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Robustness analysis of vibration control in structures 
with uncertain parameters using interval method
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Abstract. Variations in system parameters due to uncertainties may result in system performance
deterioration. Uncertainties in modeling of structures are often considered to ensure that control system is
robust with respect to response errors. Hence, the uncertain concept plays an important role in vibration
control of the engineering structures. The paper discusses the robustness of the stability of vibration
control systems with uncertain parameters. The vibration control problem of an uncertain system is
approximated by a deterministic one. The uncertain parameters are described by interval variables. The
uncertain state matrix is constructed directly using system physical parameters and avoided to use bounds
in Euclidean norm. The feedback gain matrix is determined based on the deterministic systems, and then
it is applied to the actual uncertain systems. A method to calculate the upper and lower bounds of
eigenvalues of the close-loop system with uncertain parameters is presented. The lower bounds of
eigenvalues can be used to estimate the robustness of the stability the controlled system with uncertain
parameters. Two numerical examples are given to illustrate the applications of the present approach. 

Key words: uncertain systems; vibration active control; upper and lower bounds of eigenvalues;
robustness analysis of the stability; interval analysis.

1. Introduction

In engineering design, it is important to calculate response quantities such as the displacement,

stress, vibration frequencies and mode shapes against a given set of design parameters. However,

the design parameters may be uncertain because of complexity of structures, manufacture errors and

inaccuracy in measurement, etc. In the past, problems with uncertainties have been studied to

provide an insight into the statistical response variations. The methods used in these studied were

based on probabilistic approaches includes simulation (involving sampling and estimation). Among

the most commonly used simulation techniques are direct Monte Carlo simulation, stratified

sampling, and Latin hypercube sampling (Larson 1979, Vanmareke 1983). The other probabilistic

approaches include numerical integration, second-moment analysis, perturbation analysis, and

probabilistic finite element methods (Chen 1992, Chen et al. 1992, Contracts 1980). 

Despite the success of the above analysis methods, one may recognize that uncertainties in
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parameters can be modeled on the basis of alterative, non-probabilistic conceptual frameworks. One

such approach, based on a set-theoretic formulation, is an unknown-but-bounded model (convex

model). Such set models of uncertainty have been applied to linear programming and system theory

(Dief 1986).

Recently, such set models of uncertainties in parameters have drawn interest both from the system

control robustness analysis field and from the structural failure measures field. For example, the

convex model was introduced (Ben-Haim and Elishakoff 1990, Lindberg 1991) for the study of

dynamic response and failure of structures under pulsed parametric loading; the convex model has

been applied in determining the upper and lower bounds of static response for structures (Liu and

Chen 1994). The convex model has also been applied to the optimal design of structures with

uncertain parameters (Ganzerli and Pantelides 1998, 1999, Pantelides and Booth 2000, Gantelides

2000). 

Since the mid-1960s, a new method called the interval analysis has appeared. Moore (1979) and

his co-workers, Alefeld and Herzberger (1983) have done the pioneering work. Mathematically,

linear interval equations, nonlinear interval equations and interval eigenvalue problems have been

resolved partly. Because of the complexity of the algorithm, it is difficult to apply these results to

practical engineering problems. Recently, the interval set models have been used in the study of the

static response and eigenvalue problems of structures with bounded uncertain parameters (Chen and

Qiu 1994). The interval finite element method was presented (Chen et al. 2000, 2002, 2003) which

makes the method easier to deal with the interval eigenvalues and dynamic response analysis of the

complex structures with interval parameters. 

The vibration control theory for systems with deterministic parameters has been well developed.

For example, the standard methods for vibration control have been developed (Porter and Crossley

1972), and the modal controllability/observability and modal optimal control for defective/near

defective systems with repeated/close eigenvalues were discussed (Chen and Liu 2001). As

mentioned above, the uncertain concept plays an important role in the control problems of the

vibration structures. Many studies have been done from the viewpoint of mathematics about control

problems. For example, the sufficient and necessary conditions of the dynamical stability for the

uncertain systems were discussed (Mcri and Kokame 1987); the robustness of control systems with

uncertain parameters was discussed (Rachid 1989); the stability of an uncertain matrix was

discussed (Juang et al. 1987).

In recent years, the vibration control problem of structures with uncertain parameters has attracted

a great deal of interest. For example, the control problem of uncertain system for helicopter rotor

blades was discussed (Krodkiewski 2000); The control problems for a wide class of mechanical

system with uncertainties was presented (Ferrara and Giacomini 2000); A systematic approach is

proposed for determining the probability of instability for a control structure with real parameter

uncertainties which were modeled as random variables with prescribed probability distributions

(Spencer and Sain 1992). The robust vibration control of uncertain systems using variable parameter

feedback and model-based fuzzy strategies were proposed (Li and Yarn 2001). As mentioned by Li

and Yarn (2001), the variable parameter feedback is based on an analytical model with uncertainty

bounds in Euclidean norm. However, for a complex structure, the construction of an analytical and

determination of bounds in Euclidean norm for uncertainties are difficult.

