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A method for effective beam widths of slabs in flat plate 
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Abstract. Effective beam width models are commonly used to obtain the lateral stiffness of flat plate
structures. In these models, an effective beam width is defined as the width when the flexural stiffness of
the beam element equals the slab stiffness. In this present study, a method to obtain effective beam widths
that considers the effects of connection geometry and slab cracking is analytically proposed. The
rectangularity of the vertical member for the connection geometry and the combined effects of creep and
shrinkage for the slab cracking are considered. The results from the proposed method are compared with
experimental results from a test structure having nine slab-column connections.
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1. Introduction

In effective beam width models, an actual slab is replaced with a beam element, which rotates

uniformly across its transverse width. The beam element has a thickness equal to that of the slab,

and an effective beam width that is defined by matching the flexural stiffness of the beam element

to that of the slab. The two most common techniques for modeling a slab-column system as a frame

are shown in Fig. 1 (Hwang and Moehle 1993, 2000, Grossman 1997).

Many analytical and experimental studies for obtaining the effective beam width have been

performed. Some studies focused on defining the elastic widths of the effective beam according to

connection geometries. Others concerned the stiffness reduction phenomenon due to cracking in the

analysis model. Each study was based on the elastic and non-elastic behavior of the slab. However,

previous studies for obtaining the effective beam width have not been concerned enough with the

effect of vertical member rectangularity in connection geometries and the combined effects of creep
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and shrinkage in stiffness reduction. 

This paper proposes a method for obtaining more accurate values of effective beam widths in

design. To achieve this objective, the following studies were conducted.

1) A parametric study to obtain the elastic widths of the effective beams was performed by using

a finite element technique. This study considers the rectangularity of the vertical member.

2) A study of the reduction in lateral stiffness due to slab cracking was conducted. The effect of

the service gravity loads and the combined effects of creep and shrinkage were considered.

3) A test structure with two bays in each direction and nine columns was tested laterally and

analyzed by using the finite element technique. The results obtained from the proposed elastic

widths and stiffness reduction factors are compared to the analytical and experimental results.

2. Elastic effective beam width

2.1 General description of the elastic width

Many analytical techniques for obtaining elastic effective beam widths (le) have been proposed. A

common approach for these techniques is to cut a typical interior connection under lateral load only

from a continuous floor system and then to bound the connection by lines of inflection and

symmetry as shown in Fig. 2. These lines are assumed to be located along the slab mid-spans

perpendicular and parallel to the loading direction. Actually, the position of the inflection lines will

change if the stiffness of adjacent vertical members located parallel to the loading direction is not

the same. However, this change is generally ignored to simplify a study.

A joint region exists wherever the slab connects to a vertical member. The total flexural stiffness

of the connection increases with the stiffness of the joint region. As shown in Fig. 3, Aalami (1972)

Fig. 1 Effective beam width model
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assumed two bounds on the stiffness of the joint region: one considers the slab within the joint

region to be rigid; the other assigns a joint flexibility equal to that of the surrounding slab. The

behavior of the joint region depends on the relative flexural stiffness between the joint region and

the surrounding slab. In most practical cases, this relative stiffness is high, so most analytical

investigations have idealized the joint region as rigid (Pecknold 1975). Based on this assumption, an

elastic stiffness value for a connection can be obtained.

Although the rigid joint assumption is selected for an elastic stiffness value, the elastic widths of

the effective beam in the two models shown in Fig. 1 should be defined differently according to the

joint modeling techniques. For a simple evaluation between the elastic width of the two models,

Hwang and Moehle (2000) proposed the factor of 1/(1 − c1/l1)
3.

