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Abstract. Dynamic analysis of dam-reservoir-foundation system is usually carried out by employing a
simplified and approximate one-dimensional model to account for fluid-foundation interaction. The
approximation introduced on this basis is examined thoroughly in this paper by comparing the method
with the rigorous approach. It is concluded that the errors due to approximate method could be very
significant both for horizontal and vertical ground motions.
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1. Introduction

An accurate dynamic analysis of concrete gravity dams requires special attention for the

interactions involved in this problem. These are dam-reservoir, dam-foundation and reservoir-

foundation (fluid-foundation) interactions. In the past, there has been extensive research to study the

effects of former two interactions, but little attention was devoted to fluid-foundation interaction.

Some of these have also led to very efficient softwares (Hall and Chopra 1980, Fenves and Chopra

1984), which are exceptional tools for general investigations related to dynamic response of

concrete gravity dams. However, in both of these studies, a simplified and approximate one-

dimensional model is utilized to account for fluid-foundation interaction. More recently, Medina et al.

(1990) developed an analytical procedure based on the boundary element method, which considered

all interactions rigorously. They studied the complex frequency response functions of an idealized

triangular dam, and concluded that, although the approximate fluid-foundation interaction model

was capable of providing a reasonably accurate prediction of the response to vertical excitation, it

underestimated the peak value of the response due to harmonic horizontal excitation.

The purpose of this study is to reevaluate the effects of rigorous fluid-foundation interaction more

thoroughly by a new technique. The formulation of this method is presented initially and a special

computer program “MAP-76” (Lotfi 2001a), is enhanced based on this approach. Utilizing this tool,

the significance of rigorous fluid-foundation interaction is investigated and the results are compared

with the approximate method for several ratios of foundation rock to dam concrete elastic modulus.
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2. Method of analysis

The analysis technique utilized in this study is based on the FE-BE-(FE-HE) method, which is

applicable for a general dam-foundation-reservoir system (Fig. 1). This means, the dam is

discretized by plane solid finite elements, while boundary elements are used for modeling of

foundation rock half plane. Meanwhile, the reservoir is divided into two parts, a near field region

(usually an irregular shape) in the vicinity of the dam and a far field part (assuming constant depth),

which extends to infinity. The former region is discretized by plane fluid finite elements and the

latter part is modeled by a two-dimensional fluid hyperelement.

The formulation could be explained much easier, if one concentrates initially on a dam with finite

reservoir system (basically the same as a model of dam and reservoir near field), and subsequently

add the effects of reservoir far field region and foundation domain for the general case. For this

purpose, let us begin with this simpler formulation and then complete it on that basis.

2.1 Dam with finite reservoir system

This is the problem, which can be totally modeled by finite element method. It can be easily

shown that in this case, the coupled equations of the system may be written as (Lotfi 2002):

(1)

M, C, K in this relation represent the mass, damping and stiffness matrices of the dam body, while

G, L, H are assembled matrices of fluid domain. The unknown vector is composed of r, which is

the vector of nodal relative displacements and the vector p that includes nodal pressures.

Meanwhile, J is a matrix with each two rows equal to a 2 × 2 identity matrix (its columns
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Fig. 1 Dam-reservoir-foundation system (Schematic representation)
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correspond to unit rigid body motion in horizontal and vertical directions) and ag denotes the vector

of ground accelerations. Furthermore, B in the above relation is often referred to as interaction

matrix.

For harmonic ground excitations  with frequency ω, displacements and

pressures will all behave harmonic, and the Eq. (1) can be expressed as:

(2)

In this relation, it is assumed that the damping matrix of the dam is of hysteretic type. This means:

(3)

Where βd is the constant hysteretic factor of the dam body. Relation (2) is the coupled equations of

a dam with finite reservoir system in frequency domain which can be made symmetric by

multiplying the lower partition matrices by a factor of ω−2.

