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Abstract. Multi-span beams carrying multiple point masses are widely used in engineering applications,
but the literature for free vibration analysis of such structural systems is much less than that of single-
span beams. The complexity of analytical expressions should be one of the main reasons for the last
phenomenon. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine
the exact natural frequencies and mode shapes of a multi-span uniform beam carrying multiple point
masses. First, the coefficient matrices for an intermediate pinned support, an intermediate point mass, left-
end support and right-end support of a uniform beam are derived. Next, the overall coefficient matrix for
the whole structural system is obtained using the numerical assembly technique of the finite element
method. Finally, the natural frequencies and the associated mode shapes of the vibrating system are
determined by equating the determinant of the last overall coefficient matrix to zero and substituting the
corresponding values of integration constants into the related eigenfunctions respectively. The effects of
in-span pinned supports and point masses on the free vibration characteristics of the beam are also
studied.

Key words: single-span beam; multi-span beam; numerical assembly method (NAM); natural frequency;
mode shape.

1. Introduction

The free vibration characteristics of a uniform beam carrying various concentrated elements (such

as point masses, rotary inertias, linear springs, rotational springs, spring-mass systems, etc.) is an

important problem in engineering, thus, a lot of reports have been published in this area. For

example, Liu et al. (1988), Gürgöze (1984), Hamdan and Jubran (1991), and Hamdan and Abdel
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(1994) presented various techniques to perform free vibration analysis of beams carrying one or two

concentrated elements. Gupta (1970) used a wave approach and the associated propagation constants

to determine the natural frequencies and normal modes of a beam over periodic supports. Because

the study of Gupta (1970) was restricted to an ideal periodic structure composed of perfectly

identical units, Lin and Yang (1974) studied the natural frequencies of a “disordered” periodic beam

by using a transfer matrix approach and considering the statistical properties of the beam. However,

neither Gupta (1970) nor Lin and Yang (1974) studied the problem regarding free vibration

characteristics of a multi-span beam carrying either single or multiple point masses. Bapat and

Bapat (1987) developed a transfer matrix method (TMM) to study the natural frequencies of a beam

whose individual support was modeled by a linear translational and rotational spring and a point

mass, but they did not present the associated mode shapes of the beam. By means of the analytical-

and-numerical-combined method (ANCM), Wu and Lin (1990) and Wu and Chou (1998) found the

natural frequencies and mode shapes of a uniform beam carrying any number of rigidly-attached

point masses and elastically-attached point masses, respectively. Cha (2001) solved the natural

frequencies of a linear structure carrying any number of spring-mass systems using the assumed-

modes method. Naguleswaran (2003) found the natural frequencies of an Euler-Bernoulli beam with

up to five elastic supports (including ends) by using an iterative process. Wu and Chou (1999)

obtained the exact solution of a uniform beam carrying any number of spring-mass systems by

using the numerical assembly method (NAM). Employing the same technique as Wu and Chou

(1999), Chen (2001) studied the free vibration problem concerning uniform and non-uniform beams

carrying various concentrated elements. 

From the above literature review one sees that exact solutions for the natural frequencies and

mode shapes of “single-span” beams carrying either single or multiple point masses were obtained,

such as Wu and Chou (1999) and Chen (2001). However, little was found in the literature regarding

the exact solutions for the natural frequencies and mode shapes of “multi-span” beams carrying

either single or multiple point masses. Thus, this paper aims at studying the last problem. Gürgöze

and Erol (2001, 2002) studied the forced vibration responses of a cantilever beam with a single

intermediate support, but they did not study the free vibration characteristic of the beam. Wu and

Chou (1999) and Chen (2001) determined the exact natural frequencies and mode shapes of a

“single-span” uniform beam carrying any number of point masses using the numerical assembly

method (NAM). The same NAM is used in this paper, but the problem studied is concerned with

the “multi-span” uniform beam with multiple point masses. 

