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receding contact problem with a rigid stamp

Erdo an Çak ro lu†, 
.
Isa Çömez‡ and Rag p Erdöl‡†

Karadeniz Technical University, Civil Engineering Department, 61080, Trabzon, Turkey

(Received December 7, 2004, Accepted July 6, 2005)

Abstract. This paper presents the possibilities of adapting artificial neural networks (ANNs) to predict
the dimensionless parameters related to the maximum contact pressures of an elasticity problem. The
plane symmetric double receding contact problem for a rigid stamp and two elastic strips having different
elastic constants and heights is considered. The external load is applied to the upper elastic strip by means
of a rigid stamp and the lower elastic strip is bonded to a rigid support. The problem is solved under the
assumptions that the contact between two elastic strips also between the rigid stamp and the upper elastic
strip are frictionless, the effect of gravity force is neglected and only compressive normal tractions can be
transmitted through the interfaces. A three layered ANN with backpropagation (BP) algorithm is utilized
for prediction of the dimensionless parameters related to the maximum contact pressures. Training and
testing patterns are formed by using the theory of elasticity with integral transformation technique. ANN
predictions and theoretical solutions are compared and seen that ANN predictions are quite close to the
theoretical solutions. It is demonstrated that ANNs is a suitable numerical tool and if properly used, can
reduce time consumed.

Key words: contact problem; contact pressure; contact length; elasticity; rigid stamp; backpropagation;
artificial neural networks.

1. Introduction

The human brain is a very powerful instrument for all kinds of tasks, from vision and hearing to

steering the muscles. Probably the most interesting feature is its capability to learn and to anticipate

new tasks. This capacity of the brain has inspired many scientists to model artificial intelligence

(AI) techniques. There are different types of AI techniques and ANNs is one of the widely used AI

techniques to solve engineering problems.

By the improvement of the computer technology, computers become an integral part of day to day

activities and engineers have utilized various applications with ANN. Several authors have used

ANNs in engineering applications and many reliable results have been produced.

Vanluchene and Sun (1990) have demonstrated the potential of the ANNs approach to three

structural engineering applications. The first problem involves a simple beam load location; the
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second problem is a simple concrete beam design; and the third problem is a simple supported

rectangular plate analysis. The behaviors of the concrete in the state of plane stress under monotonic

biaxial loading and compressive uniaxial cycle loading are modeled with ANNs by Ghaboussi et al.

(1991). The role of neural computing on the structural analysis and design is examined by Hajela

and Berke (1991). They have represented the force-displacement relationship in static structural

analysis with ANNs which can be used for rapid analysis for structural optimization. The effect of

representation on the performance of ANNs in structural engineering applications is studied by

Gunaratnam and Gero (1994). They have suggested that dimensional analysis provides a suitable

representation framework for training the input-output patterns. ANN which replaces to an anisotropic

hardening plasticity problem through an appropriate sequence of anisotropic elasticity problems is

illustrated by Theocaris and Panagiotopoulos (1995). ANN approach for the detection of the

changes in the characteristics of the structure systems is presented by Masri et al. (1996). The size

effects in fracture of cementitious materials with ANN model built from experimental data is

examined by Arslan and Ince (1996). The potential use of ANNs in the field of fracture mechanics

is explored by Seibi and Alawi (1997). They have predicted the fracture toughness of an aluminum

alloy based on experimental data, and explored the effect of crack geometry, temperature and

biaxiality on fracture toughness. The estimation of the contact force on laminated composite plates

subjected to low velocity impact with ANN is considered by Chandrashekhara et al. (1998). They

have formed the training set by using the contact force and strain histories obtained from finite

element simulation results. The load deflection behavior of concrete slabs, the final crack-pattern

formation of concrete slabs, and both the concrete and reinforcing-steel strain distribution at failure

prediction with ANN approach is examined by Hegazy et al. (1998). The prediction of 28-day