The robustness of a closed-loop system is one of the most important concerns of control system

designers. Variations in system parameters due to uncertainties may result in system performance

deterioration. Uncertainties in structural modeling of structures are often considered to ensure that
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control system is robust with respect to response errors. 

In this paper, the robustness analysis of the stability of the controlled systems with uncertain

parameters is discussed. The uncertainties of the structural parameters are described by interval

variables. The state matrix is constructed directly using system physical parameters and avoided to

use bounds in Euclidean norm. The control problems of the uncertain systems are transformed into

ones of the deterministic systems. At first, by using the method of pole allocation, the state

feedback gain matrix of the systems with deterministic parameters can be obtained, and then it is

applied into the actual uncertain systems. By using interval extension and perturbation method, the

expressions can be developed for calculating the upper and lower bounds of eigenvalues of

uncertain closed-loop systems. The lower bounds of eigenvalues can be used to estimate the

robustness of the stability of the controlled system with uncertain parameters. The method presented

in this paper will not require the distribution function of the uncertain parameters of the systems

other than their upper and lower bounds. Similarly, the distribution function of eigenvalues of

closed-loop systems with uncertain parameters will not be computed other than their upper and

lower bounds. So these results are different from those obtained by Spencer and Sain (1992). Two

numerical examples are given to illustrate the applications of the approach presented in this study.

2. The definition of the problem

Consider the linear vibration control equation in state space

(1)

By using the state feedback, the input vector is

(2)

where x(t) is the 2n × 1 state vector, u(t) is m × 1 input vector, A is the 2n × 2n asymmetric general

state matrix, B is 2n × m input coefficient matrix, G is m × 2n state feedback gain matrix.

The state matrix A and input coefficient matrix B of the uncertain system can be expressed as 

(3)

where A0 and B0 are the deterministic parts of the state matrix and the input coefficient matrix,

respectively. ∆A and ∆B are the uncertain parts of the state matrix and the input coefficient matrix,

respectively. Correspondingly, the uncertain state vector x, the uncertain input vector u and the

uncertain gain matrix G are 

 (4)

x· t( ) Ax t( ) Bu t( )+=

u t( ) Gx t( )=

A A0 AΔ+=

B B0 BΔ+=

x x0 xΔ+=

u u0 uΔ+=

G G0 GΔ+=
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where x0, u0 and G0 are the deterministic parts of the state vector, the input vector and the gain

matrix. ∆x, ∆u and ∆G are their uncertain parts, respectively.

Substituting Eqs. (3), (4) to Eqs. (1) and (2) yields

(5)

and  (6)

Expanding Eqs. (5) and (6), we have 

(7)

and 

(8)

Neglecting the higher order terms of the above Eqs. (7) and (8), and equating the coefficients of the

same orders of the left and the right sides, we obtain

(9)

 

(10)

From the above discussion it can be seen that the uncertain system (1) and (2) has been separated

into the deterministic part (9) and the uncertain part (10). The state equation of the closed-loop

system corresponding to the deterministic one (9) is

(11)

and the corresponding eigenvalue problem is

(12)

3. The feedback gain matrices of the deterministic control systems

In the pole allocation method, to guarantee asymptotic stability, the closed-loop poles can be

selected in advance and the gains are determined so as to produce these poles (Porter and Crossley

1972). Thus when the closed-loop eigenvalues of Eq. (11) are assigned to be , by

using the pole allocation, the gain matrix G0 of the deterministic system (9) can be determined.

First, we transform Eq. (9) into the control equation in modal coordinates. It is well known that if

A0 is not a defective matrix, there exists the right and left modal matrices, U0 = [u01, u02, ..., u02n]

and V0 = [v01, v02, ..., v02n], such that (Porter and Crossley 1972)

x· 0 x·Δ+ A AΔ+( ) x xΔ+( ) B BΔ+( ) u uΔ+( )+=

u0 uΔ+ G0 GΔ+( ) x0 xΔ+( )=

x· 0 x·Δ+ A0x0 A0 xΔ Ax0Δ AΔ xΔ B0u0 B0 uΔ Bu0Δ BΔ uΔ+ + + + + + +=

u0 uΔ+ G0x0 G0 xΔ Gx0Δ GΔ xΔ+ + +=

x· 0 A0x0 B0u0+=

u0 G0x0= ⎭
⎬
⎫

x·Δ A0 xΔ Ax0Δ B0 uΔ Bu0Δ+ + +=

uΔ G0 xΔ Gx0Δ+= ⎭
⎬
⎫

x· 0 t( ) A0 B0G0+( )x0 t( )=

S0u0 A0 B0G0+( )u0=

S1

*
S2

* … S2n

*, , ,
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(13)

where Λ0 = diag(S01, S02, ..., S02n) is the diagonal matrix of the eigenvalues of the deterministic

system. That is the A0 can be diagonalized.

