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Abstract. In this study, a complete analysis of soil-structure interaction problems is presented which
includes a modelling of the near surrounding of the building (near-field) and a special description of the
wave propagation process in larger distances (far-field). In order to reduce the computational effort which
can be very high for time domain analysis of wave propagation problems, a special approach based on
similarity transformation of the infinite domain on the near-field/far-field interface is applied for the wave
radiation of the far-field. The near-field is discretised with standard Finite Elements, which also allows to
introduce non-linear material behaviour. In this paper, a new approach to calculate the involved
convolution integrals is presented. This approximation in time leads to a dramatically reduced
computational effort for long simulation times, while the accuracy of the method is not affected. Finally,
some benchmark examples are presented, which are compared to a coupled Finite Element/Boundary
Element approach. The results are in excellent agreement with those of the coupled Finite Element/
Boundary Element procedure, while the accuracy is not reduced. Furthermore, the presented approach is
easy to incorporate in any Finite Element code, so the practical relevance is high.

Key words: soil-structure interaction; time domain; finite element method; scaled boundary finite
element method; coupled analysis.

1. Introduction

The various numerical methods, developed for the analysis of dynamic soil-structure interaction

during the last years, can be classified into two main groups: the direct method and the substructure

method (Antes and Spyrakos 1997).

Following the direct method, the structure and a finite, bounded soil zone adjacent to the

structure, called near-field, are modelled by the Finite Element Method (FEM). The effect of the

surrounding unbounded soil (called far-field) is approximated by imposing transmitting boundary

conditions along the near-field/far-field interface. The simplest transmitting boundaries are the

viscous boundaries (Lysmer and Kuhlmeyer 1969) which are simple dashpots. Other local, non-

consistent boundaries (Engquist and Majda 1977, Liao and Wong 1984) and several other types of

transmitting boundaries, e.g., boundaries based on rational transfer functions (Weber 1994), or

Infinite Elements (Bettess 1992) have been proposed.
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Following the substructure method, the soil-structure system is divided into two parts: the

structure (which may also include some portion of the soil) and the unbounded soil. These

substructures are connected by a soil-structure interface, also called near-field/far-field interface, see

Fig. 1. The unbounded soil is assumed to behave linear but in the near-field non-linearities can be

included. So not only non-linear effects of the building itself can be included in the analysis, but

also non-linear material behaviour of the soil adjacent to the structure (near-field). The reaction of

the unbounded soil on the general soil-structure interface is represented by a boundary condition in

the form of a force-displacement relationship which is global in space and time.

Based on the substructure method, hybrid methods (also referred as coupling methods) have been

developed where the near-field is analysed by the FEM while the unbounded soil (near-field) is

modelled by a different numerical method, which takes into account the influence of the infinite

half-space, i.e., the Boundary Element Method (BEM). The BEM is a powerful procedure for

modelling the unbounded medium since only the boundary of the unbounded medium is discretised

so that the spatial dimension is reduced by one, see, e.g., Estorff and Firuziaan (2000). But the

direct coupling of FEM and BEM usually destroys the structure of the system matrix, therefore the

system of equations can not be solved effectively. It should be mentioned that the use of Symmetric

Galerkin BEM avoids the problem of non-symmetric system matrices (see, e.g., Bonnet et al. 1998),

but due to the appearance of double integrals, the computational costs to build the symmetric

system matrix is increased. Also, fast multipole BEM is becoming a more and more popular method

for getting “fast” solutions of the problem, see, e.g., Coifman et al. (1993) or Nishimura (2002).

In this paper, a hybrid method (substructure method) is used as well where the near-field is

analysed with the FEM, while the unbounded soil is modelled by special finite elements, based on a

similarity transformation, referred as cloning algorithm, see, Dasgupta (1982), Consistent

Infinitesimal Finite-Element Cell Method, Song and Wolf (1995, 1996a, 1996b, 1997), Wolf and

Song (1996), or Scaled Boundary Finite Element Method (SBFEM), Wolf (2003). Further

developments have been made to the SBFEM, i.e., by Deeks and Wolf (2002), Crouch and Bennett

(2000), Lehmann et al. (2004). The scaled boundary finite elements are building the near-field/far-

field interface, so (like the BEM) they reduce the spatial dimension of the problem by one as well.