compressive strength of concrete by using ANNs based on the inadequacy of present methods

dealing with multiple variable and nonlinear problems is considered by Ni and Wang (2000). The

use of ANNs in predicting the ultimate shear strength of reinforced concrete deep beams is explored

by Sanad and Saka (2001). They have collected one hundred eleven experimental data from

literature covering the case of simply supported beams with two point loads acting symmetrically

with respect to the centerline of the span. The detection and classification of flaws in concrete

structure is studied by Xiang and Tso (2002). They have concerned with the feature extraction from

bispectra for concrete flaw detection. Impact-echo experiments are carried out for three different

types of flaw in concrete structure and features are selected from the modules of bispectra in the

primary region and ANN is used as a classifier. The potential use of ANNs in the field of contact

mechanics is examined by Ozsahin et al. (2004). They have developed ANN model for predicting

the contact lengths between the elastic layer and two elastic circular punches.

In this study, an ANN approach is utilized to predict the dimensionless parameters related to the

maximum contact pressures of the plane symmetric double receding contact problem of a rigid

stamp and two elastic strips with different elastic constants and heights. Analytic solution of the

problem is obtained by Comez et al. (2004). The input and output values of the training and testing

set patterns are formed using the theoretical solution. The best generalization and the minimum

ANN structure are determined by trial and error. After training, ANN test predictions and the effect

of some factors on the dimensionless parameters related to the maximum contact pressures are

compared with theoretical solutions.



Application of artificial neural networks to a double receding contact problem with a rigid stamp 207

2. Theoretical solution of the contact problem

The plane symmetric double receding contact problem for a rigid stamp and two elastic strips

with different elastic constants and heights is shown in Fig. 1. The external load is applied to the

upper elastic strip by means of a rigid stamp and the lower elastic strip is bonded to a rigid support.

The problem is solved under the assumptions that the contact between two elastic strips also

between the rigid stamp and the upper elastic strip are frictionless, the effect of gravity force is

neglected and only compressive normal tractions can be transmitted through the interfaces.

The analytical solution of the problem studied by Comez et al. (2004) is summarized in the

following:

Observing that the system is symmetrical about y axis at x = 0, it is sufficient to consider the

problem only in the region . Using the symmetry and Fourier transform technique, the

following expressions may be written

 (1a)

(i = 1, 2) (1b)

where u and v are the x and y - components of the displacement vector. Φi and Ψi (i = 1, 2)

functions are inverse Fourier transforms of ui and vi, respectively. Taking necessary derivatives of

Eqs. (1a) and (1b), and substituting them into Navier equations, and solving second order

differential equations, the following expressions may be obtained for displacements:

(2a)

 

(2b)

where Ai, Bi, Ci and Di (i = 1, 2) are the unknown functions which will be determined from the
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Fig. 1 Geometry of the contact problem
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boundary conditions prescribed on y = 0, y = −h2 and y = −h of the problem. 

for plane stress and  for plane strain, νi being the Poisson’s ratio. Using Hooke’s law

and Eqs. (2a) and (2b), the stress components may be expressed as follows:

 (3a)

               (3b)

(3c)

The plane double receding contact problem outlined above as shown in Fig. 1 must be solved

under the following boundary conditions:

 (4a)

(4b)

  (4c)

(4d)

(4e)

(4f)

(4g)

(4h)
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(4i)

(4j)

where a is the half-width of the contact length between the rigid stamp and the upper elastic strip, b

is the half-width of the contact length between the two elastic strips, F(x) is a known function

obtained the equation giving the profile of the rigid stamp, p2(x) and p1(x) are the unknown contact

pressures on the contact lengths a and b, respectively.

By making use of the boundary conditions (4a-h), eight of the unknown constants Ai, Bi, Ci and

Di(i = 1, 2) appearing in Eqs. (2) and (3) may be obtained in terms of the unknown functions p2(x)

and p1(x). Thus, the stresses and the displacements can be expressed depending on the unknown

contact pressures p2(x) and p1(x).