Compared with classical explicit analytical methods presented in existing literature, the NAM has

the advantage of treating more complicated vibrating systems without much difficulty, as one may

see from the numerical examples given in this paper. On the other hand, compared with the TMM,

it is found that: (i) The basic concept of the NAM presented by Wu and Chou (1999) is similar to

that of the TMM presented by Bapat and Bapat (1987), because both of them are based on the

continuum models and the continuity of displacements and slopes, together with the equilibrium of

shear forces and bending moments at each support point (or station); (ii) For a “single-span” beam

with multiple “elastic” supports, results of the NAM (Wu and Chou 1999) and those of the TMM

(Bapat and Bapat 1987) should be identical, because both of them are “exact” solutions. However,

this is not true for a beam with other support conditions (such as clamped ends or intermediate

simple supports), because the results of the NAM (Wu and Chou 1999) for the last beam, either

“single-span” or “multi-span”, are still the “exact” solutions and those of the TMM (Bapat and

Bapat 1987) are the “approximate” ones only. In the TMM (Bapat and Bapat 1987), as the first
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“approximation”, the properties of each individual support were modeled by a linear translational

and rotational spring and a concentrated mass. Thus, the beam studied by Bapat and Bapat (1987) is

a single-span beam (rather than a multi-span beam), unless one sets the spring constants at some of

the specified support points to approach infinity (or the deflection δi of beam at the associated

support point i is set to approach zero, i.e., δi ≈ 0, for i = 1, 2, 3, ...). In theory, the solutions

obtained under the assumption that “δi ≈ 0” (1, 2, 3, ...) are the “approximate” solutions and those

based on “ ” (such as those in the current paper) are the “exact” ones; (iii) For the free

vibration analysis of a beam, one is required to obtain the overall “cumulative” transfer matrix of

the entire beam if the TMM is used (Meirovitch 1967). Similarly, one is required to determine the

overall property matrices of the entire beam if the conventional finite element method (FEM) is

used (Bathe 1982). The efficiency of a numerical method is closely related to the programming

technique and therefore will not be studied here. The key point of this paper is placed on the

“exact” determination of the natural frequencies together with the associated mode shapes for a

multi-span uniform beam carrying multiple point masses. In this paper, the “exact” solution refers to

that obtained from the continuum model instead of the discrete model.

2. Equation of motion and displacement function

Fig. 1 shows a sketch of a three-step beam supported by k pins and carrying n lumped masses (●).

If each pinned support or lumped mass location is called a “station”, then the total number of

stations is N' = k + n. For convenience, three kinds of coordinates are used as one may see from

Fig. 1. Among which, the positions of stations are defined by , those of point masses

by  and those of pinned supports by . It is obvious that  and

, because the first (left-end) support is at the origin of the coordinates and the final

(right-end) support is at the other end of the beam with total length l. In Fig. 1, three kinds of

numbering are also used to show the sequences of stations, point masses and pinned supports.

The numbers 1', 2', …, N' above the x-axis refer to the numbering of the stations, those

δ i 0≡

xv′ v′ 1~N′=( )
xp
* p 1~n=( ) x r r 1~k=( ) x1 x 1 0= =

xN′ xk l= =

Fig. 1 Sketch for a uniform beam supported by k pins and carrying n point masses and the definitions for
coordinates:  for point masses (●),  for pinned supports, and  
for stations

xp
* p 1~n=( ) x r r 1~r=( ) xv′

v′ 1~N′=( )
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numbered (1), (2), …, (n) below the x-axis refer to the numbering of the point masses, while

those numbered 1, 2, …., k refer to the numbering of the pinned supports. Note that the numbering

of the point masses are shown by the parentheses ( ) and those of supports are not.

For free vibration of a uniform Euler-Bernoulli beam, its equation of motion is given by 

(1)

where E is the Young’s modulus, I is the moment of inertia of the cross-sectional area,  is the

mass per unit length of the beam, and y(x, t) is the transverse displacement at position x and time t.

For free vibration of the beam, one has

(2)

where  is the amplitude of ,  is the natural frequency of the beam, and .

Substitution of Eq. (2) into Eq. (1) gives

(3)

where

(4a)

or

(4b)

The general solution of Eq. (3) has the form

   (5)

This equation is the displacement function for each beam segment between any two adjacent

stations shown in Fig. 1. 

3. Determination of natural frequencies and mode shapes

For an arbitrary point located at xv' (cf. Fig. 1), one obtains from Eq. (5)

(6)

(7)

(8)

(9)

EI
∂

4
y x t,( )

∂ x
4

--------------------- m
∂

2
y x t,( )

∂
2
t

---------------------+ 0=

m

y x t,( ) Y x( )eiω t
=

Y x( ) y x t,( ) ω i 1–=

Y"" β
4
Y– 0=

β
4 ω

2
m

EI
-----------=

ω βl( )
2 EI

ml
4

---------⎝ ⎠
⎛ ⎞ 1/2

=

Y x( ) C1sinβx C2cosβx C3sinhβx C4coshβx+ + +=

Yv′ ξv′( ) Cv ′ 1, sinΩξv ′ Cv′ 2, cosΩξv′ Cv′ 3, sinhΩξv′ Cv ′ 4, coshΩξv ′+ + +=