2.2 Pseudo-symmetric technique

Considering the coupled Eq. (2), it is noticed that unsymmetric terms are due to B matrix and its

transpose appearing in this relation. This matrix is usually obtained by assemblage of contributing

submatrices of interface elements located at fluid-solid contact, or even surfaces where fluid

elements are adjacent to rigid or absorbing boundaries. However, to make it more convenient from

programming point of view, one can eliminate these interface elements and consider its effect as

part of adjacent fluid element matrices. In that case, matrices of the ith fluid element which

contribute to the corresponding total mass, damping and stiffness matrices of the system would be

generally as follows, respectively: 

(4)

In the present work, interface elements are excluded and their effects are considered as part of

fluid element matrices similar to the above explanation. However, everything is made symmetric

from the very beginning. This means that fluid element matrices are considered symmetric

artificially as below:

(5)

This presumption makes the method very convenient from programming point of view. However,

it would yield to a coupled relation in the frequency domain, which is not really satisfied
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It is noticed that a special notation  is utilized in this relation. This is to emphasize that equality

is slightly damaged due to an extra ω 2 factor appearing in the second term of the upper partition of

this relation in comparison to Eq. (2). When this term is corrected, it is noticed that the lower

partitions are also required to be multiplied by ω−2 to preserve symmetry. Of course, it must be

mentioned that in actual programming, the total dynamic stiffness matrix (i.e., the resulting left hand

side matrix of Eq. (6)) could be stored based on symmetric skyline technique and the two above-

mentioned steps would be simply performed by multiplying the columns corresponding to pressures

degree of freedom by a factor of ω−2, while the same factor is also applied to the lower partition of

right hand side vector. In this manner, the final coupled equations of the dam with finite reservoir

system in the frequency domain would be:

(7)

The above approach could be visualized as the frequency domain extension of the Pseudo-

Symmetric technique originally explained elsewhere for time domain (Lotfi 2002).

In this manner, the usual interface elements are excluded and their effects are considered as part

of the adjacent fluid finite element matrices. Meanwhile, all these matrices are made symmetric

artificially from the very beginning. Therefore, usual symmetric memory allocation and efficient

symmetric skyline solvers could be employed. Of course, slight adjustments are required to be

implemented as discussed above, before the actual equations solving routine is started. 

This approach is very convenient as a technique for general-purpose finite element programs in

regard to their fluid-structure module in frequency domain, since the program would not even feel

the slightest non-symmetry even at the element level, while the interface elements are also

excluded.

2.3 Reservoir near field boundary conditions

As mentioned in the previous section, the boundary conditions for reservoir near field (except at

the water surface which is easily applied), are usually implemented by the help of interface

elements. However, these elements could be excluded and their effects could be incorporated in the

adjacent fluid elements. On that basis, the fluid element matrices are in general as shown in

relations (5), and depending on the type of condition utilized, either one of the matrices Li, Bi or

both will be generated. Of course, it is clear that if the fluid element is not adjacent to boundary,

there is no need for these matrices and displacement degrees of freedom are excluded for those

elements. In the case of perimetral fluid elements (adjacent to reservoir near field boundary), there

are three types of conditions as listed in Table 1, which could be imposed.

It should be mentioned that in relations of Table 1, the constants ρ, c are mass density and

compression wave velocity of water, respectively. Furthermore, n is the reservoir near field outward

normal direction, , the free field ground acceleration in the n-direction and q is the admittance or

a damping coefficient for the corresponding boundary (Fenves and Chopra 1984). The coefficient q

is also related to a more meaningful wave reflection coefficient α,

(8)
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which is defined as the ratio of the amplitude of the reflected hydrodynamic pressure wave to the

amplitude of a propagating pressure wave incident on the reservoir’ boundary in the normal

direction.

The condition of type I, is considered for the contact of fluid with flexible solid, such as the dam-

reservoir interface or even fluid-foundation interface, if the interaction is going to be treated

rigorously. The second type of condition is the so-called approximate boundary condition. This can

be imposed at the reservoir bottom for an approximate treatment of fluid-foundation interaction. The

last type of condition (III) is referred to as Sommer-feld boundary condition. This is usually applied

at the reservoir near field upstream boundary (in cases which far field region is not modeled), as a

substitute for a precise transmitting boundary. However, when a fluid hyperelement is utilized, this

condition is not required and waves are transmitted exactly through that semi-infinite element.

2.4 Dam-foundation-reservoir system

In regard to the formulation for a general dam-foundation-reservoir system, one can start from

relation (7), which is for a system of dam with finite reservoir. Then, add the effects of incorporated

foundation and the reservoir far field region extending to infinity. It can be easily shown (following

steps similar to other studies (Lotfi and Sharghi 2001, Lotfi 2001b)) that the resulting relation can

be written as follows:

(9)

Where  is the expanded form of the foundation rock impedance matrix obtained through

boundary element formulation. Meanwhile,  are the expanded dynamic stiffness

matrix of the reservoir hyperelement and its corresponding particular force matrix, respectively

(Lotfi 2001b).
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It must be mentioned that the hyperelement is assumed to be formulated in terms of relative

horizontal displacement of the nodes and one relative vertical displacement degree of freedom

located at the base. Therefore, type I condition must be used for adjacent fluid elements in the

reservoir near field region to provide the appropriate coupling at that contact surface.

