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Abstract. In engineering practice, tubular connections are usually assumed pinned or rigid. Recent
research showed that tubular joints may exhibit non-rigid behavior under axial or bending loads. This
paper is concerned with establishing a new classification for tubular joints and investigating the effect of
joint rigidity on the global behavior of CHS (Circular Hollow Section) lattice girders. Parametric formulae
for predicting tubular joint rigidities are proposed, which are based on the finite element analyses through
systematic variation of the main geometric parameters. Comparison with test results proves the reliability
of these formulae. By considering the deformation patterns of respective parts of Vierendeel lattice
girders, the boundary between rigid and semirigid tubular connections is built in terms of joint bending
rigidity. In order to include characteristics of joint rigidity in the global structural analysis, a type of
semirigid element which can effectively reflect the interaction of two braces in K joints is introduced and
validated. The numerical example of a Warren lattice girder with different joint models shows the great
effect of tubular joint rigidities on the internal forces, deformation and secondary stresses. 

Key words: non-rigid behavior; tubular joint rigidity; finite element analysis; tubular joints classifica-
tion; semirigid element; CHS lattice girder.

1. Introduction

Since the beginning of their commercial use four decades ago, steel tubular structures have been

increasingly popular, especially in large open areas with few or no intermediate supports. Over the

years, they have become known for their pleasing appearance, light weight, easy fabrication and

rapid erection. Hundreds of successful tubular truss applications now exist all over the world

covering stadiums, public halls, exhibition centers, aeroplane hangers and many other buildings.

The majority of steel tube structures employ tubular connections. Existing research focused on

ultimate capacity of tubular connections under axial brace loads as their main target. However, the

loaded braces always cause local distortion of the chord cross-section and hence displacements and

rotations of the ends of the braces relative to the chord axes. Non-rigid behavior of this joint will

redistribute the nominal stresses, increase the deflections, influence the critical buckling loads and

natural frequencies.

In recent years, some research results on rigidity or static strength of tubular joints under bending
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loads or combined axial and bending loads have been reported by several researchers, including

experimental investigations on CHS T connections under combined bending and axial loads on the

braces (Kurobane 1991) and numerical investigations on CHS X, T, Y and K connections (Vegte

1995, Lee 1994, Healy 1993, Healy 1994, Gazzola 2001) and on RHS T and X connections (Yu

1997). The formulae for the ultimate bending capacity of tubular joints have been recommended in

CIDECT design guide (Wardenier et al. 1991). It also noted that the bending rigidities of tubular

joints may have great effect on the moment distribution of static indeterminate structural systems.

Choo (2004) carried out a parametric numerical study on the static strength of doubler and collar

plate reinforced X joints loaded by in-plane bending and provided design recommendations for this

joint type. Fessler (1986) tested 25 Araldite model tubular joints, including seven multi-brace joints

and derived parametric equations for the flexibility matrices of single brace joints. This was the

only published previous work in which the cross-flexibilities between two braces at a point had

been measured. Ure (1993) presented a method of determining local joint flexibility of flattened-

ended tubular connections using finite element modeling. Hyde (1998) and Leen (2000) adopted an

energy-based approach to predict elastic-plastic displacement of tubular joints under combined

loading. Furukawa (1998) proposed effective column length of web members in CHS lattice girder

based on the study on out-of-plane rotational stiffness of CHS joints. France (1999) carried out

experimental research on the strength and rotational stiffness of simple connections to tubular

columns using flowdrill connectors.

Since real tubular connections possess some stiffness, which falls between the two extreme cases

of fully rigid and ideally pinned, the modeling of connections as semirigid is more realistic.

However, in engineering practice some connections can be considered pinned while some

connections can be considered rigid. For example, the conventional procedure for the design and

analysis of offshore structures is to assume that the joints are completely rigid. On the other side, in

the tubular trusses for buildings, the members are usually supposed as pin-connected. But when

eccentricities exceed a certain range between −0.55D and 0.25D, it is common practice to use

continuous chords with the braces connected with pins to the chord. The assumption of ideally

pinned or rigid connections considerably simplifies the design and analysis procedures. Therefore, it

is important to estimate in advance whether the connections can be assumed rigid, semirigid, or

pinned. 

Proposals for the clear classification of beam-to-column connections have been presented by

Bjorhovde (1990), EN1993-1-1 (2005), Goto (1998), Nethercot (1998) and Hasan (1998). In

addition, EN1993-1-8 proposes the following design recommendation of steel tube lattice girder

with diagonal braces for building structures: secondary moments at the joints, caused by the

rotational stiffness of the joints, may be neglected provided that the ratio of the system length to the

members depth in the plane of the girder is not less than 6. But for Vierendeel lattice girders and

tubular framed structures, there is no available joint classification to apply.

