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Abstract. Finite elements based on isoparametric formulation are known to suffer spurious stiffness
properties and corresponding stress oscillations, even when care is taken to ensure that completeness and
continuity requirements are enforced. This occurs frequently when the physics of the problem requires
multiple strain components to be defined. This kind of error, commonly known as locking, can be
circumvented by using reduced integration techniques to evaluate the element stiffness matrices instead of
the full integration that is mathematically prescribed. However, the reduced integration technique itself can
have a further drawback - rank deficiency, which physically implies that spurious energy modes (e.g.,
hourglass modes) are introduced because of reduced integration. Such instability in an existing stiffness
matrix is generally detected by means of an eigenvalue test. In this paper we show that a knowledge of
the dimension of the solution space spanned by the column vectors of the strain-displacement matrix can
be used to identify the instabilities arising in an element due to reduced/selective integration techniques a
priori, without having to complete the element stiffness matrix formulation and then test for zero
eigenvalues.
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1. Introduction

Reduced integration is a popularly adopted technique of using a lower order integration for

evaluating the element stiffness matrix than is otherwise dictated by considerations of evaluating all

the energy terms exactly. It was first devised to eliminate parasitic shear in plane stress elements

(Doherty et al. 1969) and shear locking in plate bending (Zienkiewicz et al. 1971). Reduced

integration is appealing for several reasons. In addition to reducing computational cost (fewer

integration points are needed per element), it can eliminate locking (shear, membrane, volumetric),

and further, it generally softens the element so that the predicted stress is more accurate. For

example, full integration (quadrature) of the stiffness of a 4-node quadrilateral element requires four

integration points while reduced integration only requires the evaluation of the matrices at one point

- the element centroid. However reduced integration also makes the element too soft in the sense

that spurious mechanisms other than rigid body modes are introduced. These modes or instabilities

which were originally noticed in two dimensions in 1960s, are historically called hourglass or

keystone modes, because of their shape. For other elements the modes are commonly referred to as

zero energy modes. The zero energy mode refers to a nodal displacement vector that is not a

physical rigid body motion but nevertheless produces zero strain energy modes as computational

artefacts. Such spurious modes never arise if the element is integrated exactly. 

2. Rank sufficiency and rank deficiency

Let the unconstrained stiffness matrix Ke of a finite element have the order Nf where Nf is the

number of degrees of freedom per element. Let  be the number of independent rigid body modes

that the element can physically have. Then the expected proper rank of the element stiffness matrix

is given by, 

 Proper rank (Ke) =  (1)

Such a formulation, adhering to the canonical principles, is said to be rank sufficient. Due to various

liberties one may take with the formulation (e.g., use of reduced integration, use of substitute

functions), the actual rank obtained for the element stiffness matrix may be less than this expected

proper rank. The finite element matrix is then said to be rank deficient. Rank deficiency implies the

presence of spurious zero energy modes in addition to the physical rigid body modes. Rank

deficiency can be checked by evaluating

 rank deficiency (Ke) = Proper rank (Ke) – Actual rank (Ke)  (2)

where the Actual rank (Ke) of the element stiffness matrix now varies, e.g., depending upon the

quadrature rule used to evaluate it. When the stiffness matrix is evaluated by full integration, i.e.,

when we use a sufficient number of integration points, it always has the proper rank implying zero

rank deficiency. Although rank-deficient elements may sometimes appear to work, they should not

be used without an appropriate correction. Bathe (2003) has shown with examples that using a

lower order integration for evaluation of element stiffness can introduce large errors. Therefore, to

perform reliably, an element must have the proper rank and a sound FEM program should give a

warning when a zero energy mode is detected. 

Nr

p

Nf Nr

p
–
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Rank deficiency in an existing Ke can be detected by eigen-value analysis (Cook and Plesha 1989,

Bathe 2003). If Ke has proper rank, then the number of zero eigen values is equal to the number of

physically admissible rigid body modes. However, the eigenvalue test can be applied only after

evaluating the stiffness matrix by various quadrature schemes. Belytschko et al. (2000) have discussed

an explicit method to find the rank of the stiffness matrix which is evaluated by numerical quadrature.

The rank-sufficiency of the QUAD4 element has been examined for various quadrature schemes. 