With the modal transformation

 

(14)

the Eq. (9) can be transformated into

(15)

and

(16)

(17)

If the single input is used, B0 is a column vector, G0 is a row vector. 

Substituting Eq. (16) to Eq. (15), one has 

(18)

In Eq. (18), suppose the assigned eigenvalues are  and the corresponding

eigenvectors are Wi  they satisfy the following eienproblem

(19)

That is

(20)

Because , then there exists

det (21)

Solving Eq. (21), we obtain

 (22)

thus obtaining the matrix .

From Eq. (14), we obtain

V0

T
A0U0 Λ0, V0

T
U0 I= =

x0 t( ) U0ξ t( )=

ξ
·

t( ) Λ0ξ t( ) B0
′u0 t( )+=

u0 t( ) G0
′ξ t( )=

B0
′ V0

T
B0 b1

′ b2
′ … b2n

′, , ,( )T,= = G0
′ G0U0 g1

′ g2
′ … g2n

′, , ,( )= =

ξ
·

t( ) Λ0 B0
′G0

′+( )ξ t( )=

Si

*
i 1 2 … 2n, , ,=( )

i 1 2 … 2n, , ,=( )

Λ0 B0
′G0

′+( )wi Si

*
wi=

Λ0 B0
′G0

′ Si

*
I–+( )wi 0=

wi 0≠

Λ0 B0
′G0

′ Si

*
I–+( ) 0=

gi′

sk
* si–( )

k 1=

2n

∏

bi′ sk si–( )∏
--------------------------------=

G0
′ g1

′ g2
′ … g2n

′, , ,( )=
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 (23)

Substituting Eq. (23) to Eq. (16) yields

(24)

where

(25)

Substituting G0 into Eq. (1) yields

        

(26)

where C = A + BG0.

If the deterministic gain matrix G0 is applied to the uncertain system, there must exist some errors

between the closed-loop eigenvalues and the assigned eigenvalues . By

combining the interval analysis with the perturbation method, the expressions for computing the

upper and lower bounds of the closed-loop eigenvalues, , can be developed.

4. The definitions of the interval and interval operations 

In this section, a brief review on the interval operations is given (Moore 1979).

Assume that R is the set of all real numbers, I(R), I(Rn) and I(Rn×n) denote the sets of all closed

real interval numbers, n dimensional real interval vectors and n × n real interval matrices,

respectively.  can be usually written in the following form

(27)

in which X c and ∆X denote the mean (or midpoint) value of x and the uncertainty (or the maximum

width) in x, respectively. It follows that 

(28)

(29)

In terms of the interval addition, Eq. (27) can be put into the more useful form

(30)

where 

ξ t( ) V0

T
x0 t( )=

u0 t( ) G0
′V0

T
x0 t( ) G0x0 t( )= =

G0 G0
′V0

T
=

x· t( ) Ax t( ) BG0x t( )+=

Cx t( )=

Si

*
i 1 2 … 2n, , ,=( )

Si

*
i 1 2 … 2n, , ,=( )

X
I

x x,[ ] I R( )∈=

X
I

X
c

XΔ– X
c

XΔ+,[ ]=

X
c x x+

2
--------------=

XΔ
x x–

2
-------------=

X
I

X
c

X
IΔ+=

X
IΔ XΔ– XΔ,[ ]=
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n-dimensional real interval vector  can be expressed as

 (31)

The mean value and uncertainty of X are

 (32)

 (33)

Similar expression exists for an n × n interval matrix  

(34)

where , Ac and ∆A denote the mean matrix of AI and the uncertain (or the

maximum width ) matrix of AI, respectively. It follows that 

(35)

(36)

where  and 

Let , then the interval arithmetic operations are 

(37)

(38)

(39)

 

 (40)

Let . Then the set

 (41)

is called a complex interval.

Let z be an arbitrary complex and r be an arbitrary real with , then, the bounded closed set

(42)

is called a complex circle plate.