A natural extension of work on the determination of joint rigidity is the incorporation of these

rigidities in a typical structure so that their influence on internal force (and hence stress)

distribution, overall displacement can be evaluated. For fulfilling this goal, it is necessary to

estabilish a reasonable model to reflect the characteristic of tubular joints and involved it into

existing or developed computer programs. Generally, there are three types of method in numerical

modelling of steel tube structures (Kurobane 1998). The most accurate method is to model tubular

connections as three-dimensional finite element substructures. In this way, the influence of the

geometry of the connections is directly taken into account. Even the governing extrapolated
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geometric stresses at the weld toes can be determined directly. However, this method requires

sufficient computer capacity. Only specialized researchers, who are familiar with the use of correct

elements and meshes, can handle this method at present. Another method is to model the chords

with continuous beams and the braces are connected by springs representing the connection rigidity

to the chord. Eccentricities should be incorporated in the model. In this way the proper bending

moments in the members can be determined. But for K tubular joints, the interaction between two

braces cannot be reflected by this method. The third method is that an effective length is adopted to

replace the real length of the brace, so that the leading diagonal elements of the stiffness matrix of

the members can be modified. However, this method is an approximate one. Only when lacking the

rigidity characteristics of joints is this simplification used.

In the first portion of this paper, tubular joint rigidity is defined based on their local deformation

behavior. The finite element analyses are adopted to carry out an extensive parametric study on the

rigidity of CHS T, Y and K joints loaded by axial force and in-plane bending. In the parametric

study, the effects of the main geometric parameters on the axial and bending rigidity of the joints

are investigated respectively. Based on the discussion of the mechanism of these effects,

mathematical models of parametric formulae are introduced. By using orthogonal design method

and multi-variable nonlinear regression analysis, parametric formulae for rigidities of CHS joints are

established. These results are then verified against available experimental results by authors and

from Makino test database. In the second portion of this paper, a new classification for tubular

joints in Vierendeel lattice girders is proposed in terms of the boundary between rigid and semirigid

connections. Furthermore, it is compared with the classification for beam-to-column connections

proposed by EC3. In order to include parametric formulae for CHS joint rigidity in the global

structural analysis, a numerical methodology which involves semirigid elements to connect braces to

chords is introduced in the third portion. The corresponding computer program of global analysis of

CHS lattice girders is compiled. A Warren lattice girder is chosen as a numerical example for

illustration. The internal forces, overall deformation and secondary stresses of members are

computed with different joint models and compared with that by conventional rigid or pinned joint

assumptions. 

2. Modeling of tubular connections

2.1 Definition and determination of tubular joint rigidity

When braces are subjected to axial loads, axial displacement occurs at the ends of the braces

relative to the chord axes. When braces are subjected to bending moments, there also occurs

rotations of the ends of the braces relative to the chord axes. Based on this deformation behavior,

tubular joint rigidity is defined as the force causing unit deformation. 

For T and Y tubular joints, the following definitions are applied

(1)

where K denotes the rigidity of tubular joints. Subscripts N and M denote the loading cases of axial

force and in-plane bending respectively. δ is the local translational displacement at the intersection

between the brace and the chord wall, which is caused by the axial force P and is in the direction of

KN
P

δ
---= KM

M

θr

-----=,
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brace axis. θr is the local in-plane rotation at the same point, which is caused by the in-plane

bending moment M.

In practical calculation, crown points and saddle points of a tubular joint are chosen as reference

locations to determine δ and θr. As shown in Fig. 1, the deformation at point 1, 2, 3 and 4, denoted

as w1, w2, w3 and w4, is the local wall convex or concave normal to chord axis in the plane of chord

and brace axis, exclusive of the global deflection of the chord as a beam. Thus the total axial

displacement δ and the in-plane rotation θr is computed as follows:

(2)

(3)

So the joint rigidity is determined from the following equations,

KN = (4P)/[(w1 + w2 + w3 + w4)(sinθ )] (4)

KM = M(d − t)/[(w1 − w2)sinθ ] (5)

where θ is the initial angle between the brace and the chord, d and t are the brace diameter and

thickness respectively.