In this paper we use the function space approach (Mukherjee and Prathap 2002) to detect the

presence of zero-energy modes a priori, i.e., even before stiffness matrix evaluation. Examples,

given below in section 4, suggest that this method can serve as a good practice to detect rank

deficiency in the element stiffness matrix, arising due to various quadrature schemes.

3. Rank deficiency from function space approach

From the orthogonality condition following the generalized form of the Hu Washizu theorem, it

has been suggested by (Prathap 1996) that the determination of the approximate solutions of

differential equations of conservative systems using the finite element method is actually tantamount

to generating best-fit solutions to the analytical solution. In terms of linear algebra, these best-fits

can also be looked upon as orthogonal projections upon function subspaces. This view is also

inherent in the seminal work of (Strang and Fix 1966) on the finite element method. Recently, using

the function space of linear algebra, (Mukherjee and Prathap 2001, 2002, 2003) and (Sangeeta et al.

2003) have shown that even at the element level, the finite element strain vector can be viewed as

an orthogonal projection of the analytical strain vector, provided no variational crimes have been

incorporated in the formulation. In (Mukherjee and Prathap 2001, 2002, 2003) it has been shown

that the dimension of the function subspace B for the orthogonal projection of the strain vector at

the element level agreed with the proper rank for a simple one-dimensional bar, Euler beam and

Timoshenko beam elements. The reduced integration technique to eliminate shear locking has been

interpreted as a replacement of the original field inconsistent strain-displacement matrix [B] (and its

subspace) by a corresponding field consistent strain-displacement matrix [B*] (and its subspace)

through removal of the appropriate Legendre polynomials. Though the reduced integration

preserved proper rank and thus did not introduce any artificial mechanism for simple Timoshenko

beam elements, it cannot be generalized that reduced integration preserved proper rank for arbitrary

elements. The present section shows, using the function space approach, how reduced integration in

two-dimensional elements can fail to preserve proper rank by introducing additional artificial

mechanisms, or rigid body motions that do not physically exist. 

The finite element strain vector {ε he} is given by

 

 (3)

where [B] is the strain-displacement matrix and {δ e} is the element nodal displacement vector. This

suggests that the finite element strain is a linear combination of the column vectors of the strain-

displacement [B] matrix (Strang and Fix 1966). In general, for a strain vector involving r

components (i.e., r rows) the B space (arising out of the columns of the [B] matrix of r rows) is a

subspace of the (rxn)-dimensional polynomial space  of ordered r-tuples of polynomials in ξ ,

upto degree n − 1, bounded within the closed domain (−1, 1). The space  is represented by

ε
he{ } B[ ] δ

e{ }=

Pn

r
ξ( )

Pn

r
ξ( )
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(4)

and (5)

Here Rr is the r-dimensional space of real numbers. The column vectors of [B] are not all linearly

independent, showing that there are inherent rigid body motions in the element. The dimension m of

the subspace B is defined as the number of linearly independent vectors spanning B. The dimension

of the B space can also be ascertained through the number of non-zero orthogonal vectors {ui},

(i = 1, 2…, m), spanning B determined by the Gram-Schmidt procedure, applied to the column

vectors of the matrix [B] (Mukherjee and Prathap 2001, 2002). The initial basis vector can be taken

as any of the column vectors of the matrix [B], 

 

(6)

The other (m − 1) non-zero orthogonal basis vectors can be obtained from the general formula for

the (k + 1)th basis vector as

(7)

Here the inner product of two vectors, {a} and {b}, each of r rows, is given by

(8)

For a strain vector of r rows or components, the material stiffness matrix [D] is of size rxr.

The element stiffness matrix [Ke] is obtained as 

(9)

 

When [Ke] is evaluated by full integration no additional mechanisms are invoked. Hence the number

of rigid body motions computationally available (Nr) is the same as those physically permissible

 (Cook and Plesha 1989) which is also equal to the number of linearly independent

vectors in [B]. This implies,

 

rank (Ke) = dim B =  (10)

From Eq. (1) and Eq. (10) it follows that when full integration is used for stiffness 

 Proper rank (Ke) = rank (Ke) = dim B

 ⇒ rank deficiency = 0 (11)