A realistic modelling of the situation next to the building is certainly possible by using the FEM.

There, almost no restrictions regarding geometry and loading have to be considered. Moreover,

different element types and material properties including non-linear material, see, i.e., Zienkiewicz

Fig. 1 Structure-soil-system: Discretisation scheme
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(1991) can be easily introduced in the numerical model.

In the analysis of soil-structure interaction effects, the correct modelling of the geometric radiation

damping, i.e., the propagation of waves to infinity is essential for dynamic calculations. In order to

reduce the computational effort which can be very high for long simulation times of transient

analyses of soil-structure problems with a large number of degrees of freedom, an approximation in

time for the similarity approach is introduced in this paper.

2. Governing equations

A summery of the governing equations of linear-elastic theory, including the equation of motion,

with special respect to the time-domain is given.

2.1 Three-dimensional elasto-dynamics 

In the following, the constitutive equations of linear theory for elastic materials are repeated

briefly. Detailed explanations can be found, e.g., in the books of Gould (1994), or Eringen and

Suhubi (1975). The vector of stress states  is combined via Hooke’s

law with the vector of strain states,  as

(1)

Where D is the elasticity matrix which may be stated for isotropic or anisotropic material.

For linear theory, the strain tensor is defined by the strain-displacement relationship

ε = Lu (2)

with the differential operator L given in its transposed form by:

(3)

Applying this operator (Eq. (3)) on σ, the dynamic equilibrium reads in the frequency domain:

(4)

where , and  stand for the spatial-dependent amplitudes of stresses, body forces, and

displacements, respectively, and means the material density, while the equation of motion in the

time domain is given by:
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(5)

where, now, all states, i.e., the stresses σ(t), the body loads b(t) and the acceleratios  are time-

dependent.

2.2 FEM equations

Eq. (5) represents the equation of motion in the time domain for a general case. If one divides the

domain in a near-field and a far-field part (see Fig. 1), and introduces a time-dependent interaction

force vector rb(t) (which represents the influence of the infinite domain) on the near-field/far-field

interface, the equation of motion can be rewritten, see, e.g., Crouch and Bennett (2000):

(6)

where the mass matrix M, the stiffness matrix K, and the node value vectors of the displacements u

and accelerations ü, respectively, are subdivided corresponding to the location of the nodes, i.e., the

subscript b denotes the nodes on the soil-structure interface (boundary) and the subscript s the

remaining nodes of the structure. On the right hand side of Eq. (6), p(t) is the vector of external

forces.

When the interaction force vector rb(t) is determined, the dynamic response of the structure can be

obtained from Eq. (6) by using direct integration schemes, such as the Hilber-Hugh-Taylor implicit

time integration scheme.

In the substructure method, the interaction forces on the near-field/far-field interface are given by

the convolution integral

(7)

where  is the acceleration unit-impulse response matrix. In the next section it will be shown,

how to perform an effective calculation of this convolution integral.

To determine the acceleration unit-impulse matrices  at discrete time ti, a concept of

geometric similarity is used in conjunction with the standard approach of assembling finite

elements. Consider the case of a structure modelled by conventional finite elements (see Fig. 1). A

local portion of the soil would also be included in this part of the model. The far-field lies outside

the finite element mesh representing the local soil and the structure. In an approach based on the

concept of similarity, as in the SBFEM (Wolf and Song 1996), the geometry is described by a finite

element discretisation with local coordinates η, ζ on the boundary (two dimensional finite elements

representing the far-field/near-field interface of a three-dimensional problem) and a radial coordinate

ξ containing also a scaling factor. This scaled boundary coordinate system is related to the Cartesian

coordinate system (x, y, z) by the so-called scaled boundary transformation, which actually describes

similarity.

The axes η and ζ lay in the circumferential directions (on the boundary) while the third

coordinate ξ measures the distance from the scaling centre 0, being defined as ξ = 1 when crossing

the boundary (see Fig. 2).
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This scaled boundary coordinate system permits a numerical treatment in the circumferential

directions η, ζ based on a weighted residual technique, as in the theory of finite elements. Thereby,

the partial differential equations will be transformed into ordinary differential equations in the radial

coordinate ξ, where their coefficients are determined by the Finite Element approximation in the

circumferential directions.

