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Analysis of a force reconstruction problem
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Abstract. This article deals with the reconstruction of an impact force. This requires to take
measurements from the impacted structures and then to deconvolve those signals from the impulse
response function. More precisely, the purpose of the work described here is to analyse the method of
deconvolution and the problems that it implies. Thus, it is highlighted that the associated deconvolution
problem depends on the location of the measurement points: it is possible or not to reconstruct the force
of impact in function of the location of this point. Then, the role of the antiresonances is linked up with
this problem. The singular value decomposition is used to understand these difficulties. Numerical
predictions are compared and validated with experiments.
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1. Problematic

The determination of impact load history is necessary to design a structure. This step in the design

process is often critical, but it is not always possible to instrument the impactor (impact of a bird on

a windscreen, for example). Because it is necessary to recover the dynamic force using indirect

measurements, the problem is then to deconvolve two signals.

These investigations have interested many researchers. Doyle (1984, 1987, 1989) wrote several

papers in which he has described a frequencial method. Chang and Sun (1989), Yen and Wu

(1995a, 1995b) and Liu (2002) for example, have preferred to work in the time domain. Gao and

Randall (1999) use a cepstral analysis. A review of inverse analyse for indirect measurement of

impact force has been proposed by Harrigan et al. (2001). 

In fact, the authors recorded a strain response S(M, t) at M; then, to recover the load F(I, t)

induced by an impact at I, the authors must solve the following integral equation:

(1)

where G(I, M, t) is the impulse response function between the points M and I; ★ is the convolution

product: this is a deconvolution problem.

S M t,( ) G I M t, ,( )★F I t,( )=
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To solve the Eq. (1), a discrete problem must be generated by sampling the convolution integral

equation. This leads to a system of algebraic equations:

(2)

Where:

•  is the transfer matrix:

•  is the sampling frequency,

• nshift is such as nshift Δt is the elapse of the propagation time of the waves,

•  is the recorded strain

with : indeed at these times, the waves

haven’t reached yet the measurement point.

•  is the unknown load,

• t is the transpose operation.

In practice, the unrecorded response is not interesting. Therefore, the system of interest is:

(3)

Where:

•

•

•

Then, there is no row and no column of zeros in the matrix [G].

To solve Eq. (1), one must deconvolve two functions. This is an inverse problem, which is well-
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known to be ill-posed: generally, the solution is unstable (Alison 1979). This difficulty is often

hidden in the literature on dynamic reconstruction of impact loads, even if its presence is implicit.

Indeed, if sometimes the solving of Eq. (3) is realized with a conjugate gradient method (Chang and

Sun 1989), (Yen and Wu 1995a), in some other cases, (Yen and Wu 1995b), (Tsai 1998) a gradient

projection method is used to impose to the impact force to be nonnegative. In that latter case, one

says the solution is obtained by regularization: the force is obliged to respect a supplementary

condition to obtain a stable solution. Recently, an improvement of these regularization approaches

has been proposed (Jacquelin 2003), (Liu and Shepard 2005). In this article, one will say that a

force is recoverable if it is not necessary to regularize the problem to obtain an acceptable solution:

a direct solving of Eq. (3) is sufficient.

No article on deconvolution in dynamics deals with the parameters which influence the ill-

conditioning and then the reconstruction of the force. The purpose of this paper is to highlight the

role of the location of the measurement point. To do that, some experiments are performed on a

target which can be modelled analytically. First, the analytical model excited with numerical force is

used: thus, the experimental noise is eliminated. In practice, the response S is numerically

performed by applying Eq. (3) (forward problem) and, just after, without any signal processing, we

try to solve the Eq. (3): this allow to evaluate if the force is recoverable or not. Finally, the real

device will be tested to know if the first conclusions can be effectively applied.

In a previous article (Jacquelin et al. 2003) Thikhonov regularization was applied to time domain

deconvolution for estimating the impact force acting on a plate. Note that the purpose of this article

is to analyse a deconvolution problem with applications in dynamic and to highlight the critical

parameters, the antiresonances. No method to recover the force will be suggested, even when the

problem is rank-deficient. 

2. The studied system

2.1 Experimental set-up

Experiments using an Al-5054 aluminium plate as a target were performed. The plate is circular

(Fig. 1(a) - radius a = 205 mm; thickness h = 5 mm), clamped and isotropic (Young’s modulus,

Poisson’s ratio and density are E = 70 GPa, ν = 0.3 and ρ = 2700 kg/m3, respectively). The force is

exerted at I, the center of the plate; the dynamic response is measured on the loaded surface by two

strain gages positioned in the circumferential direction at 1 cm (M1) and 5 cm (M5) from the center

of the plate (Fig. 1a). 