When reduced integration is used to evaluate the stiffness matrix, it may invoke some additional

mechanisms. For such cases,

Pn

r
ξ( ) p{ }: p{ } α i{ }ξ i 1–

i 1=

n

∑= 1– ξ 1≤ ≤   αi{ } R
r∈, ,

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

B Pn

r
ξ( )⊂( )

u1{ } b1{ }=

uk 1+
{ } bk 1+

{ }
uj bk 1+
,〈 〉
uj uj,〈 〉

----------------------- uj{ }
j 1=

k

∑–=

a b,〈 〉 a{ }T
D[ ] b{ } xd

e
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  rank deficiency = Number of spurious mechanisms from reduced integration (12)

It has been shown in (Mukherjee and Prathap 2001, 2002, 2003) that a reduced integration scheme

adopted to eliminate locking situations replaces the original stiffness matrix [Ke] by the modified,

element stiffness matrix . This is equivalent to replacing the original matrix [B] in Eq. (3) by a

lower order matrix , thereby eliminating spurious strain oscillations, i.e.,

 (13)

It follows that,

Reduced integration of [Ke] ⇔ Full integration of  ⇔ Replacing [B] by [B*]

This suggests that the rank deficiency in the stiffness matrix, arising due to reduced integration, can

be detected by finding the dimension of the B* space. Thus,

 Rank  = dim[B*] (14)

From Eq. (10) and Eq. (14) it follows that when

dim [B] = dim[B*] (15)

reduced integration does not lead to rank deficiency. The [B*] matrix is obtained from the [B]

matrix by expressing the highest order term in terms of Legendre polynomials and then dropping

the highest Legendre polynomial. This is explained with an example in section 4. The dimension of

the B* space is then obtained by using the Gram-Schmidt algorithm.

It is thus proposed that the presence of an instability or mechanism that arises in an element due

to the use of a lower order integration can be identified from the knowledge of the dimension of B*

space. A loss in dimension of space B* corresponds to the rank deficiency that equals the number of

spurious mechanisms invoked in the stiffness matrix Eq. (13). If the dimension of the space spanned

by the column vectors of [B] and [B*] is the same, the use of lower order integration does not give

rise to zero energy modes. In other words, such a special situation does not lead to rank deficiency.

The procedure to identify the B* space and to find its dimension can be easily implemented with

any finite element code. As will be shown in the following section this is also useful in identifying

an optimal integration strategy to eliminate locking. 

4. Examples

In this section we examine the rank deficiency of some elements for various quadrature schemes. 

4.1 The two noded Timoshenko beam element has 2 nodes, with 2 dof at each node. The number

of rigid body modes physically admissible is 2 so that proper rank of Ke = 2. A 2-point Gauss

quadrature preserves the rank of the stiffness matrix, but causes locking. A one point Gauss

quadrature eliminates locking and brings in no zero energy mode, which is also evident from the

Nr Nr

p
–=

Ke
*[ ]

B*[ ]

Ke
*[ ] B*[ ]

T
D[ ] B*[ ] Vd

e
∫=

Ke
*[ ]

Ke
*[ ]
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dimension of the B* space. The [B] and [B*] matrices and their corresponding basis vectors are

presented in Appendix A. The basis vectors (A.2) correspond to the [B] matrix (A.1) of the

subspace B while the basis vectors (A.4) correspond to the [B*] matrix (A.3) for the subspace B*. 

4.2 The three noded Timoshenko beam element has 3 nodes with 2 dof at each node. The number

of rigid body modes is 2, so that proper rank of Ke = 4. A 2-point Gauss quadrature preserves the

rank of the stiffness matrix but causes locking. A one point Gauss quadrature eliminates locking

without bringing in any zero energy mode. This is also evident from the dimension of the B* space.

The [B] and [B*] matrices and their corresponding basis vectors are presented in Appendix B. The

basis vectors (A.6) correspond to the [B] matrix defined by (A.5) of the subspace B while the basis

vectors (A.9) correspond to the [B*] matrix (A.8) for the subspace B*. 