2.2 Parametric study for interior connections

An elastic effective beam width (le) represents the elastic stiffness of a slab connected to a vertical

member. The elastic stiffness of the slabs is affected by connection geometries. To obtain the elastic

widths, slabs with different geometric conditions are modeled by using the finite element technique,

Fig. 2 A slab-vertical member connection

Fig. 3 Two bounds on the stiffness of the joint region
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as shown in Fig. 4. In the finite element model, applied loads transferred from a vertical member to

a slab are represented by using the concentrated moment load (M) applied at the center of the joint

region, which is treated rigidly. Structural analyses are performed by using a general purpose

software named MIDAS-GEN (2003), and then with the results of the analyses, the slab rotations

(θs) at the center of the joint region are acquired. The slab’s flexible stiffness can be calculated by

using M/θs .

The stiffness of the beam elements for rigid and flexible bar models can be obtained by dividing

the moment load (M) by the beam rotations (θbr and θbf), as shown in Fig. 5. The elastic widths for

both models can be calculated by equating the flexural stiffness of the beam element to that of the

slab.

Fig. 4 Finite element model

Fig. 5 Beam element analysis
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Fig. 6 shows the elastic widths of the interior connections with square vertical members. The

range of the geometric parameters was  and . The elastic

widths rapidly increase with an increase in c1/l1. By comparison, the slab aspect ratio has little effect

on the elastic width when l2/l1 is greater than 1. When l2/l1 < 1, the elastic widths decrease with a

decrease of the ratio l2/l1. These results are similar to the findings reported by Pecknold (1975). The

trend of the results for the rigid bar model can be approximated by the function le = 2c1 + 0.3l1,

which slightly overestimates the elastic stiffness of the connections within the range of .

The adjustment factor of  for the flexible bar model matches well with the finite

element solutions.

With respect to the rectangularity of the vertical member, Pecknold (1975) reported that a

variation of the c2/c1 ratio from 1/2 to 2 changed the elastic width less than 2 percent. Allen and

Darvall (1977) studied the influence of c2 for a range of values of c2/l1 from 0.03 to 0.12 and found

its effect to be negligible. Based on these findings, Hwang and Moehle (2000) did not consider the

rectangularity of the vertical member in their study of elastic widths. In the present study, variations

on the elastic width of about 16% for the rigid bar model and 22% for the flexible bar model were

found within the range of c2/c1 from 0.5 to 2.0 (when c1/l1 of the square slab was equal to 0.1). The

considerable discrepancy between the previous and present studies may arise from differences in the

modeling techniques relative to the slab and the joint region.

To study the effect of vertical member rectangularity, the ratio of c2/l is increased in the finite

element model with a square flat slab from 0.04 to 1. Fig. 7 shows the elastic widths for different

values of c2/l in both models. The elastic widths in the rigid bar model approach the slab width as

c2/l increases. This finding shows that a slab acts as an ordinary beam element; thus, the upper

bound of the elastic widths in the rigid bar model should be limited to the slab transverse width.

The function  models the effect of the vertical member

rectangularity on elastic widths within the range of c2/l 0.04~1 and c2/c1 0.5~2. In Fig. 7(b), some

of the values for the elastic width of the flexible bar model exceed the slab transverse width

0.02 c1/l1 0.18≤ ≤ 0.67 l2/l1 1.5≤ ≤

l2/l1 1≤
1/ 1 c1/l1–( )3

le 2c1 0.3l1 0.8 c2 c1–( )+ +=

Fig. 6 Elastic widths for different values of the c1/l1 and l2/l1 ratios for rigid & flexible bar models
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because the stiffening effect due to rigid body behavior of the joint region in the slab is reflected on

the elastic widths of the beam elements in the flexible bar model.

2.3 Implementation in design practice

A flat plate structure includes two distinct substructures, the interior frame and the exterior frame,

as shown in Fig. 8. For the connections in an interior frame, the elastic effective beam widths for a

rigid bar model can be represented as

(1)le 2c1 0.3l1 0.8 c2 c1–( ), le l2≤+ +=

Fig. 7 Elastic widths for different values of the c1/l ratios

Fig. 8 Flat plate structures
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Although Eq. (1) is based on a study of interior connections, it can be applied to edge connections

in an interior frame because of the similarity of the lateral behavior between both connections.