X
I

I R
n( )∈

X
I

X 1

I
X 2

I … X n

I, , ,( )
T

=

X
c

X 1

c
X 2

c … X n

c, , ,( )
T

=

XΔ X1Δ X2Δ … XnΔ, , ,( )T=

A
I

A A,[ ]= I R
n n×( )∈

A
I

A
c

A
IΔ+=

A
IΔ AΔ– AΔ,[ ]=

A
c A A+( )

2
-------------------- or ai j

c a ij a
i j

+( )

2
-----------------------= =

AΔ
A A–( )

2
--------------------= or ai jΔ

a i j a ij–( )
2

-----------------------=

A
c

ai j

c( )= AΔ aijΔ( )=

X
I

Y
I, I R( ) X

I
x x,[ ]= Y

I, ,∈ y y,[ ]=

X
I

Y
I

+ x x,[ ] y y,[ ] x y+ x y+,[ ]=+=

X
I

Y
I

– x x,[ ] y y,[ ]– x y– x y–,[ ]=

X
I

Y
I× x x,[ ] y y,[ ]× min x y⋅ x y⋅ x y⋅ x y⋅, , ,( ) max x y⋅ x y⋅ x y⋅ x y⋅, , ,( ),[ ]= =

X
I

Y
I

-----
x x,[ ]
y y,[ ]

--------------- x x,[ ] 1

y
---

1

y
---,= =

X1

I
X2

I, I R( )∈

Z
I

a a1 ia2 a1 X 1

I∈+= a2 X 2

I∈,{ }=

r 0≥

Z z r,[ ] z0 C z0 z–∈ r≤{ }= =
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Let , where (k = 1, 2). Then , ,

and  are defined by the following formulas

 (43)

(44)

(45)

(46)

An interval function is an interval-value function of one or more interval arguments. Assume that

 is the interval value function of interval variable ,

if , one has

(47)

We say that the interval value function  of the interval 

 is inclusion monotonic, if f is the real function of n real variables x1, x2, ..., xn and

the interval value function F of n interval variables  satisfy

(48)

F is known as the interval extension of f.

Real rational functions of n real variables may have natural extensions. Given rational expression

in real variables, we can replace the real variables by corresponding interval variables and replace

the real arithmetic operations by the corresponding interval arithmetic operations to obtain a rational

interval function, which is called natural extension of the real rational function. The extensions of

the real rational function are inclusion monotonic and they can be calculated through finite-interval

arithmetic operations. 

Let f be a complex-valued function of n complex variables z1, z2, ..., zn. A complex circle plate

extension of f means that a complex circle plate value function F of n complex circle plates Z1, Z2,

..., Zn for all (i = 1, 2, ..., n) possesses the following property

(49)

It is well known that typical structural response analysis problem resorts to finite element analysis

in which the response functions are not analytic. So it is difficult to get the exact interval solutions

of the response functions. We can resort to the first-order Taylor expansion to obtain the rational

approximation of a complex function and then apply the natural interval extension to the rational

approximation to get its interval solution. Thus the rational approximation of a complex function is

a linear function of the variables and each variable appears only once, so the interval solution of the

rational approximation we obtain is unique (Moore 1979). In order to justify the reasonability of this

Z 1

I
X 1

I
iY1

I
+= Z 2

I
X 2

I
iY 2

I
+=, X k

I
Y k

I, I R( )∈ Z 1

I
Z 2

I
+ Z 1

I
Z 2

I
– Z 1

I
Z 2

I×,
Z 1

I
/Z 2

I[ ]

Z 1

I
Z 2

I
+ X 1

I
X 2

I
+( ) i Y 1

I
Y 2

I
+( )+=

Z 1

I
Z 2

I
– X 1

I
X 2

I
–( ) i Y 1

I
Y 2

I
–( )+=

Z 1

I
Z2

I× X 1

I
X 2

I
Y 1

I
Y 2

I
–( ) i X 1

I
Y 2

I
Y 1

I
X 2

I
+( )+=

Z 1

I

Z 2

I
------

X 1

I
X2

I
Y 1

I
Y 2

I
–

X 2

I( )
2

Y 2

I( )
2

+

-------------------------------- i
X 1

I
Y 2

I
Y 1

I
X 2

I
+

X 2

I( )
2

Y 2

I( )
2

+

--------------------------------+=

F X
I( ) F X 1

I
X 2

I … X n

I, , ,( )= X
I

X 1

I
X 2

I … X n

I, , ,( )=

X i

I
Y i

I∈ i 1 2 … n, , ,=,

F X 1

I
X 2

I … X n

I, , ,( ) F Y 1

I
Y 2

I … Y n

I, , ,( )∈

F X
I( ) F X 1

I
X2

I … X n

I, , ,( )= X
I
 =

X1

I
X2

I … Xn
I, , ,( )