4.3 Here we examine the rank sufficiency of the QUAD4 element for various quadrature schemes.

This element has 4 nodes with 2 dof at each node, so that Nf = 8. The number of rigid body modes

physically permissible is three i.e., . Therefore the proper rank of Ke = 5. When a 2 × 2

Gauss quadrature is used to evaluate the stiffness matrix the dimension of B space is 5, which is

equal to the proper rank of Ke. In case of one point Gauss quadrature, the rank of Ke = 3, indicating

that the element has a rank deficiency of 2. The dimension of B*

 space is now 3, which is obtained

by finding the basis vectors of the [B*] matrix. The [B*] matrix is obtained from the [B] matrix by

dropping the higher order polynomial terms. These results have been summarized in Table 3 and are

in agreement with those given in Belytschko et al. (2000). The [B] and [B*] matrices and their

corresponding basis vectors are presented in Appendix C. The basis vectors (A.11) correspond to

the [B] matrix defined by (A.10) of the subspace B while the basis vectors (A.13) correspond to the

[B*] matrix (A.12) for the subspace B*. 

Nr

p
3=

Table 1 Two-noded Timoshenko beam element (Nf = 4, Nr
p
 = 2, Nr = 2, Rank deficiency = 0, dimB = dimB*   = 2)

Element
 type

Integration
 rule

Rank of Ke

(no. of nonzero 
eigen values)

No. of 
Mechanisms

Dimension of 
B or B*

 two noded 
(4 d.o.f)

 Full 2 0 2

 Reduced 2 0 2

Note: Basis vectors of B/B* given in Appendix A

•          •

Table 2 Three-noded Timoshenko beam element (Nf = 6, Nr
p
 = 2, Nr = 2, Rank deficiency = 0, dimB =

dimB*  = 4)

Element
 type

Integration
 rule

Rank of Ke

(no. of nonzero 
eigen values)

No. of 
Mechanisms

Dimension of 
B or B*

 three noded 
(6 d.o.f)

 Full 4 0 4

 Reduced 4  0 4

Note: Basis vectors of B/B*

 given in Appendix B

•     •     •
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4.4 Mindlin plate elements account for bending deformation and for transverse shear deformation,

so that the stiffness matrix [K] can be regarded as being composed of a bending stiffness [Kb] and a

transverse shear stiffness [Ks]. The locking of Mindlin plate elements caused by too many transverse

shear constraints can be avoided by adopting a reduced or selective integration rule to generate [K].

We consider a 4-noded bilinear element which is the simplest element based on Mindlin theory. It

has been established that, a fully integrated bilinear element, even in its rectangular form, would

lock when used to analyze thin plates. Locking was seen to vanish if a 2 × 2 Gauss rule was used to

evaluate [Kb] and a reduced 1-point rule was used to evaluate [Ks]. An analysis of the element, from

the function space approach, reveals a loss in dimension of the B space. This deficiency is due to

the zero energy mechanisms of the bilinear element arising due to reduced integration. As shown in

the Table 4, full integration is sufficient to avoid element mechanisms, but causes locking. A 1-

point integration of the bending and stiffness matrices eliminates locking but has 4 additional

mechanisms. This is also revealed by the loss in dimension of the solution space (from 9 to 4)

spanned by the column vectors of the B-matrix. A selective integration of the bending and stiffness

matrix also eliminates locking but brings in two mechanisms in addition to the usual three rigid

body modes. Thus both reduced and selective quadrature rules fail to eliminate locking without

introducing other deficiencies. An optimal integration strategy as suggested by the field consistency

method (Prathap 1993) is to use a 2 × 2 Gauss rule to evaluate [kb], a 1 × 2 Gauss rule to evaluate

stiffness due to γxz and a 2 × 1 Gauss rule to evaluate stiffness due to γyz. An analysis of this element

by the function space approach reveals no reduction in the dimension of the space spanned by the

column vectors of the B-matrix. This suggests that the field consistency arguments lead to optimal

Table 4 Nf = 12, Nr
p
 = 2, Nr

a
= 4, dimB dimB*

Element 
type

Integration
rule

Rank
 deficiency =

No. of 
mechanisms

Rank of Ke

(no. of 
nonzero 

eigen values)

Dimension 
of B
space

Dimension 
of B*

space

Type [kb] [ks]

 
 Four noded
 (12 d.o.f)

Full 2 × 2 2 × 2 0 9 9 9

Reduced 1 × 1 1 × 1 4 5 9 5

Selective 2 × 2 1 × 1 2 7 9 7

Shear 
Selective

2 × 2 2 × 1
1 × 2

0 9 9 9

Note: No. of basis vectors of B/B* given in Appendix D

≠

• •

• •

Table 3 QUAD4 element (Nf = 8, Nr
p
 = 3, Nr = 4, Rank deficiency = 2, dimB  dimB*)