Hwang and Moehle (2000) and Grossman (1997) adopted a similar approach.

For an exterior frame, some adjustment of Eq. (1) is required. As shown in Fig. 8, the dimension

l3 is the distance from the slab edge to the centerline of the vertical member. The slab rotation of

the strip in the dimension l3 is assumed to be equal to the uniform rotation of the effective beam

element. Thus, the elastic widths for the exterior frame can be calculated as the sum of half of the

values obtained from Eq. (1) and l3:

(2)

Eq. (2) would be used where the slab edge is flush with the outside face of the vertical member.

In the case of a slab with an overhang, Eq. (2) can overestimate the actual stiffness of the slab in an

exterior frame but this kind of slab is not considered in the present study.

The values obtained from Eqs. (1) and (2) are applicable to the rigid bar model, where rigid bars

having the length of c1/2 model the joint region at both ends of the beam element. If the rigid bars

are not included in the model, the widths given by Eqs. (1) and (2) should be multiplied by the

factor of .

3. Effective beam width with stiffness reductions (l2' )

3.1 Stiffness reduction phenomenon

A reduction in lateral stiffness due to slab cracking has been reported (Hwang and Moehle 2000,

Pan and Moehle 1992, Moehle and Diebold 1984, Robertson and Durrani 1992, 1991). To reflect

this phenomenon in lateral load analysis, a stiffness reduction factor β (the ratio of the reduced non-

linear stiffness to its elastic value) has often been proposed. Moehle and Diebold (1984) suggested a

factor between 1/2 and 1/3 for elastic effective beam widths. ACI 318-02 (2002) recommended a

factor of 1/4 for a lower bound value to evaluate the effects of cracking on stiffness.

The flexural stiffness of slabs is reduced due to slab cracking caused from not only externally

applied gravity loads but also internal creep and shrinkage effects. The reduced flexural stiffness

directly affects the lateral stiffness of flat plate frames.

Different stiffness reduction phenomena occur during the service life of a concrete slab:

1) Immediate stiffness reduction due to the effect of service gravity loads (βS).

2) Additional stiffness reduction due to the combined effects of creep and shrinkage (βL).

3.2 The effect of service gravity loads (βS)

For slabs under service gravity loads, the stiffness values based on Eq. (3) can be used:

(3)

Eq. (3) accounts for the immediate stiffness reduction due to the gravity load and can be

rearranged to provide an expression for βs:

le c1 0.15l1 0.4 c2 c1–( ) l3+ + += , le l2/2 l3+≤

1/ 1 c1/l1–( )3

Ie
Mcr

Ma

--------⎝ ⎠
⎛ ⎞

3

Ig 1
Mcr

Ma

--------⎝ ⎠
⎛ ⎞

3

– Icr+=
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(4)

However, computations of the Ma, Mcr, Ig, and Icr are not convenient. A simplified method to

calculate βs is preferred.

Using Eq. (4), a parametric study for βs is performed. In this study, the parameters are defined by

the concrete compression strength (fck), the length of the clear span in the direction parallel to the

lateral load (ln), and the super-imposed load (LSUP), which is the sum of the super-imposed dead and

service live loads. The ratio of the design thickness (h) of a slab to its minimum value (hmin) is also

included as a parameter. The value of hmin is based on the minimum specified in ACI 318-02 (2002)

Section 9.5.3.2. The procedure to obtain βs is as follows:

(1) The length of the clear span (ln) from 4 m to 8 m, and the concrete compression strength ( fck)

from 20.6 MN/m2 to 33.3 MN/m2 are chosen.

(2) The minimum thickness of the interior flat plate slab (hmin), fixed at ln/33 in this study, is

calculated. The slabs in flat plate structures are generally designed to be thicker than this

minimum value. Thus, the effects of slab thickness are represented by the ratio of h/hmin,

ranging from 1.0 to 1.2.