X 1

I
X 2

I … X n

I, , ,

F x1 x2 … xn, , ,( ) f x1 x2 … xn, , ,( ), xi X i

I
i 1 2 … n, , ,=( )∈=

zi Zi∈

F z1 0,[ ] z2 0,[ ] … zn 0,[ ], , ,( ) f z1 z2 … zn, , ,( )=



Robustness analysis of vibration control in structures 193

approach, we take a function given by . The exact solutions of the interval

value for different interval variables are easy to calculation. Now we use Taylor expansion to

expand the function about the mid-points of the interval variables to get the approximation of the

interval value. In Table 1, we give the comparison for the interval value of the exact solution and

the approximate solution for different interval variables, where δ is the relative uncertainty of a interval

which is defined by . Suppose the mid-point and the uncertainty of the exact solution are

denoted as f C and ∆f, respectively. Similarly, we denote the mid-point and the uncertainty of the

approximate solution as gC and ∆g, respectively. The error of the mid-point is the value of

, and the error of the interval uncertainty is the value of .

From Table 1, we can see that the errors of the mid-point and the interval uncertainty go up as the

relative uncertainties of the interval variables increase. In fact, the relative uncertainties of the

interval variables are small in practical engineering problems, so the approximate approach is

acceptable for practical applications.

5. The state matrix with interval parameters

It has been pointed out that the classical formulation of the system matrices does not take into

account the way the matrices are built for the system physical parameters (Li and Yarn 2001). In this

section we will present a way to build the interval matrices with the system physical parameters.

Assume that the interval structural parameters of the structures are denoted by bI

(50)

where m is the number of interval parameters. For any component

g x a,( ) ax

1 x–
----------x 1≠ a 0≠,=

δ
XΔ

x
c

--------=

g
c

f
c

–( )/f c
gΔ fΔ–( )/ fΔ

b
I

b1

I
b2

I … bm

I, , ,( )
T

b
c

b
IΔ+= =

b
c

b1

c
b2

c … bm

c, , ,( )
T

= bΔ I
bΔ 1

I
bΔ 2

I … bΔ m

I, , ,( )
T

=

Table 1 Comparison for the interval value of g (x, a)

Interval
variables

δ
Exact

 solution
Approximate 

solution
Error of 

mid-point
Error of interval 

uncertainty

xI = [2.4, 2.6]
aI = [0.4, 0.6]

0.04
0.2

f I: [−1.03, −0.65]
f C: −0.8393
∆f = 0.1893

gI: [−1.02, −0.64]
gC: −0.8333
∆g = 0.1889

0.71% 0.21%

xI = [2.3, 2.7]
aI = [0.3, 0.7]

0.08
0.4

f I: [−1.24, −0.48]
f C: −0.8575
∆f = 0.381

gI: [−1.21, −0.46]
gC: −0.8333
∆g = 0.3778

2.82% 0.84%

xI = [2.2, 2.8]
aI = [0.2, 0.8]

0.12
0.6

f I: [−1.47, −0.31]
f C: −0.8889
∆f = 0.5778

gI: [−1.4, −0.27]
gC: −0.8333
∆g = 0.5667

6.252% 1.92%
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(51)

where  and  

From Eq. (26), the control equation of the close-loop system with the uncertain parameters can be

expressed as

 

(52)

where 

For any , using Taylor series and expanding the state matrix, C(b), around the mean values

bc, one has

(53)

Using the natural interval extension, the interval state matrix can be obtained

(54)

(55)

6. Matrix perturbation analysis for eigenvalues

Consider the eigenproblem

(56)

where C0 is the state matrix of the deterministic system, Sk0 is the kth eigenvalue and uk0 is the kth

eigenvector,  is the corresponding left eigenvector. When the small changes of the parameters

are introduced into the state matrix C0, the eigenvalue problem becomes

(57)

where ∆C are the increment of C0. The eigensolutions of the perturbed system are 

(58)

According to the perturbation theory (Chen 1999), we have

(59)

where k = 1, 2, 3, ..., 2n, uk0 and Sk0 are the kth original eigenvector and eigenvalue; uk1 and Sk1 are

the first-order perturbation of the kth eigensolution.

bi

I
b i b i,[ ] bi

c
bieiΔ+= =

bi b i b
i

–( )/2=Δ ei 1– 1,[ ]=

x· t( ) A BG0+( )x t( ) Cx t( )= =

C A BG0+=

b b
I∈

C b( ) C b
c( ) ∂ C b

c( )
∂bj

-------------------⎝ ⎠
⎛ ⎞ bj bj

c
–( )

j 1=

m

∑+=

C b
I( ) C b

c( ) ∂ C b
c( )

∂bj

------------------ bj

I
bj

c
–( )

j 1=

m

∑+ C b
c( ) ∂ C b

c( )
∂bj

------------------ bjejΔ
j 1=

m

∑+ C b
c( ) C b

I( )Δ+= = =

C b
I( )Δ ∂ C

e
b( )