We have chosen this device because an analytical expression for the transverse displacement can

be obtained.

The schematic of the whole experimental setup is illustrated in Fig. 1(b). Data acquisition and

analysis are made with a DSPT analyser (Siglab 20-42).

Experimental frequency response functions (FRF) are obtained by impulse testing performed with

an impact hammer (B&K 8202). Moreover, a force-exponential window is used: a rectangular

transient window function (“force” window) is applied to the input signal and an exponential

window is applied to the output signal (Mcconnell 1995). In Fig. 2(a) and Fig. 2(b), the two FRF

between I and Mi, Gt1(ω) and Gt5(ω) are plotted.



240 E. Jacquelin, A. Bennani and M. Massenzio

Fig. 1(a) Gages position

Fig. 1(b) Schematic of the experimental setup

Fig. 2(a) Experimental frequency response function
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Remark: Gt1(ω) and Gt5(ω) are in frequency domain: as the signals are in time domain, an inverse

Fourier transform for those two FRF is involved. In this article, the same writing is used to

designate a function and its Fourier transform: the variable t (resp. ω) indicates that one works in

the time domain (resp. frequency domain).

2.2 Analytical modeling

The system is modeled by an elastic, circular embedded “Kirchhoff” plate with uniform

characteristics, subjected to axisymetrical load acting on its center. The equation of motion can be

expressed in the following form (Graff 1975):

(4)

Where:

• w(r, t) is the transverse displacement,

• q(r, t) = f (t)δ (r) is the applied loading at the center of the plate

•

•

• r, h, E, ν are respectively the raduis and the tickness of the plate, the Young’s modulus and the

Poisson’s ratio.

It is well-known (Graff 1975) that the mode shapes of such a plate under axisymetrical loading are:

(5)
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Fig. 2(b) Analytical frequency response function
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Where Jp and Ip are p-order first kind and first kind modified Bessel’s function respectively; λn is a

solution of the following characteristic equation:

(6)

By applying the modal superposition, the displacement w(r, t) can be expressed in the following

form:

(7)

Mn, ωn, ωan and ξn are modal mass, circular eigenfrequency, damped circular eigenfrequency (ωan =

) and the damping ratio for the eigenmode n.

In this study, the strains in the circumferential direction εt on the surface of the plate (z = h/2) are

recorded: 

(8)

Then, the modal expansion of the impulse response function between the center of the plate (r = 0)

and a measurement point located at r can be deduced:

(9)

The analytical FRF plotted in Fig. 2(b) is then simply obtained by using the fast Fourier transform.

2.3 Remarks

1. The analytical modal expansion is interesting because it contributes to better understand the

phenomenon.

2. All the considered modes are symmetrical.

3. Some adjustments of the numerical model are taken into account: the Young’s modulus,

experimentally determined from a tensile test, is adjusted to 70,6 GPa in order to match the

experimental eigenfrequency.

4. The existence of damping in a structure affects the resonance and shifts the value of the FRF.

In this model, the damping ratio used is the same for all the eigenmode. Its value is the one of

the first eigenmode, identified from vibration tests. This assumption can explains some

discrepancies among the experimental and numeric results.

5. The modal expansion must be truncated. An essential problem is that modal expansion slowly

converges. Therefore, the number N of used eigenmodes must be sufficient to be able:

• to represent the static flexibility Gt static of the plate correctly,

• to well describe the dynamic behavior induced by the impact force.

Finally:

• the whole modes which are in the range of the excitation spectra must be retained,

• if the static flexibility is not well described, it is necessary to take into account the residual
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flexibility Gt residual (i.e., the flexibility of the neglected eigenmodes). Assuming that the

neglected eigenmodes have a quasi-static response, the static and afterward the residual

flexibility are determined from a static test, in order to take into account the participation of

all the other modes:

(10)

In these conditions, the deconvolution problem becomes:

(11)

Fig. 3, effectively shows that the analytical static flexibility is function of the number of modes

retained in the expansion: few modes are sufficient if the measurement point is far from the center.

In the following an impulse response function with N = 7 modes, corrected by the residual

flexibility will be used.

2.4 Excitations

• Numerical force: the numerical impact force represented in Fig. 4 is built. It is then possible to

obtain the response at any location of the plate by applying Eq. (1), i.e., a forward problem. The

cutoff frequency of the force spectrum is less than the seventh eigenfrequency of the system. It

is worth to note that the numerical force is well-known and not spoiled by any noise. 
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• Real force: an instrumented hammer was used to impact the plate. The impact force acting on

the plate and the strain induced by the solicitation were simultaneously recorded (Fig. 5).