For K tubular joints, a joint rigidity matrix must be defined as follows since axial forces and in-

plane bending interact and deformation of one brace cause deformations of the other brace in the

same joint:

(6)

where [K]L is the joint rigidity matrix and can be formulated as

(7)

δ
w1 w2 w3 w4+ + +

4
-------------------------------------------sinθ=

θr

w1 w2–

d t–

------------------sinθ=

P1 M1 P2 M2, , ,{ }
T

K[ ]L δ1 θr1 δ2 θr2, , ,{ }
T

=

K[ ]L

k11  k12  k13  k14

k21  k22  k23  k24

k31  k32  k33  k34

k41  k42  k43  k44

=

Fig. 1 Local deformation of T tubular joint
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The leading diagonal terms of [K]L represent the relation between forces and corresponding

displacements or rotations. The terms off the leading diagonal represent the interaction between two

braces. Due to the reciprocal theorem, this matrix is symmetric, therefore

k12 = k21, k13 = k31, k14 = k41, k23 = k32, k24 = k42, k34 = k43 (8)

For the convenience of finite element calculation, Eq. (6) is expressed equivalently as 

(9)

where [ f ]L is the joint flexibility matrix and can be formulated as

 (10)

2.2 FE modeling and analysis

The finite element method is used to perform the analyses contained in this study. All analyses are

accomplished using the general purpose FE package program ANSYS (2002). 

2.2.1 Geometry configuration

Fig. 2 shows the configuration of CHS joints and definitions of main geometric parameters. In the

finite element study, the length-to-radius ratio of the chord, α = 2L/D = 20, and the brace length is

kept greater than three times the brace diameter (li > 3di , i = 1, 2). The symmetry of the geometry

and loading conditions is used so that only a semi-tubular part is modelled. A rigid cap is added at

each brace tip to avoid the local distortion which probably influence the stress distribution and

deformation in joint zone. In analyses, explicit modeling of the weld fillets is omitted. It has been

found through experience that such modeling usually had a negligible effect on the rigidity of

tubular joints (Dexter et al. 1996).

δ1 θr1 δ2 θr2, , ,{ }
T

f[ ]L P1 M1 P2 M2, , ,{ }
T

=

f[ ]L

f11  f12  f13  f14

f21  f22  f23  f24

f31  f32  f33  f34

f41  f42  f43  f44

=

Fig. 2 Joint description and parameter definitions
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2.2.2 Load application method

For joints loaded by in-plane bending, in order to simplify the analysis the existence of transverse

shear force is excluded, so a concentrated moment causing the brace to rotate in the direction of the

acute brace angle is applied to the brace end plate. For axially loaded joints, uniformly distributed

pressure is applied to the rigid cap at the brace tip.

2.2.3 Element type and material properties

8-Node structural shell element (ANSYS element type SHELL93) is used in the FE models. It is

particularly well suited to model curved shells. The element has six degrees of freedom at each

node: translations in the nodal x, y, and z directions and rotations about the nodal x, y, and z-axes.

The deformation shapes are quadratic in both in-plane directions. The element and node numbers of

the FE models are around 3000 and 6500 respectively.

The steel material is isotropic with an elastic modulus E of 206000 MPa and Poisson’s ratio of 0.3.

2.2.4 Boundary conditions

The chord and brace boundary conditions applied to the models are shown in Fig. 3. The fixed

conditions are applied to the nodes of both chord ends. Since the brace and chord lengths are

chosen to avoid end effects, the boundary conditions should not influence the joint rigidity. In

addition, symmetry boundary conditions are applied along the plane of symmetry.

2.3 Influence of geometric parameters on tubular joint rigidity

Fig. 4 and Fig. 6 present plots of nondimensional rigidity by FE analysis against β, γ, τ and sinθ,

respectively. Fig. 5 and Fig. 7 show joint rigidity by FE analysis against chord diameter D. Also

plotted is a curve corresponding to the mean calculated by a regression analysis. As can be seen,

when chord diameter D is kept constant, axial or bending rigidity of a tubular joint decrease as γ, τ

or sinθ increases, and as β decreases. The parameters which most influences joint rigidity are β and

γ. Joint rigidity is almost identical for the parameter τ between 0.2 and 0.8. This means τ has little

influence on the joint rigidity. Therefore, in the regression analysis to obtain the rigidity formulae

for K joints in section 2.5, the function of τ is omitted.

For a proper understanding of the behavior of tubular joints it is important to consider the

mechanism of load transfer.

A mechanical model which represents the behavior of joints can be simplified as follows:

For joints loaded by in-plane bending, bending moment can be represented by a couple of forces

which act perpendicular to the chord axis at a distance of brace diameter d from each other along

Fig. 3 Boundary conditions for chord and brace ends
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the chord axis (Fig. 8a). For axially loaded joints, brace load can be replaced by four concentrated

forces acting in the saddle points and crown points at the intersection of the chord and brace

respectively (Fig. 8b).

Fig. 4 Effect of geometric parameters on bending
rigidity

Fig. 5 Effect of chord diameter on bending rigidity

Fig. 6 Effect of geometric parameters on axial
rigidity 

Fig. 7 Effect of chord diameter on axial rigidity

Fig. 8 Simplified mechanical model of tubular joint
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The load has to be transmitted to the chord by bending. Thus, the local deformation is determined

by the bending stiffness of the top face of the chord section. Bending stiffness of unit width shell

can be expressed in Eq. (11).