(3) Service loads, including the self-weight of the concrete slabs and the super-imposed load, are

applied externally. In service loads, the self-weight (normal weight concrete) is calculated by

using the designed thickness, and the range of the super-imposed load (LSUP) is set from

1.96 kN/m2 to 7.84 kN/m2.

(4) The cracking moment (Mcr) for normal weight concrete and the moments of inertia of the

gross and cracked concrete section (Ig and Icr) are calculated according to ACI 318-02 (2002)

Section 9.5.2.3. The maximum service load moment (Ma) of the interior slabs is obtained by

using the Direct Design Method.

(5) For each unique combination of Ma, Mcr, Icr, and Ig, the corresponding value of βs predicted

by Eq. (4) is calculated.

Fig. 9 shows the results from the parametric study of βs. As shown in Fig. 9(a), ln has a

significant effect on stiffness reduction. With an increase in the ln, the flexural stiffness of the slabs

is very rapidly reduced. This trend is well approximated by the function f (ln) = 4.25/ln.

The effects of LSUP and fck are shown in Figs. 9(b) and (c). The flexural stiffness of a slab

decreases with an increase in LSUP or a decrease in fck. The effects of LSUP and fck are expressed as

f (LSUP) = 0.004/LSUP and f (fck) = fck/27.

Fig. 9(d) displays the variation of βs values on h/hmin. The flexural stiffness is increased with

increasing h/hmin. The effect of h/hmin is approximated by using the function of f (h/hmin) =

(h/(1.1hmin))
3.

By multiplying each function, the values for βs can be calculated:

(5)

In Eq. (5), every quantity concerning length must be expressed in meters, and βs is conceptually

limited to 1.

βS

Ie

Ig
----

Mcr

Ma

--------⎝ ⎠
⎛ ⎞

3

1
Mcr

Ma

--------⎝ ⎠
⎛ ⎞

3

–
Icr

Ig
-----+= =

βs
4.25

ln
----------

0.004

LSUP

-------------×
fck

27
------

h

1.1hmin

-----------------⎝ ⎠
⎛ ⎞ 3

××= , where, hmin

ln

33
------=⎝ ⎠

⎛ ⎞

βs

17fckh
3

LSUPl n
4

-----------------= 1≤
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3.3 The combined effects of creep and shrinkage (βL)

Over time, creep and shrinkage strains increase the deflection and the curvature in a flexural

member, increasing the crack opening. In a two-way slab, the crack opening cannot develop without

an increase in the length of the crack, and this increase results in an increase of concrete cracking

and the reduction in the flexural stiffness of the slab.

For stiffness reduction due to creep and shrinkage effects, Eq. (6) can be used if we assume that

the flexural stiffness of members is inversely proportional to its deflection (ACI 318-02 2002):

(6)

In Eq. (6), the multiplier ξ is the time-dependent factor used to calculate additional long-term

deflection resulting from creep and shrinkage. This multiplier ranges between 0 and 2 depending on

the time period. The ratio ρ' accounts for the effect of compression reinforcement in reducing

additional long-term deflection. However, the bottom reinforcement of the slab near the vertical

δCP SH+

ξ

1 50ρ′+

--------------------- δSUS×=

Fig. 9 Parametric study for the stiffness reduction factor (βs) 
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member may not be compressed under gravity loads. Thus, 50ρ' can be ignored:

(7)

Based on elastic behavior assumption, the sustained load deflections (δSUS) in Eq. (7) can be

expressed as a proportional relation of the immediate deflections (δDL+LL) due to service gravity

loads. Thus, additional long-term deflections of Eq. (7) can be modified as

(8)

A final deflection is computed as the sum of the immediate and additional long-term deflections

:

(9)

By considering the inversely proportional relationship between the deflection and flexural stiffness

of a member, the final flexural stiffness at the stage of computing the final deflection can be

expressed by

(10)

From Eq. (10), the combined effects of creep and shrinkage for stiffness reduction are extracted as

(11)

In Eq. (10), EIDL+LL is the stiffness reduced by the effect of service gravity loads and thus is equal

to the elastic stiffness (EIg) multiplied by βs. Therefore, Eq. (10) can be rewritten by

(12)

The stiffness reduction due to service gravity loads and the combined effects of creep and

shrinkage can be defined by

(13)

The lower limit of 1/4 in Eq. (13) is consistent with ACI 318-02 (2002) and is based on the

assumption of a fully cracked slab with minimum reinforcement at all locations.

