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A hybrid 8-node hexahedral element for static 
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Kutlu Darilmaz†

Department of Civil Engineering, Istanbul Technical University 34469, Maslak, Istanbul, Turkey

(Received April 27, 2005, Accepted September 5, 2005)

Abstract. An 8 node assumed stress hexahedral element with rotational degrees of freedom is proposed
for static and free vibration analyses. The element formulation is based directly on an 8-node element.
This direct formulation requires fewer computations than a similar element that is derived from an internal
20-node element in which the midside degrees of freedom are eliminated by expressing them in terms of
displacements and rotations at corner nodes. The formulation is based on Hellinger-Reissner variational
principle. Numerical examples are presented to show the validity and efficiency of the present element for
static and free vibration analysis. 

Key words: solid element; 8-node hexahedral element; hybrid finite element; static analysis; free
vibration.

1. Introduction

The 8-node hexahedral element is widely used in the analysis of 3D elasticity problems for its

outstanding merits, such as simplicity, easy application and high accuracy. This element can be

easily found in most of element libraries of structural analysis programs and the modeling of

complicated 3D structures by this element is relatively easier than other solid elements. Therefore, a

great deal of attention has been paid to develop an efficient hexahedral element. Continous research

efforts have been devoted in the recent years to the development of the more efficient and accurate

hexahedral elements. Chandra and Prathap (1989) presented an 8-noded solid element by using field

consistent formulation; Chen and Cheung (1992) presented two elements with independent variables

of strain, stress and displacement and with a weaker constraint condition of interelement continuity;

Sze and Ghali (1993) proposed a robust two-field hexahedral element capable of handling plate/

shell, beam and nearly incompressible material analyses; Yeo and Lee (1997) presented a new stress

assumption for hybrid stress elements and adapted to the eight-node hybrid stress brick element;

Rajendran and Prathap (1999) proposed a field consistent eight-node hexahedron element and

investigated its performance in free vibration analysis; Sze and Yao (2000) proposed an eight-node

solid-shell element based on the assumed natural strain method, Cao et al. (2002) presented a

penalty-equilibrating 3D-mixed element based on the Hu-Washizu variational principle; Chen and

Wu (2004) proposed a mixed 8-node hexahedral element based on the Hu-Washizu principle and
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the field extrapolation technique.

One of the methods to improve the element performance is developing the element with rotational

degrees of freedom. This method avoids the use of higher order elements which have mid-edge

nodes and provides an easy coupling with other type of elements such as beams and shells which

have rotational degree of freedom. Various solid elements have been developed with rotational

degrees of freedom. Yunus et al. (1991) introduced an 8-node solid hexahedron element having

corner rotations which are introduced by transformation of the midside translational degree of

freedom of a 20-node hexahedron element; Ibrahimbegovic and Wilson (1991) presented thick shell

and solid elements which are derived from variational principles employing independent rotation

fields; Choi and Chung (1996) proposed an 8-node solid element having corner rotations which are

introduced by transforming the hierarchical mid-edge displacements with parabolic shape along an

edge; Sze et al. (1996) proposed two solid elements equipped with Allman’s rotation and Choi et al.

(2001) presented a three-dimensional 13-node hexahedral element which is established by adding

five nodes to one of the six faces of basic 8-node hexahedral element. 

Since the pioneering work of Pian (1964) for hybrid stress elements, great efforts have been devoted

to develop high-performance stress assumptions. The main issues have been coordinate invariance,

satisfaction of equilibrium conditions and sensitivity to mesh distortion. In the early stage of

development, hybrid stress elements are based on the principle of minimum complementary energy

and assumed stresses need to be defined in a Cartesian coordinate system for pointwise satisfaction of

the equilibrium conditions. Although this approach is rational, the performance of the resulting

assumed stress elements are affected very much by mesh distortion and it is not easy to satisfy

coordinate invariance and equilibrium conditions simultaneously. To overcome these weaknesses, Pian

and Sumihara (1984) proposed a new approach for hybrid stress elements that is based on the

Hellinger-Reissner principle and defined the assumed stresses in the natural coordinate system. 

The present paper develops an 8-node assumed stress hybrid hexahedral element including

translations and rotations as nodal d.o.f. The formulation is based directly on 8-node element from

the beginning in contrast to elements whose formulations began with an internal 20-node element.

Formulating the element in this manner bypasses the formation of the stiffness matrix for an 20-

node element and the subsequent transformation of this stiffness matrix to that corresponding to the

stiffness matrix of an 8-node element. This method is advantageous in that the element formulation

is more direct and savings in computations are accrued. Results are presented for static and free

vibration analysis to show the validity and efficiency of the present element.