For an unbounded medium, the radial coordinate ξ points from the boundary towards infinity (see

Fig. 2), where the boundary condition at infinity (radiation condition) can be incorporated in the

analytical solution. 

3. Approximation in time

The calculation of the interaction force vector on the near-field/far-field interface for long

simulation periods is computer-time consuming. In the following, a simple approximation algorithm

is elaborated which leads to a reduction of computational effort without losing accuracy, see,

Lehmann (2003) for two-dimensional problems, and Lehmann (2004) for a three-dimensional

analysis.

3.1 Forces on the near-field/far-field interface

The forces rb(t) are given by the convolution integral, see Eq. (7). To be able to treat this integral

numerically, it is necessary to approximate this integral in respect to time by a time discretisation. If

we assume a piecewise constant approximation of the acceleration unit impulse response matrix,

i.e.,
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Fig. 2 Scaled boundary transformation for three dimensional problems: finite element and coordinate system
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we get the discrete form of Eq. (7):

(9)

Introducing the γ -parameter of the Hilber-Hughes-Taylor implicit time integration scheme, and

separating the unknown acceleration vector , the calculation of rn can be performed with the

following equation:

(10)

For large n, i.e., long simulation time the direct solution of Eq. (10) is very time consuming, see

Crouch and Bennett (2000). Therefore, an approximation in time is presented in the next subsection

which leads to a recursive algorithm.

3.2 Recursive algorithm

A closer look at the acceleration unit impulse matrix  shows that the entries of matrices

 behave linear from a certain time-step tm (see Fig. 3).
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Fig. 3 Development of a matrix entry on the main diagonal of a unit impulse influence matrix over time-step
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with the matrix  of gradients  and the constant matrix . For equidistant time-steps

, the calculation of  is reduced to

(12)

If a linear behaviour of matrix entries of  is assumed,  of Eq. (10) can be devided in a non-

linear term (for time-steps ti, ) and a linear term (time-steps ti, i > m):

(13)

With Eq. (11), the linear part of Eq. (13) can be written as

(14)

For a recursive algorithm,  is needed:

(15)

With this equation, one can rewrite the difference  and gets finally the recursive

formulation:

(16)

So, the necessary operations for n time-steps are reduced (with dof : degrees of freedom) from

(17)

for the direct calculation to

(18)

The computational effort O(ψ ) in dependence on ψ = m/n is shown in Fig. 4, e.g., when n = 5000

time-steps shall be calculated, one finds m = 500, ψ = 0.1 and O(ψ ) = 0.19. Hence, for this example

the reduction of necessary operation is 81%.
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4. Benchmark examples of soil-structure interaction in the time domain

To demonstrate the accuracy and applicability of the derived procedure three numerical examples

are presented. These examples have been studied by von Estorff and Prabucki (1990) as a

benchmark for their coupled FEM/BEM formulation and can be easily compared to the presented

method.

4.1 Semi-infinite rectangular domain with vertical load

For the first example a semi-infinite domain with a time-dependent vertical load is considered.

Fig. 5 illustrates the elastic region with applied load, load function and location of observation

point A.

The elastic region (plane strain) has a Young’s modulus E = 2.66 · 105 kN/m2, Poisson’s ratio

Fig. 4 Computational effort in dependence on ψ 

Fig. 5 Semi-infinite rectangular domain (system and load function)



An effective finite element approach for soil-structure analysis in the time-domain 445

ν = 0.33 and a density ρ = 2.0 · 103 kg/m3. The discretisation of this problem with linear finite and

boundary elements, and linear scaled boundary finite elements is shown in Fig. 6. A time-step

Δt = 0.002s was chosen for all benchmark examples. The calculated horizontal and vertical

displacements of point A are studied.

Fig. 6 Semi-infinite rectangular domain (FE/BE and FE/SBFE discretisation)

Fig. 7 Semi-infinite rectangular domain (displacement of point A due to a vertical load – coupled FE/BE and
FE/SBFE approach)
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Fig. 7 shows the displacement of point A, for a time interval , calculated with a

coupled FE/BE method, and a coupled FE/SBFE method. The results show excellent agreement for

the calculated horizontal displacement, as well as for the vertical displacement of observation point

A. Notice that the scaling centre for the scaled boundary transformation lies in infinite distance to

the finite element/scaled boundary finite element interface, because the semi-infinite domain has

parallel sides.