4. Evaluation of the proposed effective beam width model

A flat plate structure with nine slab-column connections was tested under lateral loads and

analyzed by using the finite element technique. Based on the lateral stiffness of the structure

obtained from the test and FE analysis, the effective beam width model proposed in this study was

evaluated.

δCP SH+
ξδSUS=

δCP SH+
ξ

LSUS

DL LL+

----------------------δDL LL+
=

δDL LL+
δCP SH+

+( )

δFL
ξLSUS DL LL+ +

DL LL+

-------------------------------------------δDL LL+
=

EIFL
DL LL+

ξLSUS DL LL+ +

-------------------------------------------EIDL LL+
=

βL
DL LL+

ξLSUS DL LL+ +

-------------------------------------------=

EIFL βLβSEIg=

βL βS× DL LL+

ξLSUS DL LL+ +

-------------------------------------------
17fckh

3

LSUPl n
4

-----------------× 1

4
---≥=
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4.1 Lateral load test of the structure with nine slab-column connections

The prototype is a flat plate structure typical of a multi-story apartment building. The test

structure was constructed at half scale and consisted of four 2.75 m × 1.65 m rectangular panels and

nine 250 mm square columns protruding 0.7 m above and below the slab as shown in Fig. 10. The

slab thickness was 90 mm.

The prototype slab was designed in accordance with ACI 318-02 (2002). The design service

gravity load consisted of 4.21 kN/m2 self-weight of the slab and 1.96 kN/m2 super-imposed dead

load. The design service live load was 2.94 kN/m2. Yield strength of 392 MN/m2 for the flexural

reinforcement and a compressive strength of 26.5 MN/m2 for the concrete slab were assumed. The

actual properties of the material at the time of testing are tabulated in Table 1. The equivalent frame

method was used to calculate gravity load moments. The total unbalanced moment resulting from a

lateral load consistent with a moderate earthquake was obtained by using the effective beam width

model proposed in this paper. In the test structure, the slab was reinforced with 10 mm diameter

(cross-sectional area of 71 mm2) bars; the column was reinforced with eight 16 mm diameter (cross-

sectional area of 199 mm2) longitudinal bars and 10 mm diameter ties. Fig. 11 shows the layout of

the top and bottom slab reinforcement.

The elevation and photo views of the overall test set-up are shown in Fig. 12. The lower end of

the column representing the mid-height of the story was designed to act as a pinned support. The

top of the column was connected to a loading frame, which distributed equal lateral displacement to

the columns, by means of the pinned-pinned connector with a load cell. The test was performed at

Fig. 10 Half scale test structure 

Table 1 Material properties

Concrete properties (MN/m2) Reinforcing bars properties (MN/m2)

Member
Compressive 

strength
fc'

Modulus of 
elasticity

Ec

Bar
size

Yield strength
fy

Ultimate
strength

fu

Modulus of 
elasticity

Es

Slab
27.2 22295

10M 383 502 203154

Column 16M 432 570 212954
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Fig. 11 Layout of the slab reinforcement

Fig. 12 Test setup 
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around three months after casting. The test structure was vertically loaded with weights on top of

the concrete slab to simulate service gravity loads. The total applied vertical load was approximately

7 kN/m2, which included the service load, the super-imposed dead load, and half the self-weight of

the prototype slab to compensate for the reduced self-weight of the test slab. Finally, the lateral

displacement load was applied in the long direction of the test structure.