The new unknown functions p2(x) and p1(x) are determined from the conditions (4i) and (4j)

which have not yet been satisfied. These conditions give the following system of integral equations,

after some routine manipulations and using the symmetry:

(5a)

 (5b)

where , , ,  and l(x) are defined in Comez et al. (2004).

In the system of singular integral Eqs. (5a) and (5b) in addition to the contact pressures (stresses)

p2(x) and p1(x), the half-width of the contact lengths a and b are also unknown. These two

unknowns a and b are determined from the equilibrium conditions which may be expressed as

(6a)

(6b)

where P is the known (compressive) resultant force applied to the rigid stamp away from the

contact region ( y = 0, ).

Designating the variables (x, t) on  and y = 0 by (x1, t1) and (x2, t2) respectively, and

defining the following dimensionless quantities;
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(7b)

(7c)
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(7d)

where μ2 is the upper elastic strip shear modulus. The system of integral Eqs. (5a) and (5b) may be

expressed as follows:

(8a)

     (8b)

where , , ,  and l*(r) are defined in Comez et al. (2004).

Similarly, the additional conditions (6a) and (6b) may be expressed as

(9a)

(9b)

In order to solve the system of integral equations, it is found that the integral Eqs. (8a) and (8b)

has an index −1 (Erdogan and Gupta 1972) because of the smooth contact at the end points a and b.

To insure smooth contact at the end points a and b, let

(10a)

(10b)

where G1(s) and G2(s) are bounded functions. Using the Gauss-Chebyshev integration formulas

(Erdogan and Gupta 1972), Eqs. (8a), (8b), (9a) and (9b) become
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(11c)
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(11d)

where,

  (12a)

(12b)

The Eqs. (11a), (11b), (11c) and (11d) give 2N + 2 algebraic equations to determine the 2N + 2

unknowns G1(sk), G2(sk), (k = 1, ..., N), a and b. The system of equations are linear in G1(sk) and

G2(sk), but highly nonlinear in a and b. Therefore, a time consuming interpolation and iteration

scheme had to be used to obtain these two unknowns.

It is seen from contact pressure distribution that the maximum contact pressures between the rigid

stamp and the upper elastic strip, and between the two elastic strips take place at x = 0.

3. Application of the artificial neural network approach to the contact problem

Basically, ANNs simulate the biological neural system and intend to imitate the behavior of

biological learning and decision making. In the ANN, the basic unit is called artificial neuron or

processing element (PE). ANNs are computing systems made up of a simple and highly

interconnected PEs that process information by their dynamic state response to external inputs.

Every PE may have several input paths. The PE combines, usually by a simple summation, the

weighted values of these input paths. The result is internal activity level for the PE. The combined

values are then modified by an activation function.

In ANNs, learning is to modify the variable connection weights on the inputs of each PE in order

to achieve the desired results for a given set of inputs. There are two types of learning; supervised

and unsupervised. In supervised learning, the ANN output(s) is compared to the desired output(s).

Weights are then adjusted by the network so that the next iteration can produce a closer match

between desired and ANNs output(s). The global error reduction is created over time by

continuously by modifying the initial weights until acceptable error is reached.

Many researchers have developed various ANN models for different purposes. The most popular

supervised learning approach is multi layer perceptron (MLP) architecture. The MLP learns via

backpropagation (BP) algorithm, which uses the gradient-descent method to minimize the error

function (Rumelhart 1986). This algorithm necessitates the use of a continuous differentiable

weighting function; therefore, sigmoid activation function has been used in most ANNs. The

learning rule associated with BP is known as the generalized delta rule. Fig. 2 shows a processing

element and the sigmoid activation function.

Where  is the inputs,  is the weights of the inputs, netj is weighted

summation and y is the sigmoid activation function in the range of [0 − 1].