Fig. 8 depicts the results of a coupled finite element/scaled boundary finite element approach for a

longer simulation time ( ). A rigorous (‘conventional’) calculation is compared with the

presented recursive algorithm. The results show excellent agreement of rigorous and recursive

algorithm, no differences can be observed.

The time-step m from which on a linear development of the unit impulse response matrix is

assumed, was found to be m = 80 (corresponding time t = 80 · 0.002s = 0.16s). According to Eqs. (17)

and (18), the computational effort is reduced to 0.294, compared to the rigorous algorithm, so the

reduction of necessary operations (equivalent to CPU time consumption) is 70.6%. 

4.2 Response of an elastic half-space

For the second example an infinite half-space with a time-dependent horizontal load is considered.

Fig. 9 shows the load and two observation points (A and B) on the surface of the elastic half-space.

The material properties are the same as for the first example. Fig 10 shows the time-dependent

horizontal load p(t), called Ricker-wavelet, where p(t) is given by:

(19)
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0 t 1s≤ ≤

p t( ) 1 2τ
2

–( )exp τ
2

–( ) where τ tπ 3–==

Fig. 8 Semi-infinite rectangular domain (displacement of point A due to a vertical load - coupled FE/SBFE
approach, rigorous and recursive algorithm)
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Fig. 9 Elastic half-space (location of load and observation points)

Fig. 10 Load function p(t) (Ricker wavelet)

Fig. 11 Elastic half-space (FE/BE and FE/SBFE discretisation)
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Fig 12 Elastic half-space (horizontal displacement of point A due to horizontal load p(t) – coupled FE/BE
approach and coupled FE/SBFE approach, rigorous and recursive algorithm)

Fig 13 Elastic half-space (horizontal displacement of point B due to horizontal load p(t) – coupled FE/BE
approach and coupled FE/SBFE approach, rigorous and recursive algorithm)
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The discretisation, again of a coupled FE/BE and a FE/SBFE system is shown in Fig. 11. Here,

the scaling centre for the scaled boundary approach lies inside the FE domain, on the surface of the

infinite half-space. For the coupled FE/SBFE approach only the scaled boundary finite elements on

the near-field/far-field interface are necessary, while for the FE/BE discretisation a few additional

boundary elements on the surface of the half-space on both sides of the finite element mesh must be

placed.

The results of the calculation (horizontal displacement of points A and B) are shown for both

approaches in Figs. 12 and 13. Again, an excellent agreement between the coupled FE/BE and FE/

SBFE approach is obvious, also for the recursive algorithm. The simulation time t is 4s. For the

recursive algorithm m = 309 is found, so with Δt = 0.002s (n = 2000) the computational effort is

reduced to 0.285 compared to the rigorous algorithm, so the reduction of necessary operations

(equivalent to CPU time consumption) is 71.5%. For both examples, the reduction of CPU time

consumption due to the recursive algorithm is huge, while nearly no loss of accuracy can be

observed.

5. Conclusions

Soil-structure interaction in the time domain is a computationally intensive task. Consequently, it

is desirable to develop efficient numerical procedures for engineering problems. The computational

effort can be dramatically reduced to an acceptable level with marginal loss of accuracy by using

the presented recursive algorithm in conjunction with the Scaled Boundary Finite Element Method.

This algorithm is based on an approximation of the unit impulse response matrices by linear time

dependence after a certain time-step. This approximation results in an efficient scheme for the

evaluation of the involved convolution integral. The comparison with a coupled FE/BE approach

shows excellent agreement.

But further approximations in space should be made for another reduction of computational costs

(see, e.g., Zhang et al. 1999), to enable an analysis of large three-dimensional domains, also with

non-linear material behaviour in the near-field. 

The presented coupled SBFE approach is easy to incorporate in any Finite Element code, while

the symmetry of the system matrices will not be destroyed. If additional approximation in space will

be made, the sparse structure of the matrices will be kept as well.

Finally, it can be stated that the practical relevance of the presented approach can be considered to

be high.
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