(11)

where ts is the thickness of the shell, ν is the Poisson’s ratio, E is the modulus of elasticity.

For joints under bending, as β increases, the distance between the couple of forces, d, increases.

When M is kept constant, the force value decreases. The local vertical deformations of crown points

therefore reduce, with joint bending rigidity increased. By definition, γ increases as ts decreases and

hence in Eq. (11), Ds decreases. As sinθ increases, the area of the intersection is smaller, leading to

the reduction in overall bending stiffness of the chord top face. Both cases cause the decrease of

joint bending rigidity. The axial rigidity of tubular joints vary in a similar manner.

By single parameter analysis, the following mathematic expressions for axial rigidity, KN, and

bending rigidity, KM, of tubular joints could take the form:

(12)

(13)

where, CN and CM are multipliers, Qg is a geometric function, i.e., Qg = f (θ, β, γ, τ).

2.4 Joint models setup

A method for choice of experimental parameters called orthogonal design method is adopted to

cover all possible configurations of tubular joints. For T and Y joints, each of the four parameters is

varied in three level values to create a total of 9 joint models. For K joints, each of the six

parameters is varied in five level values to create a total of 25 joint models. The main geometric

parameters involved in this study are summarized in Tables 1 and 2, which are chosen to cover the

practical range of joint configurations found in steel tube structures.

Ds

Ets
 3

12 1 ν
2

–( )
-------------------------=

KN CN ED Qg⋅ ⋅=

KM CM ED
3

Qg⋅ ⋅=

Table 1 Parametric value of T & Y joint

level β γ τ θ

1 0.20 10 0.2 30o

2 0.55 30 0.6 60o

3 0.90 50 1.0 90o

Table 2 Parametric value of K joint

level γ β1 β2 θ1 θ2 a/D

1 10 0.1 0.1 30° 30° 0.01
2 20 0.3 0.3 45° 45° 0.25
3 30 0.5 0.5 60° 60° 0.50
4 40 0.7 0.7 75° 75° 0.75
5 50 0.9 0.9 90° 90° 1.00
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2.5 Parametric formulae

Statistical analysis tools are used for the non-linear regression of finite element results. The

following function types are considered in the regression phase of this study: linear models,

exponential, logarithm, polynomial, and trigonometric functions.

Equations based on power and exponential functions are successfully fitted to all data in terms of

β, γ, τ and θ. Almost all individual data points are within 10% of calculated values. The following

parametric formulae for predicting joint rigidities show the results of multiple regression analysis:

For T and Y joints,

(14)

(15)

where, 30o ≤ θ ≤ 90o, 0.2 ≤ θ ≤ 1.0, 10 ≤ γ ≤ 50, 0.2 ≤ τ ≤ 1.0.

For K joints,

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

where, fij are the terms in the joint flexibility matrix in Eq. (10) and 30o ≤ θ1, θ2 ≤ 90°, 0.2 ≤ β1,

β2 ≤ 1.0, 10 ≤ γ ≤ 50, 0 ≤ a/D ≤ 1.0.

KN 0.105ED sinθ( )
2.36–

γ
1.90–

τ
0.12–

e
2.44β

=

KM 0.362ED
3

sinθ( )
1.47–

γ
1.79–

τ
0.08–

β
2.29

=

f11

1

ED
-------- sinθ1( )

2.11
sinθ2( )

0.12
γ

1.86
β1

0.78–

β2

0.06–

e
0.34a/D

=

f12 f21 f34 f43 0= = = =

f13 f31

0.904

ED
------------- sinθ1( )

0.95
sinθ2( )

1.19
γ

1.80
β1

0.38–

β2

0.45–

e
0.13a/D–

= =

f14 f41

0.556

ED
2

------------- sinθ1( )
0.56

sinθ2( )
0.08–

γ
1.63

β1

0.82–

β2

0.27–

e
0.11a /D–

= =

f22

2.994

ED
3

------------- sinθ1( )
1.19

sinθ2( )
0.12

γ
1.72
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2.19–

β2

0.02
e

0.14a/D
=

f23 f32

0.556

ED
2

------------- sinθ1( )
0.08–

sinθ2( )
0.56

γ
1.63
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0.27–
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e
0.11a /D–

= =

f24 f42

2.088

ED
3

------------- sinθ1( )
0.22–

sinθ2( )
0.12

γ
1.26

β1

0.53–

β2

0.67–

e
0.94a /D–

= =

f33

1

ED
-------- sinθ1( )

0.12
sinθ2( )

2.11
γ

1.86
β1

0.06–

β2

0.78–

e
0.34a /D

=

f44

2.994

ED
3

------------- sinθ1( )
0.12

sinθ2( )
1.19

γ
1.72
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0.02
β2
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e
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2.6 Comparison with test results

The available test results for comparison with the parametric formulae in this paper came from the

Makino database (Makino et al. 1996) which contains data relating to full-scale failure tests on T

tubular joints and a number of loading tests on CHS tubular joints carried out by the authors at

Tongji University (Chen and Wang 2003).