Yv ′
′ ξv′( ) ΩCv′ 1, cosΩξv′ – ΩCv′ 2, sinΩξv′ ΩCv′ 3, coshΩξv′ ΩCv ′ 4, sinhΩξv′+ +=

Yv′
″ ξv ′( ) Ω– 2

Cv ′ 1, sinΩξv ′ – Ω2
Cv ′ 2, cosΩξv′ Ω2

Cv′ 3, sinhΩξv ′ Ω2
Cv ′ 4, coshΩξv ′+ +=

Yv′
″′ ξv′( ) Ω– 3

Cv′ 1, cosΩξv′ + Ω3
Cv′ 2, sinΩξv′ Ω3

Cv′ 3, coshΩξv′ Ω3
Cv′ 4, sinhΩξv ′+ +=
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where

          (10)

  (11)

If the left-end support (i.e., station 1' ) of the beam is pinned as shown in Fig. 1, then the boundary

conditions are:

(12a,b)

In Eqs. (7)-(9) and (12) the primes refer to differentiation with respect to the coordinate ξv'. From

Eqs. (6), (8) and (12), one obtains

         (13a)

(13b)

or in matrix form

(14)

where

        

  

(15)

(16)

In the above expressions, the symbols, [ ] and { }, denote the rectangular matrix and column vector,

respectively.

If the station numbering corresponding to the (p)-th intermediate point mass is represented by p',

then the continuity of the deformations and the equilibrium of the moments and forces require that

(17a)

(17b)

(17c)

(17d)

ξv′

xv′

l

-----=

Ω βl=

Y1 ′ 0( ) Y1 ′
″ 0( ) 0= =

C1 ′ 2, C1′ 4,+ 0=

C1′ 2,– C1 ′ 4,+ 0=

B1′[ ] C1 ′{ } 0=

1    2   3  4

B1′[ ] 0  1  0  1

0  1  – 0  1

1

2
=

C1′{ } C1 ′ 1,   C1′ 2,   C1 ′ 3,   C1 ′ 4,{ }=

Yp ′

L
ξp ′( ) Yp′

R
ξp′( )=

Y′
p ′

L
ξp′( ) Y′

p′

R
ξp′( )=

Y″
p ′

L
ξp′( ) Y″

p ′

R
ξp′( )=

Y ′″
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L
ξp′( ) Ω4

mp ′
* Yp′

L
ξp′( )+ Y ′″

p ′

R
ξp ′( )=
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with

(17e,f)

where xp' is the coordinate of station p', mp' is the magnitude of point mass, and the right

superscripts L and R in Eqs. (17a)-(17d) refer to the “left” and “right” sides of station p'.

Substitution of Eqs.(6)-(9) into Eqs.(17a)-(17d) leads to 

(18a)

(18b)
 

(18c)

(18d)

or 

(19)

where 

   

(20)

(21)

The symbols appearing in Eq. (20) are defined as

(22)

Similarly, if the station numbering corresponding to the r-th intermediate support is represented by

r', then the continuity of the deformations and the equilibrium of the moments require that

ξp′

xp′

l

------ , mp′
* mp ′

ml
-------==

Cp ′ 1– 1, sinΩξp′ Cp′ 1– 2, cosΩξp ′ Cp ′ 1– 3, sinhΩξp′ Cp′ 1– 4, coshΩξp ′+ + +

 Cp ′ 1, sinΩξp′– Cp′ 2, cosΩξp ′– Cp ′ 3, sinhΩξp ′– Cp ′ 4, coshΩξp ′– 0=
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 Cp ′ 1, sinΩξp′ Cp ′ 2, cosΩξp′ Cp ′ 3, sinhΩξp ′– Cp ′ 4, coshΩξp ′–+ + 0=
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 mp ′
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θp′ Ωξp ′=   sθp′ sinΩξp′=   cθp ′ cosΩξp ′=   shθp ′ sinhΩξp ′=   chθp ′ coshΩξp ′=, , , ,

4p − 3 4p − 2 4p − 1 4p 4p + 1 4p + 2 4p + 3 4p + 4
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(23a,b)

(23c)

(23d)

with

(24)

where xr' is the coordinate of station r' at which the r-th intermediate support is located.