Basically, all ANNs have a similar structure of topology. PEs are usually organized into groups

called layers. The layers are called input layer, hidden layer(s) (one or more, especially one) and

b
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kπ
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output layer. Each PE is independent in its layer, but is connected to all of the PEs in the next layer

with weights. The number of PEs in the input and output layers are determined by the design

requirements. However, there is no general rule for selecting the number of PEs in the hidden layer

and the number of PEs in the hidden layer seriously affects the outcome of the network training. It

is mainly problem specific but it should be sufficiently low and ensure generalization. If too few

PEs are included, the network may not be able to learn properly and the predictions of the network

to testing patterns will be poor. On the other hand, if too many PEs are included, the network

becomes over trained and may provide erroneous predictions to testing patterns. The best structure

of the ANN requires trial and error. A general MLP architecture, a three layered ANN with a BP

algorithm, is shown in Fig. 3.

Fig. 3 The ANN architecture with BP algorithm

Fig. 2 A processing element and sigmoid function
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Where ,  and  are input, hidden and output layer PEs;

vij and wjk are the weights from input to hidden layer, and hidden to output layer; vj and wk are the

biases of hidden and output layer, respectively.

Training a network by BP algorithm involves three stages; feedforward of training set,

backpropagation of associated error and adjustments of weights and biases. The procedures of the

ANNs are widely given in Zurada (1992) and Fausett (1994).

If the ANN is trained well, it can quickly predict the corresponding output(s) for any given inputs.

It predicts the output(s) of the testing pattern using the existing weight values developed in the

training. The predictions are extremely rapid because the network only calculates the input and

weight values once. This feature provides time gaining especially in time consuming problems.

As it is stated before, the aim of this paper is to investigate the performance of ANNs in

predicting dimensionless parameters related to the maximum contact pressures by using the BP

algorithm. There are many ANN programs available. In this study, a program written in C++ has

been utilized for predicting the dimensionless parameters related to the maximum contact pressures.

A three layered ANN structure is selected like in Fig. 3. In this study, different combination of the

force, geometry and material properties have been formed for the input layer. These are 6 PEs

corresponding to the 6 dimensionless variables. These dimensionless variables are:

η : Dimensionless quantity given in Eq. (7d)

R/h2 : Ratio of radius of rigid stamp to upper elastic strip height

h2/h1 : Ratio of upper and lower elastic strip heights

μ2/μ1 : Ratio of upper and lower elastic strip shear modulus

κ2 : Elastic constant of the upper strip

κ1 : Elastic constant of the lower strip

and there are 2 PEs in the output layer corresponding to the 2 dimensionless parameters related to

the maximum contact pressures. These are:

: Dimensionless parameter related to the maximum contact pressure between the

rigid stamp and the upper elastic strip

: Dimensionless parameter related to the maximum contact pressure between the two

elastic strips.

The values of the input variables used for training set are presented in Table 1.

225 patterns which are different combinations of the values in Table 1 are solved theoretically to

form the training set. In addition, 45 patterns apart from the values in Table 1 are solved to form the

testing set.

Xi i 1 … n, ,=( ) Zj j 1 … p, ,=( ) Yk k 1 … m, ,=( )

p2

max
h2/P⋅

p1

max
h2/P⋅

Table 1 Input values used for training set

η R/h2 h2/h1 μ2/μ1 κ2 κ1

250
500

1000

125
250
500

0.25
0.5
1
2
4

0.0625
0.25

1
4

16

1.8
2

2.2

1.8
2

2.2
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Because of the feature of the sigmoid function, pattern’s input-output values obtained from

theoretical solution need to be normalized into the range of [0 − 1]. Besides, selecting the

normalization ranges, such as [0.1 − 0.9], instead of the boundary range [0 − 1] greatly decreases the

training time. Normalization can be linear or nonlinear depending on the distribution of the training