∂bj

-------------------⎝ ⎠
⎛ ⎞ bjejΔ

j 1=

m

∑=

C0uk0 Sk0uk0= C0

T
vk0 S0vk0=

vk0

T

C0 CΔ+( ) uk0 ukΔ+( ) Sk0 SkΔ+( ) uk0 ukΔ+( )=

Sk Sk0 Sk+= uk uk0 ukΔ+=

Sk Sk0 Sk+= Sk1 vk0

T
Cuk0Δ=
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7. Robustness analysis of the stability of closed-loop systems with interval

parameters

Applying the feedback gain matrix G0 to the uncertain system, the control equation of the closed-

loop system becomes

(60)

Letting C = A + BG0 Eq. (60) can be expressed as 

(61)

For any , the eigenproblem is 

(62)

With the interval matrix expression and the interval extension, Eq. (62) can be expressed as 

 (63)

Eq. (63) is called interval eigenvalue problem. It is the basic problem for given interval state matrix

C(bI), to find the interval eigenvalue SI which is not only the smallest interval but enclose all

possible eigenvalues S, satisfying Cu = Su. In other words, we seek a hull

(64)

to the set

(65)

In Eqs. (63) and (64), . It should be noted that the number of the eigensolutions

satisfying Eq. (63) may be infinite and thus it is difficult to solve using the standard methods.

In terms of the interval expression, the interval matrix C(bI) can be expressed as

(66)

Thus, the interval eigenproblem (63) can be written as 

(67)

where  are given by Eq. (55). For any , there is a group o δC(b) which satisfies

x· t( ) Ax t( ) BG0x t( )+=

x· t( ) Cx t( )=

b b
I∈

C b( )u Su=

C b
I( )u S

I
u=

Γ S: C b( ) SI+[ ]u 0, C b( ) C b
I( )∈={ }=

Γ S: C b( ) SI+[ ]Tv 0, C b( ) C b
I( )∈={ }=

S min S C b( )( )=

S max S C b( )( )=

C b( ) C b
I( )∈

C b
I( ) C b

c( ) C b
I( )Δ+=

C b
c( ) C b

I( )Δ+[ ]u S
I
u=

C b
I( )Δ b b

I∈
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The corresponding eigenproblem is

(68)

According to the matrix perturbation theory, one can obtain the eigenvalue of Eq. (68)

(69)

Applying natural interval extension to Eq. (69), one can obtain the interval eigenvalues, i.e.,

(70)

where 

(71)

Substituting Eq. (55) into Eq. (71) yields

(72)

Letting

(73)

we have

(74)

Letting , the lower and upper bounds of the real parts and imaginary

parts of the complex eigenvalues can be obtained 

(75)

δC b( ) C b
I( )Δ∈

C b
c( ) δC b( )+[ ]u Su=

Sk S k

c
Sk1+= Sk1 vk0

T
δC b( )uk0=

S k

I
S k

c
S k1

I
+=

S k1

I
vk0

T
CΔ b

I( )uk0=

Sk1

I
vk0( )T ∂ C b

c( )
∂bj

------------------ bjejuk0Δ
j 1=

m

∑=

S R

j
i S I

j
+( )ej

j 1=

m

∑=

S R

k( )Δ S R

j

j 1=

m

∑= S I

k( )Δ S I

j

j 1=

m

∑=

S k

I
S k

c
S k

I
+ S k

c
S R

k( )
ejΔ i S J

k( )Δ e j+ += =

S k

I
S

kR
i S

kI
+ SkR iSkI+,[ ]=

S
kR

S kR

c
S R

k( )Δ–=

SkR S kR

c
S R

k( )Δ+=

S
kI

S kI

c
S I

k( )Δ–=

SkI S kI

c
S I

k( )Δ+=



Robustness analysis of vibration control in structures 197

The following condition can be used to estimate the stability robustness

 (76)

where αk is the real part of the kth eigenvalue of uncertain close-loop system. It is obvious that if

 are large enough in designing the feedback control law, the stability of the

uncertain closed-loop system will be remained.

8. Numerical example 

In order to illustrate the application of the present method, two numerical examples are given as

follows. 

 

8.1 Example 1

Consider a vibration control system shown in Fig. 1. A control force is imposed on m2. Assume

that the mass coefficients m1 and m2 are deterministic, and the stiffness coefficients of springs, k1

and k2, have some errors in the manufacturing process. The k1 and k2 can be expressed as

, , where k0 is a constant, α1 and α2 are interval uncertain parameter.

Assume m1 = 1, m2 = 2, and k0 = 1, , , .