Tables 3 and 4 summarize the results of the comparison between the estimated rigidities using the

authors’ formulae and the test results from Makino database. Overall, the formulae above show

good agreement with experimental results. TC-14 and TC-17 have nearly identical geometric

parameters but the test results are different, this may be due to variability in the test.

Table 3 Test results compared with the authors’ formulae for bending rigidity

Specimen β γ τ θ
KM (test)
(kN-m)

KMj (Eq.)
(kN-m)

KM/KMj

TM-33
TM-35
TM-36
TM-38

0.36
1.00
0.36
1.00

14.6
14.8
24.4
23.8

0.97
1.0
1.0
1.0

90o

90o

90o

90o

279
2680
115

1430

284
2852
112

1234

0.98
0.94
1.02
1.16

Table 4 Test results compared with the authors’ formulae for axial rigidity

Specimen β γ τ θ
KN (test)
(kN/mm)

KNj (Eq.)
(kN/mm)

KN/KNj

TC-12
TC-13
TC-14
TC-17
TC-115

0.44
0.20
0.36
0.36
1.00

35.4
46.7
46.7
46.9
23.8

0.98
0.61
0.96
0.97
1.00

90o

90o

90o

90o

90o

24.5
12.7
19.6
16.7
86.1

23.0
11.4
16.2
16.0

101.0

1.07
1.11
1.21
1.04
0.85

Fig. 9 Comparison of parametric formulae with test value for K tubular joint
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In addition, an experimental research on the rigidity of uni-planar KK tubular joint (Fig. 9a) was

performed at Tongji University (Chen and Wang 2003). It can be expected that the braces on the

other side of the chord have almost no effect on one side in elastic range, so the test results can be

used to judge the validity of the parametric formulae for K joints. According to Eqs. (9) and (10),

the evaluation of the rigidity of a K joint definitely relates to the local axial deformation and the

interaction between the two braces. Comparison of the authors’ parametric formulae for K joints

with test values is made graphically in Fig. 9(b), which plots M1 against θr1 as described in Eq. (9).

The parametric formulae provide a good fit to the test results. It can be concluded that the formulae

proposed in this paper are reliable on the whole in evaluating the local rigidity of tubular joints and

can be recommended for use in the global structural analysis of steel-tube structures.

3. Classification by rigidity of tubular joints in Vierendeel lattice girders

A Vierendeel lattice girder is a type of girder without diagonals in which shear forces are resisted

by the vertical braces and chords, acting together as moment-resisting frames. It may have diagonals

in some bays in some designs, but may also be designed to rely totally on the verticals. The EC3

rules for joint classification are applicable to building frames (i.e., beams and columns) and not

designed for lattice girders. So in this section, a classification for tubular joints in Vierendeel lattice

girders is proposed in terms of the boundary between rigid and semirigid connections. The

semirigid connection is represented by a rotational spring.

3.1 Subassemblage frame models

To take into account the behavior of lattice girders in the classification of connections, several

subassemblages that will approximately represent the behavior of the respective parts of the

Fig. 11 Deformation pattern of Vierendeel lattice girders 

Fig. 10 Multispan Vierendeel lattice girders
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multispan lattice girders are adopted in Fig. 11. These subassemblages are chosen by considering

the deformation patterns of the respective parts of the girders with odd or even spans illustrated in

Fig. 10. The subassemblages so chosen are summarized in Fig. 12. In this figure, the notations A~C

denote how the respective subassemblages represent the parts of the girders in Fig. 11. 

3.2 Classification criteria

Joint bending rigidities have a large influence on the behavior of lattice girders at the

serviceability limit state. Thus, the following criteria defined in terms of displacements is used to

classify the semirigid connections as rigid

 (25)

where δs = displacement of a lattice girder with semirigid connections; and δr = displacement of the

corresponding rigid lattice girder.

The loading conditions used to calculate the displacements are shown in Fig. 12. In the following,

the boundary value of the joint bending rigidity between rigid and semirigid connections will be

derived by considering the behavior of the lattice girders with odd or even spans.

3.3 Derivation of boundary between rigid and semirigid tubular connections

The boundary between rigid and semirigid connections is determined from Eq. (25) in terms of

the joint bending rigidity. The displacements, δs and δr, in (25) are represented by the vertical

displacements at the joint when a vertical force V is applied to the subassemblages, as shown in

Fig. 12. In the calculation of δs and δr, the small displacement theory is applied because the

displacements at the serviceability limit state are small. Furthermore, the rigidity of semirigid

connections is assumed linearly elastic.