The lateral load-deflection relation obtained from the experiment is shown in Fig. 13, and the

moment-rotation relations for the selected connections (A1, B1, B2, B3, and C2 shown in Fig. 10)

are shown in Fig. 14. Lateral loads were measured by the load cell connected to the actuator and

the top of the column. Lateral drifts were determined from lateral drift readings at the top ends of

the column. The moment of the each connection was calculated by multiplying the lateral loads

measured at the top of the column by the interstory height. The rotation of the each connection was

Fig. 13 Overall load-deflection relation of the test structure

Fig. 14 Moment-rotation relations of the selected connections
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obtained by dividing the lateral drifts measured at the top ends of the column by the interstory

height.

The overall load-deflection relation of the test structure indicates progressive degradation in

stiffness with increasing drift. The significant loss of strength in the test occurred to the connection

B3 at a drift of 1.15%, but a sudden decrease in the overall strength of the test structure did not

occur. The connection C2 was punched at a drift of 3.32%, and then the connections A1 and B1

were punched at a drift of 3.6%. After a sudden drop in strength at a drift of 3.6%, A1 and B1

connections in the test structure were re-strengthened with an increase in the rotation as shown in

Fig. 14. The test structure finally failed to sustain the lateral load with the punching shear failure of

the interior connection B2 at a drift of 7.8%. The lateral load-deflection relation shown in Fig. 13

demonstrates the test structure’s excellent drift capacity.

4.2 Analytical lateral stiffness of the test structure

The elastic stiffness of the test structure was obtained numerically by using the finite element

model shown in Fig. 15. The slab was modeled by 560 four-node quadrilateral plate elements by

using the linear analysis program MIDAS-GEN. The reinforcement was not modeled. Poisson's

ratio was taken to be equal to 1/6. The plates in joint regions were made effectively rigid, having a

stiffness six orders of magnitude greater than the plates outside the joints. The finite element model

was then linearly analyzed.

The test structure was also modeled by using two effective beam width models: one for the elastic

widths (le) and one for the effective beam widths with stiffness reductions (l2' ). For the both

effective beam width models, the beams were modeled to span with rigid end zones from the center

line to the face of the column. The top ends of all the columns were connected by a rigid link to

enforce equal lateral displacements.

The elastic widths for individual connections of the prototype structure were first calculated by

using Eqs. (1) and (2), and the elastic widths for the spans between the adjacent connections were

taken as the average of both values for the adjacent connections. Finally, the elastic widths for the

test structure were determined by reducing the elastic widths for the prototype by half. The effective

beam widths with stiffness reductions were computed by multiplying the elastic widths for the test

structure by the factor obtained from Eq. (13). To calculate the precise stiffness reduction factor in

Fig. 15 Finite element model of the test structure
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Eq. (13), changes in the loading states according to the test procedure were considered. For

example, only half of the self-weight (2.11 kN/m2) of the prototype concrete slab was input into the

sustained load term (LSUS), because the test structure was constructed at half scale, and the other half

was added to super-imposed load (LSUS). In conformance with ACI 318-02 (2002), a time-dependent

term ξ of 1 was used because the lateral loading in the test was applied at around three months after

casting. Fig. 16 shows the calculated widths of the beam elements in the effective beam width

models without or with stiffness reductions.

4.3 Comparisons between analytical and experimental results

The comparisons between the analytical and experimental results are shown in Fig. 17. The

Fig. 16 Comparison of beam element widths in analysis model 

Fig. 17 Comparison of calculated and measured lateral stiffness
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experimental results are displayed for up to 0.8 percent of the interstory height for the test structure.

The analytical results were obtained by using the finite element model and the effective beam width

models. Based on the results of the test and FE analysis, two effective beam width models proposed

in this paper were evaluated.

The elastic width model solution slightly exceeds the finite element solution by about 10 percent.