Fig. 4 Numerical initial and recovered forces – measurement point at 1 cm

Fig. 5 Instrumented test: strain at 1 cm and force
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3. Analysis of the deconvolution problem

In this section, the model of the structure and the numerical force are used. A forward problem is

carried out: both matrices [Gt1] and [Gt5] are multiplied by the numerical force [F ] and then the

strains [εt1] and [εt5] are obtained. The problem is: is it possible to perform an inverse problem and

then to recover the force?

3.1 Recoverable force?

To recover the force represented in Fig. 4, the linear algebraic system Eq. (3) is solved. The

conclusion is dependent on the location of the measurement points.

Indeed, the solicitation can be perfectly recovered with the strains measured at 1 cm from the

center, it is not the same with the point located at 5 cm, as seen in Figs. 4 and 6. Thus, it seems that

the nature of the deconvolution problem is not the same in the two cases. 

3.2 Nature of the deconvolution problem

A discretized deconvolution problem leads to ill-conditioned matrices. However, there is different

kind of ill-conditioning (Hansen 1998): the problem can be ill-posed or can be rank-deficient.

To identify the nature of an ill-conditioning, it is interesting to use the singular value

decomposition (SVD) of the [G] matrix:

Fig. 6(a) Recovered force – measurement point at 5 cm
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• the singular values decay gradually to zero with no particular gap: the problem is only ill-posed,

• the singular values decay gradually to zero and there is a well-determined gap between two

singular values: the problem is rank-deficient.

In Fig. 7, the singular values of the matrices Gt1 and Gt5 are plotted. This figure highlights that the

nature of the problem changes with the position of the measurement point:

• the inverse problem posed with Gt1 is solely ill-posed, 

• the inverse problem posed with Gt5 is ill-posed and rank-deficient.

Therefore, we would conclude that Gt1 contains more informations than Gt5.

We recall that the SVD of a G,  real matrix is defined as following:

(12)

Where:

•  is a matrix with orthonormal columns; ui are the eigenvectors of U tU;

ui is a left singular vector of G;

•  is a matrix with orthonormal columns; vi are the eigenvectors of V tV;

vi is a right singular vector of G;

•  has nonnegative diagonal elements σi such as ; σi are the

singular values of G: they are the square roots of the eigenvalues of the tGG matrix.

Moreover, using the SVD, we can get a formulation of the solution of the problem Eq. (3) in the

least square sense:

m n,( ) m n≥,

G UΣt
V uiσ i

  t
vi

i 1=

n

∑= =

U u1 … un, ,( ): m n,( )=

V v1 … vn, ,( ): n n,( )=

Σ diag σ1 … σn, ,( )= σ1 … σn 0≥ ≥ ≥

Fig. 6(b) Recovered force – measurement point at 5 cm
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If G is invertible, its inverse is given by  and therefore the solution of the

problem Eq. (3) is:

(13)

Otherwise, the pseudo-inverse G* is given by  and the least square solution to the

problem Eq. (3) is given by:

(14)

The expression Eq. (12) and the Fig. 7 explain why it is impossible to recover the force with the

matrix Gt5: the smallest singular value is below the computer precision, therefore the results are

dominated by rounding errors; that is not the case with Gt1.

3.3 FRF and force recovery

A such different nature between Gt1 and Gt5 is surprising: the points located at 1 cm and 5 cm

from the center seem to be equivalent.
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Fig. 7 Gt1 and Gt5 singular values
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However, a careful observation of the FRF modulus, , shows that (Fig. 8):

• Gt1: there is always an antiresonance frequency between two successive resonance frequencies,

• Gt5: there is not this succession of resonance and antiresonance frequencies.

Nota Bene: An antiresonance frequency ωar is well-defined for a system with no damping: the FRF

modulus is null at this frequency, which is also a singular point of the curve; the FRF phase is

broken. For a weak damping (it is the case in this study), the antiresonance frequency can be

defined by a local minimum of the FRF modulus, which is a quasi-singular point (the slope of the

curve has an important change at this frequency); the FRF phase is still broken.

Gt ω( )

Fig. 8 Modulus and phase of Gt1
 and Gt5
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For a forward problem, the resonances play a great role because they are the zeros of the FRF

denominator. For an inverse problem, the antiresonance frequencies become the important

parameters, as we can see, if we work in frequency domain. Indeed, Eq. (1) becomes:

(15)

then the solution is:

(16)

For the inverse problem, the antiresonance frequencies play exactly the same role as the resonance

frequencies for the forward problem.

But there is a great difference between a resonance and antiresonance: although the emergence of

a resonance pick in FRF depends on the position of the sensor, the value of the resonances

frequencies depend only on the structure, while the antiresonances are also a function of the

position of the excitation and the measurement point. This can explain why the choice of the

measurement point is so important to recover the force.