Here we show the procedure to derive the boundary between rigid and semirigid connections.

For the subassemblage A with a semirigid connection, the vertical displacement, δs, can be

analytically obtained as 

(26)

Δ δs δr–( )/δr=

δs

V lc
2

12KcKb

------------------ Kb Kc+( )
V lc

2

4KM

----------+
V lc

2

12KcKbKM

-------------------------- KMKb KMKc 3KcKb+ +( )= =

Fig. 12 Subassemblages



Modelling and classification of tubular joint rigidity and its effect 689

where 

(27a,b)

Let KM → ∞, the vertical displacement of the subassemblage A with a rigid connection is given

by

 (28)

Substituting (26) and (28) into (25), the following condition is obtained:

(29)

where

(30)

If we adopt G = 1.4, which was assumed by EC3 to determine the boundary between rigid and

semirigid beam-to-column connections, and Δ = 0.05, KM/Kb becomes 25. This value is equal to the

boundary value which is given by EN1993-1-1 (2005).

For the subassemblage B, the vertical displacement of the lattice girder has no correlation with

joint bending rigidity, so the derivation of boundary for this case is neglected.

For the subassemblage C with a semirigid connection, the vertical displacement, δs , can be

analytically obtained as

(31)

In the same way, the vertical displacement of the subassemblage C with a rigid connection is

given by

(32)

Substituting (31) and (32) into (25), the following condition is obtained:

(33)

If we adopt G = 1.4 and Δ = 0.05, KM/Kb becomes 35.5. This value is larger than 25, which is

given by EC3 as the boundary value. Table 5 summarized the boundaries defined in terms of the

joint bending rigidity. By comparison with boundary value in EC3, it can be found that the EC3

frame rules do not apply for the lattice girders because they didn’t consider the deformation

behavior in different parts of the structures.

Kb

EIb

lb
--------= Kc

EIc

lc
-------=,

δr

V l c
2

12KcKb

------------------ Kb Kc+( )=

KM

Kb

-------
3

1 G+( ) Δ⋅
--------------------------=

G
Kb

Kc

------=

δs

V l c
2

24Kc 3Kb Kc+( )
--------------------------------------- 3Kb 4Kc+( )⋅

9V l c
2

Kb

2
⋅

4KM 3Kb Kc+( )
2

---------------------------------------+ δr

9Vlc
2

Kb

2
⋅

4KM 3Kb Kc+( )
2
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4. Global structural analysis of steel tube lattice girder considering joint rigidity

4.1 Semirigid element representing tubular joint rigidity

In order to include characteristics of CHS joint rigidity in the global structural analysis, a type of

semirigid element connecting braces to chords (Hu et al. 1993) are introduced and modified to

model tubular joints in steel tube lattice girder.

For Y tubular joints, the brace and the chord are considered to be connected through a semirigid

line element (see Fig. 13). Node i is the intersection of the brace axis and chord wall, node k is the

intersection of the brace axis and chord axis. For K tubular joints, the semirigid element is a

triangle connecting points i, j and k (see Fig. 14), Node i and j are the intersections of brace axes

and chord wall respectively. Node k is obtained by projecting the intersection point of two brace

axes onto the chord axis.

Table 5 Boundary value KM
b  for joint bending rigidity 

Subassemblages

A

B N/A

C

KM

b /Kb

3
1 G+( ) Δ⋅

--------------------------

54G

Δ 3G 1+( ) 3G 4+( )⋅
----------------------------------------------------

Fig. 14 K tubular joint and its model in structural analysis

Fig. 13 Y tubular joint and its model in structural analysis 
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By considering the relation between external loads acting on the tubular joint and local

deformation of the joint, a stiffness matrix for the semirigid element is derived and can be expressed

by the following equation.

 
(34)

For Y tubular joints, 

(35)

Since the stiffness of the chord wall in its axial direction is much greater than those in other

directions, KNX approaches infinity and

KNY = KN sin2θ (36)

For K tubular joints, the matrices [T] and [A] in Eq. (34) are

(37)

(38)
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Since axial tension and compression of the chord wall can be neglected, KNX1 and KNX2 approach

infinity. After substituting parametric formulae in section 2.5 into Eqs. (35) and (38), the stiffness

matrix of the semirigid element can be easily incorporated into a computer program developed by

the authors to carry out the global structural analysis of steel tube lattice girders.