Introducing Eqs. (6)-(9) into Eqs. (23), one obtains

(25a)

(25b)

(25c)

(25d)

or

(26)

where

(27)

(28)

where 

(29)
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Cr ′ 1– 1, sinΩξr′ Cr′ 1– 2, cosΩξr′ Cr′ 1– 3, sinhΩξr′ Cr′ 1– 4, coshΩξr′+ + + 0=

Cr′ 1, sinΩξr′ Cr ′ 2, cosΩξr′ Cr′ 3, sinhΩξr′ Cr′ 4, coshΩξr′+ + + 0=

Cr′ 1– 1, cosΩξr′ Cr ′ 1– 2, sinΩξr′– Cr′ 1– 3, coshΩξr′ Cr′ 1– 4, sinhΩξr′ Cr′ 1, cosΩξr′–+ +

 Cr ′ 2, sinΩξr′ Cr′ 3, coshΩξr ′– Cr′ 4, sinhΩξr′–+ 0=
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sΩξr′ sinΩξr ′=   cΩξr′ cosΩξr′=   shΩξr′ sinhΩξr ′=   chΩξr′ coshΩξr′=, , ,
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From Fig. 1 one sees that the right-end support (i.e., station N') of the beam is pinned, thus its

boundary conditions are

(30a,b)

Substituting Eqs. (6) and (8) into Eq. (30) gives

 (31a)

 (31b)

or

(32)

(33)

(34)

In Eq. (33), Ni denotes the total number of intermediate stations given by (cf. Fig. 1)

             (35)

and q denotes the total number of equations for the integration constants given by

(36)

From the above derivations one obtains four equations from each intermediate station (at which

either a point mass or a pinned support is located). In addition, one obtains two equations from

either the left-end station or the right-end station of the beam. Therefore, the total number of

equations for the integration constants is . Note that in Eq. (35), N' is the total number

of stations as shown in Fig. 1.  

The integration constants relating to the left-end support (i.e., station 1') and those relating to the

right-end support (i.e., station N' ) of the beam are determined by Eqs. (14) and (32), while those

relating to the intermediate stations (i.e., 2 to N' − 1) are determined by Eq. (19) or (26) depending

upon point mass or pinned support is located there. The associated coefficient matrices are given by

[B1'], [BN'], [Bp'] and [Br'] as one may see from Eqs. (15), (33), (20) and (27), respectively. From the

last four equations one may see that the identification number for each element of the last four

coefficient matrices is shown on the top side and right side of each matrix. Therefore, using the

numerical assembly technique as done by the conventional finite element method one may obtain an

equation for all integration constants of the entire beam

YN′ l( ) YN′
″ l( ) 0= =

CN′ 1, sinΩ CN′ 2, cosΩ CN′ 3, sinhΩ CN ′ 4, coshΩ+ + + 0=

CN′ 1, sinΩ– CN′ 2, cosΩ– CN ′ 3, sinhΩ CN′ 4, coshΩ+ + 0=

BN′[ ] CN′{ } 0=

      4Ni 1+   4Ni 2+     4Ni 3+      4Ni 4+

BN′[ ] sinΩ    cosΩ    sinhΩ    coshΩ
sinΩ    – cosΩ    – sinhΩ    coshΩ

q 1–

q
=

CN ′{ } CN′ 1,   CN′ 2,   CN′ 3,   CN′ 4,{ }=

Ni N′ 2–=

q 4Ni 4+=

q 4Ni 4+=
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(37)

The non-trivial solution of Eq. (37) requires that 

(38)

which is the frequency equation for the present problem.

In this paper, the half-interval method is used to find natural frequencies (s = 1, 2, ...) of the

multi-span beam carrying multiple point masses. For each natural frequency , from Eq. (37), one

may obtain a set of simultaneous equations of the form:  (i = 1 to n). Solving the

first n − 1 equations one obtains the values of C1 to Cn−1 in terms of Cn. For convenience, one sets

Cn = 1 to define all the integration constants Cj ( j = 1 to n). It is noted that the last values of  Cj satisfy

the final equation . Substitution of the last integration constants into the displacement

functions of the associated beam segments allows one to determine the corresponding mode shape

of the beam, Y (i)(ξ). For reference, the overall coefficient matrix  for a two-span uniform beam

with one intermediate point mass (or a pinned-pinned uniform beam with one intermediate pinned

support and one intermediate point mass) is shown in the Appendix. 

