the results, the starting value for  can be determined only in
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Fig. 12 Experimental realization of the double-sided uniaxial strain test 
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dependence of Poisson’s ratio ν. Starting with Eq. (27) and σr = σθ , the ratio σz/σr = σz/σθ can be
expressed as 

(29)

At the beginning of the plastification ( ), Eq. (16) with ratio (29) yields in the case of
Mahrenholz yield condition (6) after some transformations to 

(30)

Consequently α0(ν = 0.2784) = 0.05778 can be calculated based on the elastic properties. This
result coincides with the value of the polynomial  obtained in section 3.1 for the ideal
case (infinite stiffness of the tube material, no friction). 

5. Conclusions

In the scope of this article, the uniaxial strain test is suggested as an experimental setup for the
determination of material parameters of porous materials. In addition to the possibility of obtaining
a second elastic constant next to e.g., Young’s modulus E, the plastic behavior of the specimen can
be determined for miscellaneous yield conditions. This is successfully demonstrated for the case of
Mahrenholz yield condition by means of FE analyses. Therefore, this easy realizable experiment
might be an alternative for more complex experiments that require different multi-axial stress states.
Furthermore, the influence of the finite stiffness of the die and the wall friction on the determination
of the plasticity parameter α in Mahrenholz yield condition is investigated. Based on these results,
recommendations for the optimization of the experimental setup are given. The experimental
realization of the uniaxial strain is reserved for our future research work. 
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Fig. 13 Influence of the relative tube thickness on the parameter α
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