4.2 Validation of the methodology

In order to assess the capability of the present methodology to accurately represent the behavior

of actual steel tube structures, a finite shell element model (Fig. 15) of a CHS lattice girder was

created using the ANSYS software. The dimension of the tubes are: chord tube 168 × 12 (mm),

brace tube 127 × 8 (mm). For comparison, the structure is analyzed with and without the present

semirigid  (Fig. 16) respectively. 

Fig. 16 Line element models for a CHS lattice girder

Fig. 15 Shell element model for a CHS lattice girder 

Table 6 Results of the numerical analysis for CHS lattice girder

Vertical
deflection

Node δsemi δrigid δshell

Maximum 
normal stress

Element Node δsemi δrigid δshell

2 −0.44 −0.38 −0.46 1 1 −43.3 −46.9 −40.2

5 −0.45 −0.39 −0.50 3
4 172.5 140.6 200.8
5 41.8 26.1 35.2

10 −1.50 −1.33 −1.53 4
5 −70.1 −75.3 −68.3

10 −199.4 −175.3 −264.5
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The results of the validation study are presented in Table 6. The table shows that, when the

semirigid element is included in the model, the predicted deflections and stresses are in better

agreement with the results from shell finite element analysis than a rigid joint model. 

The results of the validation study, presented in the tables above, indicate that the semirigid

elements and the applied implementation methodology make the local joint rigidity of tubular joints

under axial and in-plane bending loads represented effectively.

5. Warren lattice girder example

In order to investigate the effect of CHS joint rigidity on the local and overall response of Warren

lattice girders, a typical simply supported truss shown in Fig. 17 is examined. Truss joints have a

zero noding eccentricity (e = 0) throughout. For this truss, six joint models are investigated in the

analysis:

1. Model 1: all members including chords and braces are rigidly connected. 

2. Model 2: all members including chords and braces are pin connected.

3. Model 3: chord-to-chord rigidly connected, while semirigid elements allowing for both joint

axial and bending rigidity connect braces to chords, with interaction between two braces of K joints

considered. 

4. Model 4: the same as Model 3, except with no interaction between two braces of K joints

considered.

5. Model 5: chord-to-chord rigidly connected, while semirigid elements allowing for only bending

rigidity connect braces to chords, with joint axial rigidity treated as infinity.

6. Model 6: chord-to-chord rigidly connected, while semirigid elements allowing for only axial

rigidity connect braces to chords, with joint bending rigidity treated as infinity.

Boundary conditions and unit loading of the truss are shown in Fig. 17. The results of the

responses in the members from each of the models are compared in the following sections.

5.1 Effect of joint rigidity on axial forces

Table 7 lists axial force distribution in the members for each model of analysis. It can be seen

from these analytical results that:

— for brace members closer to supports, their axial forces are larger. On the contrary, for chord

members closer to supports, their axial forces are smaller.

Fig. 17 Layout of lattice girder
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— the effect of joint rigidity on axial force in the chord is very small, the different theoretical

results agreeing very closely to within 2%.

— there is not a significant difference in brace force estimate between Models 1-6. Maximum

variation is no more than 5% in member 11.

5.2 Effect of joint rigidity on bending moments

Fig. 18 shows the bending moment distribution in the chords and braces for the rigid joint

connection case only (Model 1). The critical bending moments of each member obtained with each

models are listed in Table 8. Examination of the results reveals the following:

— for chord members, the closer to supports, the larger bending moments they have.

— comparison between Model 1 and 3 shows that there is an increasing of bending moment in

the case of semirigid connections.

— comparison between Model 3 and 4 shows that the influence of interaction between two braces

in K joint may be increasing bending moments in some members but decreasing in others.

— bending moments induced by axial rigidity in Model 6 greatly exceed that induced by bending

rigidity in Model 5.

Table 7 Axial forces of CHS lattice girder for different joint models

Member
Axial force (kN)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Lower 
chord

1 1.155 1.155 1.157 1.159 1.153 1.162
2 2.865 2.887 2.861 2.857 2.867 2.857
3 3.444 3.464 3.443 3.437 3.445 3.439

Upper
chord

8 −3.155 −3.175 −3.155 −3.148 −3.156 −3.149
9 −2.008 −2.021 −2.009 −2.005 −2.009 −2.007

Brace

10 −2.296 −2.309 −2.288 −2.290 −2.299 −2.285
11 1.692 1.732 1.667 1.668 1.702 1.651
12 −1.701 −1.732 −1.675 −1.680 −1.707 −1.663

Note: The bending moment diagrams have been plotted on the side of the member where the stress induced by the

bending moment is tensile.

Fig. 18 Bending moment distribution of lattice girder
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5.3 Effect of joint rigidity on the overall truss deflection

The mid-span truss deflection is given in Table 9 for each of the models considered. From this

table it can be found:

— the overall mid-span deflection is very similar for Model 1 (rigid joint model) and Model 2

(pinned joint model).