and testing sets. In this problem, each column of the pattern input-output values is normalized into

different ranges. As seen in Table 1, each column’s minimum and maximum values are in different

ranges, so that, each input and output columns are normalized with different functions and different

ranges. First four input columns are normalized into different logarithmic functions scaled in the

ranges of [0.30 − 0.70], [0.34 − 0.66], [0.40 − 0.60] and [0.38 − 0.62], respectively. The last two

input columns are normalized into linear function scaled in the range of [0.49 − 0.51] . Similarly,

the output columns are normalized into different nonlinear functions in the ranges of [0.20 − 0.80]

and [0.30 − 0.70], respectively.

The number of PEs in the hidden layer of the network is a harmony between convergence and

generalization. Convergence is the capacity of the network to learn the pattern on the training set

and generalization is the capacity to predict on the testing patterns.

The most important factor for the convergence is the initial weight values. They affect the

reaching of a global minimum error. The update of weight values depends on the derivative of the

former activation function and the latter activation function. Therefore, it is important to avoid

choices of initial values that would make it likely that either activation functions or derivatives of

activation functions are zero. In addition, α , the learning rate, also affects the convergence. α is the

constant proportionality of the generalization. The more learning rate the more changes in weights.

4. Results and discussion

Many network structures have been tried by trial and error. It is found that, there is a trade off

between the capacity of a network and time consumed. Usually, the capacity of a network is found

to increase with suitable increase in the training set patterns and the number of PEs in the hidden

layer. In the meantime, the increase of these also increases training time.

The relative error is computed as , where Oactual and OANN are the theoretical

solution and ANN prediction of the  and . Training is stopped when each output

relative error in normalized training set is less than 1.50%. The aim is to determine the best

generalization and the minimum number of PEs in the hidden layer. Because of this, different hidden

layer PEs, learning rate and initial weight values are tried by trial and error to determine the

appropriate network structure. As a result, the network structure of the 6-18-2 with α = 0.5 and the

initial weights chosen random in the range of [0.05 − 0.30] gives the best generalization. Training time

is approximately 10 hr on a personal computer and predicts testing patterns in 1 second on the same

PC. Different network structures with different learning rate and initial weight values may produce

better convergence and generalization and smaller relative error.

The testing set is used to evaluate the capacity of the trained ANN structure. 45 testing set

patterns input values and desired outputs are presented in Table 2. The maximum relative errors of

the  and  in the testing set are calculated as 2.77% and 1.81%, respectively

and Fig. 4 is an expression of the learning capacity of the network on the  and

erel
Oactual OANN–

Oactual

------------------------------- *100=

p2

max
h2/P⋅ p1

max
h2/P⋅

p2

max
h2/P⋅ p1

max
h2/P⋅

p2

max
h2/P⋅
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Table 2 Testing set patterns

No
Input values Desired outputs

η R/h2 h2/h1 μ2/μ1 κ2 κ1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

300
675
450
470
625
550
950
780
700
270
610
300
475
275
650
390
580
1100
200
650
280
600
720
225
750
600
330
875
1250
880
400
800
260
900
850
350
375
375
375
375
750
750
750
750
325

180
135
200
170
175
550
475
190
170
215
290
150
175
275
150
145
220
400
425
310
330
300
190
495
390
600
240
160
300
275
210
450
325
350
225
155
185
185
375
375
185
185
375
375
300

0.40
0.60
1.60
2.50
0.15
0.45
0.55
1.20
0.75
2.75
2.50
3.00
0.40
0.20
5.00
0.70
1.40
2.50
1.80
1.90
0.90
0.30
3.50
0.80
0.65
1.25
0.30
0.70
0.40
0.60
1.75
0.40
1.70
0.80
2.40
1.25
3.00
0.75
0.35
1.50
0.40
1.50
0.75
3.00
2.25