Element
 type

Integration
 rule

Rank of Ke

(no. of nonzero 
eigen values)

No. of 
Mechanisms

Dimension of 
B or B*

 Four noded (8 d.o.f)

 Full 5 0 5

Reduced 3 2 3

Note: Basis vectors of B/B*

 given in Appendix C

≠

• •

• •
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integration strategies, without introducing any zero energy mechanisms. This element would be the

optimal rectangular bilinear element. This also suggests that knowledge of the dimension of the

solution space spanned by the column vectors of B can not only detect the presence of zero energy

modes, but can be of help in choosing an optimal integration strategy to get a lock free element.

The [B]/[B*] matrices corresponding to different integration rules are given in Appendix D.

5. Conclusions

The dimension of the B space is a good measure to detect rank deficiency in an element stiffness

matrix. This can help in deciding an optimal integration strategy to eliminate locking. Integrating

this test with a finite element program, the use of an element that contains a possible instability can

be avoided and the robustness or usability of finite element analysis can be increased.
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Appendix A

For the simple Timoshenko beam element (Fig. 1a) the element strain vector is given by 

(A.1)ε
he{ } B[ ] δ

e{ } 0  1/L  – 0  1/L

1/L  1 ξ–( )/2  1/L  – 1 ξ+( )/2
δ

e{ }= =
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Here L is the element length and  is the nodal displacement vector. The space B is
evidently a subspace of the polynomial space  (linear in ξ ). Applying the Gram-Schmidt process on the
column vectors of [B], we get the normalized orthogonal basis vectors {ui} for the subspace B (of two dimen-
sions) as 

(A.2)

The function space B* is a subspace of the space  which is actually the space R2. It is obtained from [B],
by dropping the highest Legendre polynomial, i.e., the ξ term. Thus,

 (A.3)

The normalized basis vectors for the subspace B* (again of two dimensions) are given by 

(A.4)

So, in this example, using a lower order integration does not bring in a change in the dimension of the [B]
matrix.

Appendix B

The three noded Timoshenko beam element (Fig. 1b) uses quadratic Lagrangian interpolation functions for
displacement and geometry. The element strain vector is given by 

 

(A.5)

δ
e{ } w1 θ1 w2 θ2, , ,[ ]T=

P2

2

u1{ } 0  1[ ]T= and u2{ } 2/L  ξ[ ]T=

P1

2

B
*[ ] 0  1/L  – 0  1/L

1/L  1/2  1/L  – 1/2
=

u1
*{ } 0  1[ ]T= and u2

*{ } 2/L  0[ ]T=

ε
he{ } B[ ] δ

e{ } 0  2ξ 1–( )/L  0  4– ξ/L  0  2ξ 1+( )/L

2ξ 1–( )/L  – ξ 1 ξ–( )/2  – 4ξ/L  1 ξ
2

–( )  2ξ 1+( )/L  – ξ 1 ξ+( )/2
δ

e{ }= =

Fig. 1 (a) Isoparametric two-noded Timoshenko beam element 

Fig. 1(b) Isoparametric three-noded Timoshenko beam element 
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Here L is the element length and  is the nodal displacement vector. Using the
Gram-Schmidt procedure on the column vectors of the above matrix, the four orthogonal basis vectors span-
ning the four dimensional subspace B  are determined as 

 

(A.6)

where 

The strain displacement matrix [B*] that emerges from using a two-point Gaussian quadrature rule instead of
the necessary three point rule for integration for the stiffness matrix is obtained by first expressing ξ 2 in terms
of the Legendre quadratic polynomial as 

(A.7)

and then dropping the Legendre polynomial . Thus the matrix [B*] is obtained from the [B]
matrix by replacing ξ 2 by (1/3) as follows

 
 (A.8)

The normalized basis vectors for subspace B* (of dimension 4), as obtained by the Gram-Schmidt process are 

(A.9)

So, in this example too, using a lower order integration does not bring in a change in the dimension of the [B]
matrix.