2. Element stiffness formulation

The assumed-stress hybrid method is based on the independent prescriptions of stresses within the

element and displacements on the element boundary. The element stiffness matrix is obtained using

Hellinger-Reissner variational principle. The Hellinger-Reissner functional of linear elasticity allows

displacements and stresses to be varied separately. This establishes the master fields. Two slave

strain fields appear, one coming from displacements and one from stresses.

The Hellinger-Reissner functional can be written as

 (1)ΠRH σ{ }T
D[ ] u{ } Vd

V

∫
1

2
--- σ{ }T

S[ ] σ{ } Vd

V

∫–=
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where {σ} is the vector of assumed stresses, [S] is the material compliance matrix relating strains,

{ε}, to stress ({ε} = [S]{σ}), [D] is the differential operator matrix corresponding to the linear

strain-displacement relations ({ε} = [D]{u}) and V is the volume of structure. In Eq. (1), the load

potential is omitted as it is not required for formulating the element stiffness matrix.

The assumed stress field is described in the interior of the element as

{σ} = [P]{β}  (2)

and a compatible displacement field is described by

{u} = [N]{q}  (3)

where [P] and [N] are matrices of stress and displacement interpolation functions, respectively, and

{β} and {q} are the unknown stress and nodal displacement parameters, respectively. Intra-element

assumed stresses and compatible displacements are independently interpolated. Since stresses are

independent from element to element, the stress parameters are eliminated at the element level and a

conventional stiffness matrix results. This leaves only the nodal displacement parameters to be

assembled into the global system of equations.

Substituting the stress and displacement approximations Eq. (2), Eq. (3) in the functional Eq.(1)

  (4)

where

 (5)

 (6)

Now imposing stationary conditions on the functional with respect to the stress parameters, {β}

gives

 (7)

Substitution of {β} in Eq. (4), the functional reduces to 

 (8)

where

 (9)

is recognized as a stiffness matrix.

The solution of the system yields the unknown nodal displacements {q}. After {q} is determined,

element stresses or internal forces can be recovered by the use of Eq. (7) and Eq. (2). Thus

 (10)

ΠRH β[ ]T G[ ] q[ ] 1

2
--- β[ ]T H[ ] β[ ]–=

H[ ] P[ ]T S[ ] P[ ] Vd
V
∫=

G[ ] P[ ]T D[ ] N[ ]( ) Vd∫=

β[ ] H[ ] 1–
G[ ] q[ ]=

ΠRH
1

2
--- q[ ]T G[ ]T H[ ] 1–

G[ ] q[ ] 1

2
--- q[ ]T K[ ] q[ ]= =

K[ ] G[ ]T H[ ] 1–
G[ ]=

σ{ } P[ ] H[ ] 1–
G[ ] q{ }=
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The displacement field of the element is defined by treating the edges as beam elements with

shear deformation. Formulation of rotational d.o.f for the present element is based on the procedure

given by Yunus et al. (1991) for their displacement based hexahedron and tetrahedron elements. For

the typical edge i-j shown in Fig. 1 the displacements can be expressed as

 

(11)

 

where (xi yi zi) and (xj yj zj) are the coordinates of joints i and j respectively with respect to the

reference local element xyz coordinate system. Eq. (11), when extended to all sides of the element,

indicates that 24 rotational d.o.f. in addition to the usual 24 displacement d.o.f. are required to

express the displacements as quadratic functions. As opposed to conventional 8-node solid elements

which have 24 degrees of freedom, elements with rotational degrees of freedom have 48 degrees of

freedom.

The biggest difficulty in deriving hybrid finite elements seems to be the lack of a rational

methodology for deriving stress terms, Feng et al. (1997). It is recognized that the number of stress

modes m in the assumed stress field should satisfy

 (12)

with n the total number of nodal displacements, r the number of rigid body modes and p the

number of zero-energy modes in an element. If Eq. (12) is not satisfied, the use of too few

coefficients in {β}, the rank of the element stiffness matrix will be less than the total degrees of

deformation freedom and the numerical solution of the finite element model will not be stable and

produce an element with one or more mechanisms. 

Increasing the number of β ’s by adding stress modes of higher-order term, each extra term will
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Fig. 1 HBHEX8R element
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add more stiffness and stiffen the element, Pian and Chen (1983), Punch and Atluri (1984).