12.50
14.00
1.60
0.07
2.85
0.80
1.25
0.09
1.90
10.50
0.12
2.75
0.10
0.20
1.25
3.60
0.75
0.40
0.20
3.00
2.40
0.45
2.60
2.10
0.40
0.75
0.08
0.06
5.00
15.00
0.50
20.00
1.90
8.00
9.00
2.00
10.00
0.65
0.15
2.50
2.50
0.15
10.00
0.60
0.05

2.18
2.16
2.10
1.81
2.12
2.02
1.92
1.79
2.13
2.16
1.84
2.17
1.82
1.95
2.14
1.94
2.04
1.97
1.83
1.96
2.09
1.98
2.11
2.03
2.02
1.89
1.78
1.76
2.17
2.21
1.90
2.24
1.85
2.15
2.07
2.10
2.15
2.03
1.93
2.14
2.07
1.88
2.12
1.91
1.76

1.85
1.81
2.05
2.16
2.01
2.06
1.88
2.15
2.06
1.85
2.11
2.08
2.13
2.14
2.10
1.81
2.08
2.07
2.03
1.84
1.99
2.09
1.99
1.94
2.13
1.93
2.10
2.19
1.97
1.83
1.98
1.76
1.79
1.89
1.79
2.02
1.83
2.07
2.17
2.04
1.96
2.12
1.81
1.95
2.24

0.97862
1.84353
1.28290
1.62501
1.71651
0.95200
1.31641
1.96951
1.78842
0.54971
1.41467
1.09439
1.61259
1.00413
1.81394
1.44024
1.47050
1.54160
0.72631
1.18987
0.74902
1.35085
1.63216
0.57300
1.30519
0.93187
1.18878
2.27886
1.76635
1.38503
1.29553
0.95347
0.73450
1.25556
1.49872
1.27767
0.87565
1.31661
1.00493
0.76000
1.80950
1.92167
1.05797
1.30850
1.06733

0.49112
0.46607
0.60791
0.84580
0.77030
0.68527
0.70670
0.86682
0.66422
0.32833
0.80882
0.50971
0.85459
0.75261
0.64526
0.58978
0.70756
0.75696
0.61461
0.52285
0.52820
0.79805
0.54418
0.48519
0.76752
0.63901
0.80137
0.89415
0.62060
0.45143
0.72030
0.45202
0.51161
0.48095
0.39927
0.59548
0.36040
0.73397
0.74984
0.49883
0.69823
0.84562
0.45853
0.69908
0.76576
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max
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max
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. Each point stands for a testing pattern output. The nearer the points gather around the

diagonal, the better are the learning results.

Once trained well, ANN can quickly predict the corresponding output(s) for any given inputs. In

the following, the trained ANN is used to predict the effect of some factors on the dimensionless

parameters related to the maximum contact pressures;  and , and the results

are compared with theoretical solutions.

Fig. 5 shows the variation of the  and  with η = (200, 300, 450, 650, 900,

p1

max
h2/P⋅

p2

max
h2/P⋅ p1

max
h2/P⋅

p2

max
h2/P⋅ p1

max
h2/P⋅

Fig. 4 Comparison of  and  obtained from ANN prediction and theoretical solutionp2

max

h2/P⋅ p1

max

h2/P⋅

Fig. 5 Effect of η on  and  obtained from ANN prediction and theoretical solutionp2

max

h2/P⋅ p1

max

h2/P⋅
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1250) for R/h2 = 300, h2/h1 = 1.25, μ2/μ1 = 0.80, κ2 = 1.93 and κ1 = 1.97. It is seen that as η

increases, while the other input values are fixed,  and  increase. Pattern input

values are selected different from those in the train and test sets. Maximum relative errors are

0.55% and 1.60%, respectively.