— weak joint rigidites (Model 3) resulted in increasing the overall deflection by 17.9%, if pinned

joint model (Model 2) is taken as a reference. Comparison between Model 3 and 4 reveals that the

effect of interaction between two braces in K joint may reduce overall deflection of this girder. Mid-

span deflection induced by joint axial rigidity in Model 6 exceeds 33% that induced by joint

bending rigidity in Model 5. In Model 6, the semirigid element connecting node k with node i or j

in Fig. 14 can be equivalent to a short beam element with axial stiffness calculated as KN in Eq. (14).

But in Model 2, the axial stiffness of this short element is calculated as EAb/le, where Ab is the area

of brace section and le is the length of the element. If KN is less than EAb/le, the truss deflection may

be underestimated by pin-jointed analysis mainly because of the joint axial flexibility, and vice

versa. The girder example in this section just belongs to the former case. The same result has been

obtained from the two RHS trusses tested in a experimental program (Frater and Packer 1992).

5.4 Analysis of secondary stress distribution

According to the conventional definition, secondary stresses are only the bending stresses

resulting from truss member continuity at the nodes of a truss with concentric connections.

The primary stress obtained from Model 2, σp, and secondary stress obtained from Model 3, σs,

are summarized in Table 10. Based on this study, several important observations can be made.

Table 8 Critical bending moments of CHS lattice girder for different joint models

Member
Critical bending moment (kN-cm)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Lower 
chord

1 4.435 - 7.791 6.882 3.572 8.674
2 4.567 - 6.264 6.782 4.071 8.002
3 3.259 - 3.397 4.721 3.250 4.392

Upper 
chord

8 3.623 - 4.297 5.205 3.435 5.593
9 5.872 - 9.198 9.434 5.046 11.319

Brace

10 1.938 - 2.685 3.249 1.036 4.630
11 1.645 - 4.084 2.871 1.149 4.172
12 1.729 - 3.657 2.615 1.030 4.336

Table 9 Overall deflection of CHS lattice girder for different joint models

Mid-span deflection (mm)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

−0.066 −0.067 −0.079 −0.096 −0.064 −0.096
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— members closer to supports have larger secondary stresses.

— the ratio of secondary stresses to primary ones is significantly affected by the distribution of

axial forces. Whether for chords or for braces having larger axial forces, their secondary-to-primary

stress ratios are smaller.

— according to EN1993-1-8 (2005), if the length-to-diameter ratios of the members are no less

than 6, secondary moments caused by the rotational stiffness of the joints may be neglected. But for

this lattice girder, secondary stresses of many members exceed 20% of the primary ones because of

axial rigidity of the joints. As a result, the secondary bending moments must be considered in

design.

6. Conclusions

An extensive study has been carried out to investigate the rigidity of CHS T, Y and K joints

subjected to axial and in-plane bending loads, tubular joints classification, and effect of tubular joint

rigidities on the overall response of lattice girders. Based upon the theoretical or numerical results

and validation against test results, the following conclusions have been reached:

(1) The brace-to-chord diameter ratio β, and the chord diameter-to-thickness ratio 2γ, have

significant effect on the axial and bending rigidity of unstiffened tubular joints, while brace-to-chord

thickness ratio τ has marginal influence on them. 

(2) Parametric formulae derived from this study can give good predictions for the rigidities of

CHS joints. 

(3) A classification for tubular joints in Vierendeel lattice girders is proposed in terms of the

boundary between rigid and semirigid connections. In this classification, the deformation behavior

of lattice girders has been taken into account. This new classification is also applicable to the

connections in tubular frame structures.

(4) The numerical example of a Warren lattice girder with different joint models shows some

important implications in the practical design of CHS lattice girders:

— the brace and chord member axial forces can be determined with sufficient accuracy on the

assumption that the members are pin-connected.

Table 10 Primary and secondary stress of CHS lattice girder

Member
Length-to-

diameter ratio
σp

(MPa)
σs

(MPa)
σs/σp

(%)

Lower
 chord

1 13.3 0.106 0.104 97.4
2 13.3 0.266 0.083 31.3
3 13.3 0.319 0.045 14.2

Upper 
chord

8 13.3 0.292 0.057 19.6
9 13.3 0.186 0.122 65.8

Brace

10 19.0 0.455 0.109 23.9
11 19.0 0.341 0.165 48.5
12 19.0 0.341 0.148 43.4
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— tubular joint rigidity, particularly axial rigidity will have a significant influence on the bending

moments and overall deflections of a steel tubular lattice girder.

— if the joint axial rigidity is less than the axial stiffness of brace within the chord wall, the truss

deflection may be underestimated by pin-jointed analysis. 
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