In determining the stress field, each of the stress components was represented by seven

independent parameters. A complete linear stress field was first chosen for each stress component

and for the quadratic terms, the higher order terms containing the coordinate direction in which the

stress component acts were suppressed. This type of selection was found to yield better results from

numerical experiments, Yunus et al. (1989). For the element under consideration n = 48, the number

of rigid-body modes = 6, the number of zero-energy rotation modes = 6. Thus, the number of

deformation modes = 48 − 6 − 6 = 36. To suppress the deformation modes, the minimum number of

stress modes is 36. From numerical experimentations the author achieved that the following 42

parameter selection of stress field is somewhat more accurate and less sensitive to geometric

distortion than fewer parameter selections.

Different type of stress selections can be found in Chen and Cheung (1992), Sze et al. (1996), Sze

and Pan (2000).

The assumed stress field in the natural coordinates is given as

 (13)

Symbolically

 (14)

The stress field assumed in natural space is transformed to the global system using a natural to

global tensor transformation matrix

 (15)

where [T ] is the transformation matrix at the element origin and can be expressed as

 (16)
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 (17)

Jij terms are the components of the Jacobian matrix evaluated at the element origin.

The element stiffness matrix with rotational degrees of freedom exhibits equal-rotation

mechanisms. These mechanisms were suppressed by artificially adding a small energy penalty to the

stiffness matrix to make the stiffness matrix non-singular by generalizing the two dimensional

stabilization schemes of MacNeal and Harder (1988). This method was also used by Yunus et al.

(1991) for their displacement based hexahedron and tetrahedron elements.

Consider any face of the element and assume that the face lies in a local  plane, Fig. 2. A

relative rotation  is defined to be the difference between the average of the out of plane nodal

rotation  and the average rotation  determined directly from the element shape functions as

 (18)

where ,  are the numbers of nodes for the face and out of plane rotation at any node i,

respectively.

 is the rotation at the element center and can be defined as

 (19)

In terms of face system nodal degrees of freedom 

 (20)

where  are face system nodal unknowns and relative rotation in terms of face system

unknowns, respectively.

The energy penalty Λ is

 (21)

Ji j[ ]
∂x/∂ξ   ∂y/∂ξ   ∂z/∂ξ

∂x/∂η  ∂y/∂η  ∂z/∂η

∂x/∂ζ  ∂y/∂ζ  ∂z/∂ζ
ξ η ζ 0= = =

=

x y–

θ r

θ θ o

θ r
1

n
--- θ i θ o–

i 1=

n

∑=

n θ i

θ o

θ o
1

2
---

∂ v

∂ x
-------

∂ u

∂ y
-------–⎝ ⎠

⎛ ⎞
=

u i v i θ i, ,

θ i Φ[ ] q{ }=

q{ } Φ{ },

Λ γVG q[ ] Φ{ } Φ[ ] q{ }=

Fig. 2 Equal rotation and zero translation mode
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Here γ is a dimensionless constant (γ = 10−6 is recommended), V is the element volume and G is the

shear modulus.

The vector of local face system unknowns  is related to global element degrees of freedom

by

 (22)

where li, mi and ni are direction cosines of the local face system.

Symbolically Eq. (22) is written as

 (23)

The relationship for all face unknowns  with the related global unknowns {q} can be written as

 (24)

Eq. (21) and Eq. (24) can be combined 

 (25)

where 

 (26)

The penalty stiffness [Kr] is added to the existing element stiffness matrix [K] and the resulting

stiffnes matrix is free from spurious equal rotation and zero translational modes. 

3. Element mass matrix

The problem of determination of the natural frequencies of vibration reduces to the solution of the

standard eigenvalue problem , where ω is the natural angular frequency of the

system. Making use of the conventional assemblage technique of the finite element method with the

necessary boundary conditions, the system matrix [K] and the mass matrix [M] for the entire

structure can be obtained.
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Element mass matrix is derived from the kinetic energy expression

 (27)

where  denotes the velocity components and [R] is the inertia matrix.

The nodal and generalized velocity vectors are related with the help of shape functions

 (28)

Substituting the velocity vectors in the kinetic energy, Eq. (18) yields the mass matrix of an

element.

 (29)

  (30)

where [m] is the element consistent mass matrix and is given by

 (31)

4. Numerical examples

Some standard numerical examples have been used for assessing the accuracy of the HBHEX8R

element. The results obtained are compared with theoretical and some other element solutions that

are available in open literature.