This difference may arise since Eqs. (1) and (2) slightly overestimate the elastic stiffness of the

slabs within the range of , as discussed previously. Considering that l2/l1 of the test

structure is equal to 0.6, this difference is predictable. Both the finite element and elastic width

model solutions, which do not consider stiffness reductions, are much stiffer than the measured

values.

Compared to the elastic width model stiffness, the lateral stiffness of the effective beam width

model with stiffness reductions was dramatically reduced as shown in Fig. 17. The solution of the

model with effective beam widths of βL × βS × le conceptually represents the initial lateral stiffness

of flat plate structures with vertical loads. The effective beam width model solution with stiffness

reductions approximately matches the line A-A’. The line A-A’ was obtained after that lateral

loading was stopped and applied again at around drifts of 0.4%, and represents the initial value in

the lateral stiffness of the test structure without a sitting error.

5. Further research

The results reported in the paper are preliminary and require more numerical studies to confirm

them. The numerical studies using three-dimensional non-linear software should focus on the

stiffness reductions due to service gravity load, creep and shrinkage, and lateral load.

6. Conclusions

A study to obtain the effective beam widths of slabs was conducted. Based on this study, the

following conclusions were reached.

In the elastic widths study using a finite element technique, it was found that the elastic widths

were considerably affected by the vertical member's rectangularity, which has usually been ignored

for the slab-column connection problem. Based on the results of a parametric study for c1/l1, l2/l1,

c2/c1, and c2/l, the methods for calculating the elastic widths of slabs connected to vertical members

with various rectangular cross-sections were proposed.

In the stiffness reduction factors study, the factor (βS) for service gravity loads was proposed by

using the effective moment of inertia (Ie). This value decreased with the increasing of ln and LSUP,

and with the decreasing of fck and h/hmin. The use of the factor (βL) to consider the combined effects

of creep and shrinkage was suggested by modifying the additional long-term deflections (δCP+SH).

A test structure with nine slab-column connections was tested laterally and analyzed by using a

finite element technique. Based on the analytical and experimental results, it was found that the

stiffness reduction factors proposed in this study may be used to approximately represent the

flexural stiffness of the slab.

l2/l1 1≤
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Notation

c1 : size of rectangular support parallel to loading directions
c2 : size of rectangular support transverse to c1
DL : service dead load
EIFL : final flexural stiffness of member at the stage when final deflection (δFL) is computed
EIDL+LL : flexural stiffness of member at the stage when immediate deflection (δDL+LL) is computed
LL : service live load
fck : compressive strength of concrete
h : thickness of slab
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hmin : minimum thickness of slab (see ACI 318-02 section 9.5.3.2) 
Icr : moment of inertia of the cracked concrete section
Ie : effective moment of inertia
Ig : moment of inertia of the gross concrete section
l1 : length of span parallel to loading directions (average of two spans at interior supports)
l2   : length of span transverse to loading directions (average of two spans at interior supports)
l2'  : effective beam width with stiffness reductions
le : elastic effective beam width
ln : length of clear span parallel to loading directions
LSUP : super-imposed load (sum of floor finishing load and live load)
LSUS : sustained load (sum of dead load and portion of live load)
Ma : maximum service moment due to gravity load
Mcr : cracking moment (see ACI 318-02 section 9.5.2.3)
βL : factor considering stiffness reduction of slabs due to the combined effects of creep and shrinkage
βS : factor considering stiffness reduction of slabs due to the effect of service gravity loads
θs : slab rotations at the center of the joint region
θbr : beam rotations at the end of the beam element with rigid bar
θbf : beam rotations at the end of the beam element without rigid bar
δCP+SH : additional long-term deflection due to the combined effects of creep and shrinkage
δDL+LL : immediate deflection caused by service dead plus live loads
δSUS : immediate deflection caused by sustained load
δFL : final deflection calculated as the sum of immediate and additional long-term deflections
ξ : time-dependent factor for sustained load (see ACI 318-02 section 9.5.2.5)
ρ' : compression reinforcement ratio