4. Coefficient matrices for the boundary stations of a cantilever beam

For a cantilever beam with its left end at station 1' and its right end at station N', the boundary

conditions are

      (39a, b)

   (40a, b)

From Eqs. (17), (39) and (40) one obtains the following boundary coefficient matrices

          

  

  (41)

  (42)

B[ ] C{ } 0=

B 0=

ωs

ωs

aijCj

j 1=

n 1–

∑ ainCn–=

anjCj

j 1=

n 1–

∑ annCn–=

B[ ]

Y1′ 0( ) Y1′′ 0( ) 0= =

YN′
″ l( ) YN

″′ l( ) 0= =

1    2   3 4

B1 ′[ ] 0  1  0  1

1  0  1  0

1

2
=

      4Ni 1+   4Ni 2+     4Ni 3+      4Ni 4+

BN ′[ ] sinΩ  –   cosΩ    – sinhΩ    coshΩ
cosΩ    – sinΩ    coshΩ    sinhΩ

q 1–

q
=
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5. Numerical results and discussions

Before the free vibration analysis of a multi-span uniform beam carrying multiple point masses is

performed, the reliability of the theory and computer program developed in this paper are confirmed

by comparing the present results with those obtained from the existing literature or the conventional

finite element method (FEM). Unless otherwise mentioned, all numerical results of this paper are

obtained based on a uniform Euler-Bernoulli beam with the following given data: Young’s modulus

E = 2.069 × 1011 N/m2, moment of inertia of cross-sectional area I = 3.06796 × 10−7 m4, mass per

unit length 15.3875 kg/m, and total length l = 1 m. When applying FEM, the two-node beam

elements are used and each continuous beam is subdivided into 40 beam elements. Since each node

has two degrees of freedom (DOF’s), the total DOF for the entire beam is 2(40 + 1) = 82. 

5.1 Reliability of the developed computer program 

The first example (see Fig. 2) studied is a uniform cantilever beam carrying two concentrated masses

(m1 and m2) located at  and , respectively. The first point mass

is = 76.9375 kg and the second point mass is =  1.53875 kg. The non-

dimensional parameters for the current example are identical with those of Hamdan and

Abdel (1994), i.e., , ,  and 

= 1.0. From the lowest five frequency parameters,  (i = 1 to 5), shown in

Table 1, it is found that the numerical results of this paper and those of Hamdan and Abdel (1994)

are in excellent agreement.

The second example studied is also a uniform cantilever beam (see Fig. 3), but m1 in the last

example (Fig. 2) is replaced by an intermediate pinned support, and m2 = 0. The data E, I,  and l

were given previously. Table 2 shows the influence of supporting location on the lowest three

natural frequencies of beam,  (i = 1 to 3). From Table 2 one sees that the lowest two natural

frequencies of the cantilever beam increase with increasing distance between the pinned support and

m =

x1

* 0.5l 0.5 m= = x2

*
l 1.0 m= =

m1 5 ml( )= m2 0.1 ml( )=

m1

* m1/ ml( ) 5.0= = m2

* m2/ ml( ) 0.1= = ξ1

* x1

*/l 0.5= = ξ2

* x2

*/l=

Ωi ωi ml
4
/ EI( )( )1/2=

m

ωi

Fig. 2 A uniform cantilever beam carrying two point masses mi located at , i = 1, 2 (example 1)xi
*

Table 1 The lowest five dimensionless frequency parameters,  (i = 1 to 5), for the
uniform cantilever beam carrying two concentrated masses

Methods
Frequency parameters, 

Ω1 Ω2 Ω3 Ω4 Ω5

Present 1.338179 2.984562 7.365617 9.163801 13.497616

Hamdan and Abdel (1994) 1.338179 2.984562 7.365617 9.163802 13.497617

Ωi ω i ml
4

/ EI( )( )
1/2

=

Ωi ω i ml
4

/ EI( )( )
1/2

=
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the fixed end of beam,  because the effective stiffness of beam regarding to the lowest

two mode shapes increases with increasing the value of . The numerical results of this

example are compared with the exact solutions obtained from Karnovsky and Lebed (2001). It is

obvious that the agreement between them is very good as one may see from Table 2. The last exact

solutions (Karnovsky and Lebed 2001) are obtained from the following frequency equation for a

clamped-pinned beam with overhang:

     

(43)

where S, T, U and V are Krylov-Duncan functions given by

 (44a)

 (44b)

 (44c)

 (44d)