The mass matrix is deterministic

The stiffness matrix of the system with uncertain parameters is 

where 

Suppose the state vector is 

0 S kR

c< S R
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x t( ) q1 t( )  q2 t( )  q· 1 t( )  q· 2 t( )[ ]T=

Fig. 1 A vibration control system
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Then the state matrix of the system is

where A0 is the state matrix with deterministic parameters, A1 and A2 are the state sub-matrices

corresponding to the uncertain parameters α1 and α2, respectively. The eigenvalues of A0 are S01 =

1.51022i, S02 = −1.51022i, S03 = 0.46821i, S04 = −0.46821i.

If the frequencies of the system are unchanged, and only the damping of the system is assigned,

that is the real parts of the eigenvalues of the system can be assigned as –0.50000. Using Eq. (22),

the state feedback gain matrix for the system with deterministic parameters can be obtained

G0 = [4.6250 −3.0000 2.0000 −4.000]

If G0 is applied to the actual uncertain system with interval parameters given by 

, the lower and upper bounds and the mean values of the eigenvalues of the closed-loop

system are obtained and listed in Tables 2, 3. In the Tables, k is the mode number;  is the

lower bound of the real part of kth complex eigenvalue;  the lower bound of the imaginary part;

 and  the middle value of the imaginary part and the real part;  the upper bound of

the real part;  the upper bound of the imaginary part; The results in Tables 2 and 3 show that if

 and , we have > 0 (k = 1, 3). This indicates that the

stability condition (76) can be satisfied.
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Table 2 The lower and upper bounds of complex eigenvalues 

k

1 −0.50728 1.50525  −0.50000  1.51022  −0.49272  1.51519  2.9 0.66 

3 −0.50728  0.45219  −0.50000  0.46821  −0.49272  0.48423  2.9 6.84

Table 3 The lower and upper bounds of complex eigenvalues 

k

1  −0.50485  1.48543  −0.50000  1.51022  −0.49515  1.53501  1.94  3.28

3  −0.50485  0.45233  −0.50000  0.46821  −0.49515  0.50508  1.94  11.7
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I
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8.2 Example 2 

Consider a vibration control problem of a frame structure shown in Fig. 2. Assume mass (kg),

stiffness (N/m) and damping (N/m·s−1) are given as follows:

m1 = 29, m2 = 26, m3 = 26, m4 = 24, m5 = 17, 

k10 = 2000, k20 = 1800, k30 = 1600, k40  =1400, k50 = 1200

c10 = 40, c20 = 40, c30 = 60, c40 = 80, c50 = 80

where the mass parameters are assumed to be deterministic; stiffness parameters, ki0 and

 are deterministic, and  and  are uncertain parts. The

coefficients  and  are uncertain interval parameters. Assume that a control

force u(t) is input to m5. Thus the mass matrix is 

Suppose the state vector is

Then the state matrix of the system is

where A0 is the state matrix with deterministic parameters and  and  are

the uncertain parts. Assume that the input coefficient matrix B is deterministic, B = [0 0 0 0 0 0 0 0

0 1/17].
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I
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I
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Fig. 2 The frame structure
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The eigenvalues of A0 are 

S01 = −0.0963 + 2.5275i S02 = −0.0963 − 2.5275i

S03 = −1.0267 + 6.7292i S04 = −1.0267 − 6.7292i

S05 = −2.3488 + 10.2718i S06 = −2.3488 − 10.2718i

S07 = −5.0397 + 12.5008i S08 = −5.0397 − 12.5008i

S09 = −3.1695 + 13.8673i S010 = −3.1695 − 13.8673i

To guarantee the stability of the control system, it is only necessary to impart the eigenvalues

larger negative real parts, it is not necessary to alter the frequencies. To this end, the real parts can

be assigned. Assume that the assigned eigenvalues are

 = −1.0110 + 2.5275i  = −1.0110 − 2.5275i

 = −2.6917 + 6.7292i  = −2.6917 − 6.7292i

 = −4.1087 + 10.2718i  = −4.1087 − 10.2718i

 = −5.0003 + 12.5008i  = −5.0003 − 12.5008i

 = −5.5469 + 13.8673i = −5.5469 − 13.8673i

Using Eq. (22) the state feedback gain matrix G0 for the system with deterministic parameters can

be obtained

G0 = [4382.7060  −5104.3220  1720.9740  1991.4040   −1566.5190 

 177.6021    −316.7099    384.1323    −107.0294  −227.0397]