4.1 Example 1: Absence of spurious modes: examination of the stiffness matrix rank

The eigenvalues of the stiffness matrix [K] for one element are computed for various shapes of

the element. Six zero eigenvalues corresponding to the six rigid body motions of a solid are always

obtained, showing thus a proper rank for the matrix [K] and the absence of spurious modes in

consequence. 

4.2 Example 2: Patch test

The patch test proposed by MacNeal and Harder (1985) is used as a basic verification of the

present element. The mesh configuration shown in Fig. 3 is used for constant stress states including

σx, σy, σz, τxy, τyz, and τxz. The element passed the patch test.

Ek
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2
--- q·{ }T

R[ ] q·{ } Ad
A
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q·{ }

q·{ } N[ ] q· i{ }
i 1=
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2
--- q· i{ }T

N[ ]T R[ ] N[ ] q· i{ } Ad
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∫=

Ek
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2
--- q· i{ }T

m[ ] q· i{ } Ad
A
∫=

m[ ] N[ ]T R[ ] N[ ] Ad
A
∫=
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4.3 Example 3: Cantilever beam

To evaluate the performance of the proposed element, a cantilever beam under a pure bending is

investigated under two different meshes.

The vertical displacement and the rotation about y-axis at point A are presented respectively in

Tables 1 and 2 with the theoretical solution for comparison (Timoshenko and Goodier 1951). 

Stresses σx at point B are also listed in Table 3. It is also shown that the nonconforming elements

and elements with rotational d.o.f give much improved results over the conventional conforming

variable node element (C-V2).

Fig. 3 Mesh for constant-stress test

Fig. 4 Geometry, boundary conditions and mesh configuration of cantilever beam
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Results showed that the behaviour of the present element is satisfactory and results are in a good

agreement with other solutions. When the distorted meshes are used the accuracy of stress solution

obtained by HBHEX8R is superior to the accuracies obtained by other elements.

4.4 Example 4: Curved beam

A curved beam under in-plane and out of plane unit load is used for comparison. The dimensions

and load are shown in Fig. 5, in which six elements are employed. The material constants are E =

1.0 × 107 and ν = 0.3 and the thickness of the beam is t = 0.1. In Table 4, the tip deflections

obtained by other researchers and theoretical solution are used for comparison. 

***Conforming element without rotational d.o.f

***Non-Conforming element without rotational d.o.f

***Elements with rotational d.o.f

Table 1 Vertical displacement of cantilever beam at point A

Mesh 1 Mesh 2

C-V2 (Choi and Lee 1993) 66.67 44.38

NC-V1 (Choi and Lee 1993) 100.00 87.45

NCH-3 (Choi and Chung 1996) 100.00 97.33

MR-H8 (Choi et al. 2001) 93.75 81.09

HBHEX8R (This study) 96.12 83.47

Theory 100 100

Table 2 Rotation of cantilever beam at point A

Mesh 1 Mesh 2

MR-H8 (Choi et al. 2001) −18.75 −16.77

NCH-3 (Choi and Chung 1996) −20.00 −18.62

HBHEX8R (This study) −18.59 −16.32

Theory −20 −20

Table 3 σ
x Stresses of cantilever beam at point B

Mesh 1 Mesh 2

C-V2 (Choi and Lee 1993)* −2200 −1736

NC-V1 (Choi and Lee 1993)** −3000 −2262

NCH-3 (Choi and Chung 1996)** −3000 −2270

MR-H8 (Choi et al. 2001)*** −3000 −2405

HBHEX8R (This study)*** −3000 −2613

Theoretical −3000 −3000
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The theoretical value is extracted from Mac-Neal and Harder (1985). From this table, it can be

found that the present element can predict better results compared with other elements.

4.5 Example 5: Simply supported square plate 

This problem is depicted in Fig. 6. The plate is subjected to an uniform distributed loading.

Owing to symmetry, a quarter of the plate is solved. Central deflections are normalized with given

series solution cited in Ibrahimbegovic and Wilson (1991), see Table 5.

Results showed that the behaviour of the present element is satisfactory and converges to the

reference value.

Fig. 5 Curved beam

Table 4 Tip deflections of the curved beam

In plane Out of plane

Yunus et al. (1991) 0.08708 0.4470

Sze and Ghali (1993) 0.07660 0.4249

Sze et al. (1996) 0.08707 0.4470

Sze and Lo (1999) 0.08933 0.4773

Sze and Pan (2000) 0.01782 0.3179

Cao et al. (2002) 0.08550 ---

Chen and Wu (2004) 0.08848 0.4731

HBHEX8R (This study) 0.08752 0.4803

Theoretical 0.08734 0.5022
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4.6 Example 6: Twisted beam

Fig. 7 depicts the 90o twisted beam. As all the elements warp, this problem constitutes a good test

for membrane locking.