ξ1 x1/l=

ξ1 x1/l=

S β l x1–( )[ ] S βl( )V βx1( ) T βl( )U βx1( )–{ } T β l x1–( )[ ]+⋅

 S βl( )U βx1( ) V βl( )V βx1( )–{ }⋅ 0=

S βx( ) 1

2
--- coshβx cosβx+( )=

T βx( ) 1

2
--- sinhβx sinβx+( )=

U βx( ) 1

2
--- coshβx cosβx–( )=

V βx( ) 1

2
--- sinhβx sinβx–( )=

Fig. 3 A cantilever beam with single intermediate pinned support located at  (example 2)x1

Table 2 Influence of location of the intermediate support on the lowest three natural frequencies of the
cantilever beam shown in Fig. 3 (example 2) 

Location of intermediate 
support 

Methods
Natural frequencies (rad/sec)

0.2
Present 315.4023 2013.4007 5703.1626

Karnovsky and Lebed (2001) 315.4023 2013.4007 5703.1626

0.4
Present 484.3618 3245.3331 7227.5760

Karnovsky and Lebed (2001) 484.3618 3245.3331 7227.5760

0.6
Present 871.2308 3350.7914 7167.1205

Karnovsky and Lebed (2001) 871.2308 3350.7914 7167.1205

0.8
Present 1408.2916 3362.8779 6088.5710

Karnovsky and Lebed (2001) 1408.2916 3362.8779 6088.5710

ξ 1 x 1/l= ω1 ω2 ω3
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The third example (cf. Fig. 4) is the uniform pinned-pinned beam carrying three to five

intermediate point masses studied by Chen (2001). Table 3 shows the influence of the magnitudes

and distributions of point masses on the lowest five natural frequencies of the beam,  (i = 1 to 5).

For the case with three point masses, the magnitudes and locations of point masses are: = 0.2,

= 0.5, and = 1.0 located at = 0.1, = 0.5, and  = 0.9, respectively, where

 and   for i = 1, 2, 3. While for the case with five point masses, the

associated data are: = 0.2, = 0.3, = 0.5, = 0.65 and = 1.0 located at = 0.1, =

0.3, = 0.5, = 0.7, and = 0.9, respectively. From Table 3 one sees that the numerical results

of this paper are in good agreement with the corresponding ones obtained by Chen (2001).

5.2 Free vibration analysis of a two-span beam with single point mass

In the previous examples, the beam is either carrying an intermediate point mass (or masses) or is

supported by an intermediate pin. However, the beam studied in this subsection is both carrying an

intermediate point mass and supported by an intermediate pin as shown in Fig. 5. The beam is

pinned at its two ends and has the same physical quantities as that in the last (third) example. The

location of point mass is at = 0.5 and that of pinned support is at = 0.4. The

magnitude of point mass is = 7.69375 kg. For reference, the

explicit form for the overall coefficient matrix  for the present example is given in the

Appendix at the end of this paper. The lowest five natural frequencies of the beam are shown in

Table 4 and the associated mode shapes are plotted in Fig. 6. In addition to the results of the NAM,

those of the FEM are also given in Table 4. It is seen that the agreement between the corresponding

results is excellent.

ωi

m1

*

m2

* m3

* ξ1

* ξ2

* ξ3

*

mi
* mi/ ml( )= ξ i

* xi
*/l=

m1

* m2

* m3

* m4

* m5

* ξ1

* ξ2

*

ξ3

* ξ4

* ξ5

*

ξ1

* x1

* /l= ξ1 x1/l=

m1 m1

* ml( ) 0.5 15.3875 1×( )= =

B[ ]

Fig. 4 A pinned-pinned beam with multiple intermediate point masses mi located at  ,  (example 3)xi
* i 1 2 …, ,=

Table 3 The lowest five natural frequencies of the pinned-pinned beam carrying multiple intermediate point
masses shown in Fig. 4 (example 3)

No. of point 
masses, n

Methods
Natural frequencies (rad/sec)

3(1) Present 423.9717 1793.4811 3264.8800 7052.5025 10365.4514

Chen (2001) 423.9718 1793.4807 3264.8793 7052.5020 10365.4516

5(2) Present 339.4906 1371.5926 2979.7831 4793.1061 7569.8126

Chen (2001) 339.4903 1371.5926 2979.7824 4793.1055 7569.8121

Note: (1) = 0.2, = 0.5, = 1.0 located at = 0.1, = 0.5, = 0.9, respectively.

 (2) = 0.2, = 0.3, = 0.5, = 0.65, = 1.0 located at = 0.1, = 0.3, = 0.5, = 0.7,
= 0.9, respectively.