Fig. 6 demonstrates the variation of  and  with R/h2 = (100, 150, 225, 325,

450, 625) for η = 425, h2/h1 = 0.80, μ2/μ1 = 2.00, κ2= 2.14 and κ1 = 2.06. It is seen that as R/h2

increases, while the other input values are fixed,  and  decrease. None of the

pattern input values are selected same as those in the train and test sets. Maximum relative errors

are 1.16% and 0.68%, respectively.

p2

max
h2/P⋅ p1

max
h2/P⋅

p2

max
h2/P⋅ p1

max
h2/P⋅

p2

max
h2/P⋅ p1

max
h2/P⋅

Fig. 6 Effect of R/h2 on  and  obtained from ANN prediction and theoretical solutionp2

max

h2/P⋅ p1

max

h2/P⋅

Fig. 7 Effect of h2/h1 on  and  obtained from ANN prediction and theoretical solutionp2
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h2/P⋅ p1

max

h2/P⋅
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Variation of  and  with h2/h1 = (0.20, 0.40, 0.75, 1.25, 2.50, 5.00) for

η = 325, R/h2 = 325, μ2/μ1 = 0.40, κ2= 2.05 and κ1 = 2.15 is given in Fig. 7. It is seen that as h2/h1

increases, while the other input values are fixed,  and  decrease. Pattern input

values are also selected different from those in the train and test sets. Maximum relative errors are

1.78% and 1.37%, respectively.

Variation of  and  with μ2/μ1 = (0.05, 0.20, 0.60, 1.50, 5.00, 20.00) for

η = 600, R/h2 = 200, h2/h1 = 1.50, κ2 = 2.00 and κ1 = 2.00 is given in Fig. 8. It is seen that as μ2/μ1

increases, while the other input values are fixed,  and  decrease. None of the

pattern input values are also selected same as those in the train and test sets. Maximum relative

errors are 0.82% and 1.99%, respectively.

5. Conclusions

In this paper, a tree layered artificial neural network with backpropagation algorithm has been

developed. Reliable predictions have been produced for the dimensionless parameters related to the

maximum contact pressures between the rigid stamp and the upper elastic strip, and between the

two elastic strips. The patterns are obtained from elasticity solution. It is seen that, number of

processing elements in the hidden layer, initial weight values and learning rate have considerable

effects on the training. It was found that the artificial neural networks reduce the overall

computation time required when compared with existing theoretical analysis methods.

As a result of using the artificial neural network in the analysis of the relationship between the

dimensionless parameters related to the maximum contact pressures and the dimensionless quantity

given in Eq. (7d), the ratio of radius of rigid stamp to upper elastic strip height, the ratio of upper

and lower elastic strip heights, the ratio of upper and lower elastic strip shear modulus, the elastic

constants of the upper and lower strips, following conclusions can be made:

p2

max
h2/P⋅ p1

max
h2/P⋅

p2

max
h2/P⋅ p1

max
h2/P⋅

p2

max
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max
h2/P⋅
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max
h2/P⋅ p1

max
h2/P⋅

Fig. 8 Effect of μ2/μ1 on  and  obtained from ANN prediction and theoretical solutionp2
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h2/P⋅ p1

max

h2/P⋅
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• When η increases,  and  increase.

•  and  decrease, when R/h2 increases.

• If h2/h1 increases,  and  decrease.

•  and  decrease, if μ2/μ1 increases.

It is shown that the artificial neural network predictions agree well with that of theoretical

solutions in Figs. 4, 5, 6 and 8. However, good agreement is not observed in Fig. 7. Although the

errors are not big in Fig. 7, agreement isn’t like the same in Figs. 5, 6 and 8. It mustn’t be forgotten

that ANNs predict only with its capacity based on the training set patterns, so that; any predictions,

except the testing set patterns used in this paper, doesn’t guarantied to be agreed well and to have

low relative errors. Consequently, based on the figures above, application of artificial neural

networks to contact problems can be practical especially for the time consuming problems which

require interpolation and iteration in theoretical solution. Artificial neural networks may be applied

other contact problems successfully.
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