The end deflections are tabulated in Table 6 for two different mesh configurations.

The theoretical value is extracted from Mac-Neal and Harder (1985). Results showed that the

behaviour of the present element is satisfactory and converges to the reference value. 

To check the deterioration in element accuracy for different h/L values, normalized displacement

parameter (wEh3/pL2) is obtained and given in Table 7. 

The behaviour of the element, in case of small h/L values, deviates but is still in acceptable limits.

Fig. 6 A simply supported square plate with uniform loading

Table 5 Normalized central deflections for simply supported square plate

h = 1 h = 0.1

Element 2 × 2 mesh 4 × 4 mesh 2 × 2 mesh 4 × 4 mesh

Ibrahimbegovic and Wilson (1991) 0.959 0.986 0.583 0.806

Yunus et al. (1991) 1.033 1.058 0.981 1.005

Sze et al. (1996) 1.005 0.986 0.793 0.999

HBHEX8R (This study) 1.027 1.012 0.983 1.003

Fig. 7 Twisted beam
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4.7 Example 7: Hemispherical shell

A hemispherical shell with a 18o cut out is loaded by alternating point loads along x- and y-axis.

Owing to symmetry, a quarter of the shell is modelled as shown in Fig. 8.

The computed deflections at the point of and the direction of loading are given in Table 8.

The reference value is extracted from Mac-Neal and Harder (1985). Results showed that the

behaviour of the present element is satisfactory, converges to the reference value and is generally

superior to the accuracies obtained by other elements.

Table 6 End deflections of the twisted beam

In plane Out of plane

1 × 6 2 × 12 1 × 6 2 × 12

Pian and Tong (1986) --- 0.005429 --- 0.001740

Yunus et al. (1991) --- 0.005429 --- 0.001752

Sze et al. (1996) --- 0.005429 --- 0.001752

Sze and Lo (1999) 0.005436 --- 0.001753 ---

Sze and Yao (2000) 0.005413 0.005429 0.001679 0.001736

HBHEX8R (This study) 0.005433 0.005427 0.001702 0.001753

Theoretical 0.005424 0.001754

Table 7 Normalized displacement parameter (wmaxEh3/pL4) at the centre of uniformly loaded
simply supported square plate

h/L 0.0001 0.005 0.015 0.03

In plane 0.9670 0.9745 0.9808 1.0028

Out of plane 1.0753 1.0739 1.0482 0.9579

Fig. 8 Hemispherical shell
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4.8 Example 8: Natural frequencies of a cantilever beam

The free vibration of a 10 × 0.1 × 0.1 cantilever beam is considered. The cantilever beam has been

modelled with ten elements along the length and one across the cross section. All the degrees of

freedom at the fixed end are restrained. The geometric and material characteristics are given in Fig. 9.

The first few flexural, axial and torsional frequencies are listed in Table 9.

The theoretical values shown in Table 9 have been computed using classical formulae available in

literature (e.g., Timoshenko et al. 1974) which do not take into account the kinetic energy due to

lateral motion induced by ν, and hence are meant for reference purposes only. It is seen that the

predicted and computed values are in close agreement.

Table 8 Deflection for hemispherical shell problem

Mesh

4 × 4 8 × 8 12 × 12 16 × 16

Pian and Tong (1984) 0.0038 0.0697 0.0899 ---

Sze and Ghali (1993) 0.0987 0.0946 0.0938 ---

Ooi et al. (2004) 0.0014 0.0575 --- 0.0886

HBHEX8R (This study) 0.0991 0.0948 0.0943 0.0939

Reference 0.0940

Table 9 Natural frequencies (Hz) of cantilever beam

Theory
Rajendran and Prathap 

(1999)
ANSYS

SOLID45
HBHEX8R
(This study)

Flexural

0.835 0.839 0.841 0.838

5.231 5.383 5.397 5.257

14.64 15.79 15.85 14.96

28.66 33.36 33.51 30.76

Axial
129.2 130.3 130.4 130.09

387.7 395.0 395.17 394.78

Torsional
80.14 80.19 80.22 80.18

240.4 242.6 242.7 242.8

Fig. 9 Cantilever beam
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4.9 Example 9: Natural frequencies of a clamped square plate

The problem considered is a square plate with clamped edges. The geometric and material

characteristics are given in Fig. 10. The plate is modelled with 8 × 8 meshes with one element

Table 10 Natural frequency coefficients for fully clamped square plate

Mode
Leissa
(1969)

Rajendran and 
Prathap (1999)

Sze and Yao
(2000)

Dar lmaz
(2005)

HBHEX8R
(This study)

1 5.999 6.187 6.113 5.975 6.093

2,3 8.567 --- 9.037 8.525 8.971

4 10.40 --- 10.96 10.32 10.57

5,6 11.50 --- 12.95 11.44 12.11

i

Fig. 10 Square plate with clamped edges

Fig. 11 First six modes of the square plate clamped on four edges
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through the depth.