Appendix C 

For the QUAD4 element (Fig. 2) for plane stress/strain the element strain vector is given by 
 

 
  

(A.10)

Here 2a and 2b are the sides of the rectangle and . The space B is evidently a sub-
space of the space of polynomials (linear in ξ and η). Applying the Gram-Schmidt process on the column
vectors of [B], we get the normalized orthogonal basis vectors {ui} for subspace B as 

δ
e{ } w1 θ1 w2 θ2 w3 θ3, , , , ,[ ]T=

B P3

2⊂( )

u1{ }
0

1⎩ ⎭
⎨ ⎬
⎧ ⎫

= , u2{ }
0

ξ⎩ ⎭
⎨ ⎬
⎧ ⎫

= , u3{ }
2ξ 1–( )/L

3ξ
2

1–( )/6⎩ ⎭
⎨ ⎬
⎧ ⎫

and u4

2ξ κ+( )/6

3ξ
2

1–( )/6⎩ ⎭
⎨ ⎬
⎧ ⎫

==

κ
4 e 5+( )

15
------------------=  e

kGAL
2

12EI
----------------=,

ξ
2

3ξ
2

1–( )/3 1/3+ P3 1/3+= =

P3 3ξ
2

1–=

B
*

0  2ξ 1–( )/L  0  4ξ/L  – 0  2ξ 1+( )/L
2ξ 1–( )–

L
---------------------  

ξ 1/3( )–{ }
2

--------------------------  
4ξ

L
------  

2

3
---  

2ξ 1+( )
L

------------------–   
ξ 1/3( )+{ }

2
--------------------------

=

u1
*{ }

1

0⎩ ⎭
⎨ ⎬
⎧ ⎫

= , u2
*{ }

0

1⎩ ⎭
⎨ ⎬
⎧ ⎫

= , u3
*{ }

ξ

0⎩ ⎭
⎨ ⎬
⎧ ⎫

, u4
*{ }

0

ξ⎩ ⎭
⎨ ⎬
⎧ ⎫

==

ε
he{ } εx εy γxy, ,{ }T

B[ ] δ
e{ }= =

ε
he{ } B[ ] δ

e{ }=

η 1–( )
4a

---------------  0  
1 η–( )
4a

---------------  0  
1 η+( )
4a

---------------  0  
1 η+( )
4a

---------------  – 0

0  
ξ 1–( )
4b

--------------  0  
1 ξ+( )
4b

---------------  –   0  
1 ξ+( )
4b

---------------  0  
1 ξ–( )
4b

--------------

ξ 1–( )
4b

--------------  
η 1–( )
4a

---------------  
1 ξ+( )
4b

---------------  –
1 η–( )
4a

---------------  
1 ξ+( )
4b

---------------  
1 η+( )
4a

---------------  
1 ξ–( )
4b

--------------  
1 η+( )
4a

---------------–

δ
e{ }=

δ
e{ } ux  vy  uy vx+{ }T
=
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(A.11)

where 
 

The function space B* is a subspace of the space , which is actually the space R2. It is obtained from [B],
by dropping the highest Legendre polynomials, i.e., the ξ and η terms. Note that this must strictly be the
higher order term. Equivalently, this means that the number of points required for optimal integration is
reduced by one. Thus

 
 

(A.12)

The normalized basis vectors for the subspace B* are given by 

(A.13)
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Fig. 2 Isoparametric 4-noded rectangular element
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where 
 

So, in this example, using a lower order integration reduces the number of nonzero vectors by 2, as is
reflected in the dimension of the [B* ] matrix.

Appendix D

For the Mindlin plate element (Fig. 2) the element strain vector is given by 

(A.14)

Here 2a and 2b are the sides of the rectangle and . When the stiffness
matrix is evaluated with full integration, the number of basis vectors of the [B] matrix is 9. Using a selective
integration strategy (2 × 2 for bending and 1 × 1 for shear) to evaluate the stiffness matrix, is equivalent to
replacing the [B] matrix by the following [B*] matrix in Eq. (9).

(A.15)

 

The subspace B*, spanned by the column vectors of the [B*] matrix, has 7 basis vectors so that this integration
rule reduces the dimension of the B* space and hence is not optimal. A shear selective integration rule corre-
sponds to the following [B*] matrix,
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(A.16)

The corresponding B*

 space is 9-dimensional, which is equal to the dimension of the B space used to evaluate
the stiffness matrix in Eq. (9) by full integration. Thus, a shear selective integration strategy eliminates lock-
ing, without reducing the dimension of the B* space. 
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