ω1 ω2 ω3 ω4 ω5

m1

*
m2

*
m3

*
ξ1

*
ξ2

*
ξ3

*

m1

*
m2

*
m3

*
m4

*
m5

*
ξ1

*
ξ2

*
ξ3

*
ξ4

*

ξ5

*
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From the lowest five mode shapes shown in Fig. 6 one sees that all the five curves pass through

the intermediate pinned support located at = 0.4, besides, the total number of intersecting

points of each curve with the abscissa (i.e., the “node” for each mode shape) increases with

increasing the mode number, as expected.

ξ1 x1/l=

Fig. 5 A uniform pinned-pinned beam with an intermediate support located at = 0.4 and carrying
one intermediate point mass  located at = 0.5 (example 4) 

ξ1 x1/l=

m1

*
m1/ ml( ) 0.5= = ξ1

* x1

*/l=

 
Table 4 The lowest five natural frequencies of the uniform pinned-pinned beam with an intermediate support

located at = 0.4 and carrying one intermediate point mass  at 
= 0.5 (example 4)

Methods
Natural frequencies (rad/sec)

Present 1884.0997 4603.2739 6417.4170 12798.6756 18372.0114

FEM 1884.0996 4603.2790 6417.4299 12798.7945 18372.3955

ξ1 x1/l= m1

*
m1/ ml( ) 0.5= = ξ1

* x1

*/l=

ω1 ω2 ω3 ω4 ω5

Fig. 6 The lowest five mode shapes for a uniform pinned-pinned beam with an intermediate support located at
= 0.4 and carrying one intermediate point mass  located at = 0.5ξ1 x1/l= m1

*
m1/ ml( ) 0.5= = ξ1

* x1

*/l=
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5.3 Free vibration analysis of a multi-span beam with multiple point masses

In example 3 (see Fig. 4), a uniform pinned-pinned beam carrying three to five intermediate point

masses is studied and in the present example, the same pinned-pinned beam carrying five

intermediate point masses and with one to four intermediate pinned supports is studied (cf. Fig. 7).

The magnitudes and distributions of the five point masses are as shown in Note (2) below Table 3.

Four cases are studied: (i) one support at = 0.2; (ii) one support at = 0.4;

(iii) two supports at = 0.4 and = 0.6, respectively; (iv) four supports at

 = 0.2, = 0.4, = 0.6 and = 0.8, respectively. The lowest

five natural frequencies of the multi-span beam carrying multiple point masses are shown in

Table 5, and the associated mode shapes for the case of two supports located at = 0.4

and = 0.6 are plotted in Fig. 8. From Table 5 one sees that the lowest five natural

frequencies of the beam increase with increasing number of intermediate supports as expected and

the present results are very close to those obtained from the FEM. It is noted that the total number

of intermediate stations for the present problem is Ni = 9, thus, according to Eq. (36), the total

number of equations for the integration constants is . In other words, the order

of the overall coefficient matrix  is 40 × 40. It is obvious that the classical explicit analytical

methods will suffer much difficulty in such a case.

ξ1 x1/l= ξ1 x1/l=

ξ1 x1/l= ξ 2 x 2/l=

ξ1 x1/l= ξ 2 x 2/l= ξ 3 x 3/l= ξ 4 x 4/l=

ξ1 x1/l=

ξ 2 x 2/l=

q 4Ni 4+ 40= =

B[ ]

Fig. 7 A uniform pinned-pinned beam carrying five intermediate point masses mi at   (i = 1 − 5) and
with multiple intermediate supports located at  (example 5)

ξi
* xi

*/l=

ξ j x j/l=

Table 5 Influence of total number and location of intermediate supports on the lowest five natural frequencies
of a uniform pinned-pinned beam carrying five intermediate point masses (example 5) 

No. of
supports 

k

Locations of 
supports Methods

Natural frequencies (rad/sec)

1 0.2
Present 675.1635 2234.4879 4386.4858 7109.2055 12197.0443

FEM 675.1632 2234.4878 4386.4857 7109.2109 12197.0845

1 0.4
Present 1022.7077 2952.4270 4003.1320 6516.1612 9998.6141

FEM 1022.7072 2952.4272 4003.1331 6516.1648 9998.6317

2 0.4, 0.6
Present 2205.0012 3490.7278 5832.2267 8642.4383 11290.6774

FEM 2205.0010 3490.7286 5832.2276 8642.4485 11290.6967

4
0.2, 0.4,
0.6, 0.8

Present 5328.3373 7611.3321 9445.7897 11205.5248 14530.7043

FEM 5328.3380 7611.3361 9445.8000 11205.5426 14530.7504

ξ i x i/l=
ω1 ω2 ω3 ω4 ω5
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In the case of pinned-pinned beam with two intermediate supports located at  = 0.4 and

= 0.6 (cf. Fig. 7), in spite of the fact that the configuration of the beam itself is

symmetrical with respect to its central point C and the spacings for the five intermediate point

masses are also equal to each other, the lowest five mode shapes shown in Fig. 8 are not

symmetrical with respect to the central point C of beam. This is because the magnitudes of the five

intermediate point masses ( ) are not equal to

each other, where , (i = 1 to 5). Of course, all the five curves pass through the two

pinned supports located at = 0.4 and = 0.6 as one may see from Fig. 8.