Table 10 lists the predicted natural frequency coefficients, λ, defined by  and the

first six mode shapes of the plate are depicted in Fig. 11.

Results showed that the behaviour of the present element is satisfactory and results are in a good

agreement with other solutions.

4.10 Example 10: Natural frequencies of a circular plate 

A circular plate with a simply supported (w = 0 at edges) boundary condition is considered. The

radius is chosen as R = 5 m and the material properties are Elasticity modulus E = 10 × 106 kN/m2,

Poisson’s ratio ν = 0.3, ρ = 2500 kg/m3. This problem is interesting owing to the arbitrarily

distorted mesh. 

Nondimensionalized frequencies, , where r is the radius, are computed for such a

circular plate. In Table 11, the first six nondimensionalized frequencies are shown and compared

with other solutions. Obviously, good agreement has been obtained for the thin cases.

The first six mode shapes of the circular plate are depicted in Fig. 13.

λ
2

2πa
2 ρh

D
------=

ωr
2

ρh/D

Fig. 12 Mesh configuration of the circular plate 

Table 11 Nondimensionalized frequencies  for a simply supported circular plate

Mode number
HBHEX8R
(This study)

HQP4 
Dar lmaz (2005)

Thin plate solution
Leissa and Narita (1980)

1 5.061 4.799 4.9352

2 14.352 12.898 13.8982

3 14.352 12.898 13.8982

4 26.784 22.304 25.6133

5 26.813 22.352 25.6133

6 31.326 25.664 29.72

ω r
2

ρh/D

i
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4.11 Example 11: Natural frequencies of a folded plate structure

The folded plate structure investigated in this example is illustrated in Fig. 14. The dimensions of

the structure are based on units of L = 10 m, the width of 10 m and thickness 0.5 m. The material

properties used are E = 2.1 × 106, ν = 0.3 and ρ = 2500 kg/m3.

The first six circular frequencies of the system are determined and given in Table 12.

Table 12 Frequencies ( f ) for the folded plate structure

Mode number
ANSYS (SOLID45)

(640 Elements)
HBHEX8R

(160 Elements)

1 0.834 0.833

2 1.796 1.790

3 1.849 1.831

4 3.551 3.529

5 3.677 3.648

6 5.247 5.213

Fig. 14 Fixed supported folded plate structure

Fig. 13 First six modes of the circular plate
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In Fig. 15 the first six mode shapes of the folded plate are depicted.

Results obtained are in a good agreement with ANSYS SOLID45 element solutions. Even with

coarser mesh, the present element solutions have a good accuracy.

5. Conclusions

The main goal of this study is to investigate the performance of the HBHEX8R element in static

and free vibration analysis. A number of numerical problems are utilized to assess the performance

of the present element. Numerical comparisons show that the present element yields comparatively

satisfactory and accurate results. The behaviour in case of element distortion deviates but is still in

general qualitatively comparable. The element is currently used in linear analysis. Further research

is underway to investigate the validity of the element in the nonlinear environment.
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Notation

a : length of the plate edge
h : thickness
E : modulus of elasticity
f : frequency
D : flexural rigidity of the plate
V : volume of an element
γ : dimensionless constant
λ : frequency parameter
ν : Poisson ratio
ρ : mass per unit volume
ω : angular frequency

: in plane translations in the face coordinate system
: face system coordinate 

[D] : differential operator matrix
[G] : nodal forces corresponding to assumed stress field
[N] : shape functions
[P] : interpolation matrix for stress
[R] : inertia matrix
[S] : material compliance matrix 
[T] : transformation matrix

: displacement and velocity components 
: face system nodal unknowns

{u} : displacements
{β} : stress parameters

: stress
{ε} : strain
[Φ] : relative rotation in terms of face system unknowns

u v,
x y,

q{ } q·{ },
q{ }

σ{ } σ̃{ },