It is then natural to wonder if the existence of an antiresonance allows a better description of the

structure. Indeed, when an antiresonance frequency is lacking between two resonances frequencies,

the system becomes rank-deficient: it is exactly as if some information are redundant. Therefore, the

forward and inverse problem are carried out with  an impulse response function between

the center and the point located at 5 cm, but built with only 4 modes, and corrected by a residual

S ω( ) Gt ω( ) F ω( )×=

F ω( ) S ω( )
Gt ω( )
--------------=

Gt5

4 mod es

Fig. 9 Singular values of G
t5

4 mod es
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flexibility: in these conditions  gives less information on the dynamic of the system than

Gt5. But, in this case, the FRF as shown in Fig. 10, represent a succession of resonance and

antiresonance frequencies; the SVD also proves that this matrix is not rank-deficient (Fig. 9). Then

the force can effectively be recovered: the same result, previously plotted in Fig. 4, is found.

Therefore, the impossibility to recover a force with Gt5 is not a problem of information lack: this

problem is certainly not a mechanical problem; only applied mathematicians could answer.

3.4 Number of time steps

Calculations were also performed with impulse response functions which simulate other sensors

(Bennani 2001): for example  is used to simulate radial strains:

(17)

The previous conclusions are not valid with Gr5 (radial strain at 5 cm from the center of the plate):

indeed, we can observe on Fig. 11 that there is not always an antiresonance between two resonances

but it is possible to recover the force. In fact, in this case, when the number of time steps is 200,

even if the smallest singular value is weak (3.10−7), as shown in Table 1, it is not below the

computer precision (10−16): this is the reason why the force is recoverable. 

But, as also shown in Table 1, if the size of the problem increases, i.e., if the total number of time

steps increases (up to 800 for example), the lowest singular value (10−24) is below the computer

precision and the solution is dominated by rounding errors and becomes unstable: then, if a small

Gt5

4 mod es

Gr r 0 t, ,( )

Gr r 0 t, ,( ) h

2
---

φn″ r( )φn 0( )sin ωn 1 ξ n

2
– t( )exp ξnωnt–( )
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2
–

---------------------------------------------------------------------------------------------------
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Fig. 10 Modulus and phase of G
t5
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sampling period is required for a forward problem to obtain some accurate results, this could induce

an impossibility to recover the inverse solution.

It is worth to note that if the lowest singular value depends strongly on the number of time steps

for the measurement at 5 cm, the size of [G ] has a very small influence on the condition number

(i.e., the ratio of the greatest singular value on the lowest singular value) for the measurement point

located at 1 cm, as shown in Table 1.

It has been shown that the role of the antiresonance does not depend on the nature of the sensor:

accelerometer and displacement transducer have also been simulated and the conclusions are the

same (Bennani 2001).

4. Experimental verification

The previous conclusions are made from some numerical signals and modeling. Then, it seems

important to highlight also the role of the antiresonances with real signals. The experimental FRF

Gt1 and Gt5 are determined (Fig. 2a) and then the instrumented impact test is realized as previously

described.

Table 1 Some singular values of different FRF

Gr5 Gt1

Number
of time steps

Lowest
singular value

Greatest
singular value

Lowest
singular value

Greatest
singular value

200 2.8 10−7 4.310−6 2.8 10−7 2.1 10−6

800 10−24 10−15 3.5 10−8 6.4 10−6

Fig. 11 Modulus and phase of Gr5
 - Number of time steps = 200
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To recover the impact force, the discrete convolution problem Eq. (3) is solved. Fig. 12(a) and

Fig. 12(b) show that only the measurements at 1 cm allow the reconstruction, according to the

numerical results. This validates the influence of the measurement point location.

Fig. 12(a) Force reconstruction with experiment data

Fig. 12(b) Force reconstruction with experiment data - Zoom of the initial part
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Moreover, the SVD proves that the problem is rank-deficient and very ill-conditioned if we use

the measurement point located at 5 cm (Fig. 13).

5. Conclusions

To recover an excitation by solving the algebraic system Eq. (2) is not so easy: the solution of

such a system is not always stable. This study highlights the role of the antiresonances on the

stability: a succession of resonance and antiresonance frequencies is required to be able to recover

the force. Then, it seems important to choose well the location of the measurement point in order to

obtain a good condition number of the transfer matrix. The reason why the lack of the antiresonance

frequency causes the rank deficiency of the transfer matrix, is the subject of current researches.

We have also shown that the inverse problems are dominated by the rounding errors when the

system is rank-deficient: then the number of calculus must not to be high in order to succeed in

recovering the force.
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