6. Conclusions

In general, the accuracy of a numerical method is evaluated by comparing its numerical result

with the associated “exact” solution. For this reason, many researchers devote themselves to

obtaining exact solutions of various problems. The free vibration analysis of a multi-span beam

carrying multiple intermediate point masses is an important engineering problem, but its exact

solution for natural frequencies and mode shapes is rare. In this paper the numerical assembly

method (NAM) has been successfully applied to determine the exact solution for the natural

frequencies and mode shapes of a multi-span beam carrying multiple intermediate point masses.

ξ1 x1/l=

ξ 2 x 2/l=

m1

*
0.2= m2

*
0.3= m3

*
0.5= m4

*
0.65= m5

*
1.0=, , , ,

mi

*
mi/ ml( )=

ξ1 x1/l= ξ 2 x 2/l=

Fig. 8 The lowest five mode shapes for a uniform pinned-pinned beam carrying five intermediate point
masses and with two intermediate supports located at = 0.4 and = 0.6, respectively. The
magnitudes and locations of the five point masses are:  and

=1.0 located at = 0.1, = 0.3, = 0.5, = 0.7 and = 0.9, respectively

ξ1 ξ 2

m1

*
0.2= m2

*
0.3= m3

*
0.5= m4

*
0.65=, , ,

m5

*
ξ1

* ξ2

* ξ3

* ξ4

* ξ5

*
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Appendix

The overall coefficient matrix [B] for a uniform pinned-pinned beam with one intermediate point mass and one intermediate pinned support is
found to be

where

0 1 0  1  0  0  

0 1– 0  1  0  0  

sΩξ 1 cΩξ1 shΩξ1  chΩξ1  0  0  

0 0 0  0  sΩξ1  cΩξ1  

cΩξ1 sΩξ1  – chΩξ1  shΩξ1  cΩξ1  – sΩξ1  

sΩξ1–   cΩξ1  –   shΩξ1  chΩξ1  sΩξ1  cΩξ1  

0 0 0 0  sΩξ1

*

  cΩξ1

*

  

0 0 0 0  cΩξ1

*

  sΩξ1

*

  –

0 0 0 0  sΩξ1

*

  – cΩξ1

*

  –

0 0 0 0  m1

*

ΩsΩξ1

*

cΩξ1

*

–   m1

*

ΩcΩξ1

*

sΩξ1

*

+  

0 0 0 0  0  0  

0 0 0 0  0  0  

0  

0  

0  

shΩξ1  

chΩξ1  –

shΩξ1  –

shΩξ1

*

  

chΩξ1

*

  

shΩξ1

*

  

m1

*

ΩshΩξ1

*

chΩξ1

*

+

0  

0  

0  0  0  0  0  

0  0  0  0  0  

0  0  0  0  0  

chΩξ1  0  0  0  0  

shΩξ1  – 0  0  0  0  

chΩξ1  –   0  0  0  0  

chΩξ1

*

  sΩξ1

*

  – cΩξ1

*

  – shΩξ1

*

  – chΩξ1

*

–

shΩξ1

*

  cΩξ1

*

  – sΩξ1

*

  chΩξ1

*

  – shΩξ1

*

–

chΩξ1

*

  sΩξ1

*

  cΩξ1

*

  shΩξ1

*

  – chΩξ1

*

–

m1

*

ΩchΩξ1

*

shΩξ1

*

+   cΩξ1

*

  sΩξ1

*

  – chΩξ1

*

  – shΩξ1

*

–

0  sΩ  cΩ  shΩ chΩ

0  sΩ  – cΩ  – shΩ chΩ

sΩξ1 sinΩξ1=   cΩξ1 cosΩξ1=   shΩξ1 sinhΩξ1=   chΩξ1 coshΩξ1=, , ,

sΩξ1

*

sinΩξ1

*
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*
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*

=   shΩξ1

*
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*
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*
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