S1

* S2

*

S3

* S4

*

S5

* S6

*

S7

* S8

*

S9

* S10

*

Table 4 The lower and upper bounds of complex eigenvalues ( = [−0.05, 0.05], i = 1, 2, 3, 4, 5)

k

1  −1.01522  2.43268  −1.01099  2.52747  −1.00676  2.62226  0.84  7.50

3  −2.73756  6.47444  −2.69170  6.72924  −2.64583  6.98403  3.41  7.57

5  −4.27110  9.87896  −4.10870  10.27176 −3.94632  10.66459  7.90  7.65

7  −5.23483  11.86659  −5.00031  12.50077  −4.76578  13.13494  9.38  10.0

9  −5.78113  13.18894  −5.54691  13.86728  −5.31270  14.54563  8.44  9.78

α i

I

SKR SKI SKR

C
SKI

C
SKR SKI

SkRΔ

SkR

c
---------- %

SkIΔ

SkI

c
---------%

 
Table 5 The lower and upper bounds of complex eigenvalues ( = [−0.05, 0.05], i = 1, 2, 3, 4, 5)

k

1 −1.06252 2.52710 −1.01099 2.52747 −0.95946 2.52785 10.2 0.0

3 −2.83748 6.71810 −2.69170 6.72924 −2.54592 6.74037 10.8 0.3

5 −4.32880 10.21347 −4.10870 10.27176 −3.88860 10.33007 10.7 1.14

7 −5.26144 12.30299 −5.00031 12.50077 −4.73918 12.69854 10.4 3.17

9 −5.84124 13.75911 −5.54691 13.86728 −5.25258 13.97546 10.8 1.56

β i

I

SKR SKI SKR

C
SKI

C
SKR SKI

SkRΔ

SkR

c
---------- %

SkIΔ

SkI

c
---------%
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If G0 is applied to the actual uncertain system with interval parameters given by ,

, the closed-loop eigenvalues will have some errors. The lower and upper

bounds and the mean value of the eigenvalues of the closed-loop system are obtained and listed in

Tables 4, 5. In the Tables, k is the mode number;  is the lower bound of the real part of

complex eigenvalue;  is the lower bound of the imaginary part;  and  are the middle

values of the imaginary part and the real part;  is the upper bound of the real part;  is the

upper bound of the imaginary part.  and  are the relative uncertainties of the real and

imaginary parts, respectively.

The curves of upper and lower bounds of the 1st eigenvalue are shown in Figs. 3-6 for example 2,

where Fig. 3 is the upper and lower bounds of the real part of the 1st eigenvalue obtained by the

changes of the stiffness coefficients; Fig. 4 is the upper and lower bounds of the imaginary part of

the 1st eigenvalue obtained by the changes of the stiffness coefficients; Figs. 5 and 6 are the

corresponding quantities obtained by changes of the damping coefficients, respectively. From Tables

2-5 and Figs. 3-6, it can been seen that the relative uncertainties will be come large as the uncertain

parameters, α and β, go up; for example, if , the max relative

uncertainty is 10% at the imaginary part of the 7-th eigenvalue (Table 4) ; if 

, the max relative uncertainty is 10.8% at the real part of the 3-rd eigenvalue. From

Table 5 it is shown that the effects of the damping coefficients on the real parts of eigenvalues are

larger than that on the imaginary parts of eigenvalues. And the stability condition (76) can be

satistied.
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S
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c
SkR

c
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cΔ
-----------

SkIΔ
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c
----------
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I
0.05– 0.05,[ ] i 1 2 3 4 5, , , ,=( )=

β i

I
0.05– 0.05,[ ]=
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Fig. 3 The upper and lower bounds of the real part
of the first eigenvalue obtained by the changes
of the stiffness coefficients

Fig. 4 The upper and lower bounds of the imaginary
part of the first eigenvalue obtained by the
changes of the stiffness coefficients
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9. Conclusions

The vibration control problem of structures with uncertain parameters was discussed in this paper.

The control problem was approximated with the corresponding deterministic one. The uncertain

parameters are modeled to be a interval set rather than a probabilistic set. This does not require the

probabilistic distribution descriptions of the uncertain parameters. The method for building the state

matrices with system physical parameters was presented. With the matrix perturbation of the

complex eigenvalues and the complex circle plate extension in interval analysis, a new method for

evaluating the lower and upper bounds of eigenvalues of closed-loop systems with uncertain

parameters has been presented. The results can be used to estimate the stability robustness of the

uncertain controlled systems, two numerical examples are given to illustrate the applications. From

the numerial results it can be seen that it the assigned real parts of eigenvalues of the closed-loop

system are large enough, the stability robustness of the uncertain close-loop system will be

remained.

It should be noted that the distributed structures are infinite-dimensional systems, the present

method for discrete systems can not be directly applied to distributed systems. However, if we

consider either the classical Rayleigh-Ritz method or the finite element method, the discrete system

can be obtained. At this point, the present method for discrete systems can be used to deal with the

control problem of the distributed structure.
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