2.5 Special cases

The formulation for dam-foundation-reservoir system was presented in the previous section.

However, it should be realized that the general relation (9) could be easily transformed to several

special cases. Dam-reservoir relation (based on FE-(FE-HE) technique) could be obtained by simply

deleting  matrix in that relation. Dam-foundation with a finite reservoir could be modeled

(FE-BE-FE) by eliminating  from that relation, while imposing type I or II condition

(depending on interaction treatment) for the adjacent fluid elements at the upstream end of the

reservoir. Moreover, in the special case of dam-foundation with a regular shape reservoir system and

assuming an approximate fluid-foundation interaction model, one can eliminate the rows and

columns corresponding to pressure degrees of freedom in relation (9), which results in the following

relation based on a FE-BE-HE technique used in other studies (Lotfi 2001b):

(10)

As mentioned before, the hyperelement is formulated in terms of relative horizontal displacements

and the base relative vertical displacement degrees of freedom. Therefore, its coupling with the dam

is easily possible as shown in relation (10) for that special case. 

3. Modeling and basic parameters

A special computer program “MAP-76” (Lotfi 2001a) is used as the basis of this study. The

program was originally based on the FE-BE-HE technique. That is the dam body and the foundation

rock are treated by finite and boundary elements respectively, while a hyperelement was considered

for modeling of the reservoir.

In this study, the program is modified such that plane fluid finite elements could be introduced in

the reservoir near field. By employing type I condition on the upstream and downstream faces of

this region, the fluid elements could be readily coupled with the hyperelement and the plane solid

finite elements. Meanwhile, two types of conditions are generally imposed at the base of the

reservoir near field region. Type I condition is considered for a distance L (specified by the user)

near the dam heel, which allows for rigorous fluid-foundation interaction on that range, and the

remaining length of the base is considered as a type II condition (approximate interaction). By

changing the value of L, one can easily transform the whole base of the reservoir near field to a

rigorous fluid-foundation interaction condition or alternatively an approximate one.

It should be noted that the problem is also assumed in a state of plane strain and both dam body

and the foundation rock domains are assumed as linearly viscoelastic materials with isotropic

behavior.

S f ω( )

Sr ω( ) Fp ω( ),

ω
2
M– K 1 2βdi+( ) S r ω( ) S f ω( )+ + +[ ] r[ ] MJag– Fp ω( )ag+[ ]=



Significance of rigorous fluid-foundation interaction 143

3.1 Model

An idealized triangular dam with vertical upstream face and a downstream slope of 1:0.8 is

considered on a flexible half plane under a full reservoir condition. The discretization of the

complete system is displayed in Fig. 2(a), while a close-up view for the neighborhood of dam body

is also depicted in Fig. 2(b).

The dam is discretized by 20 isoparametric 8-node finite elements, while the foundation rock is

modeled by 72 isoparametric 3-node boundary elements considered at the foundation surface. A

length of 15H (H = water depth) is considered as the reservoir near field region, which is

modeled by 1200 isoparametric 4-node fluid finite elements. The reservoir far field is treated by a

fluid hyperelement having 11 nodes with only a horizontal displacement degree of freedom at

each node, except at the base where both horizontal and vertical displacement degrees of freedom

exist.

3.2 Basic parameters

The dam body is assumed to be homogeneous and isotropic with linearly viscoelastic properties

for mass concrete: Elastic modulus (Ed) = 27.5 GPa, Poisson’s ratio = 0.2, unit weight = 24.8 kN/m3,

and hysteretic damping factor βd = 0.05. 

The impounded water is taken as inviscid, and compressible fluid with unit weight = 9.81 kN/m3,

and pressure wave velocity = 1440 m/sec.

The foundation rock is idealized by a homogeneous, and isotropic viscoelastic half plane. The

material properties of this region are: Poisson’s ratio = 1/3, unit weight = 26.4 kN/m3, and the

foundation rock elastic modulus (Ef), which was initially chosen to be equal to the concrete

elastic modulus. However, in the second part of the investigations, it was varied to cover a wide

range of foundation materials. The hysteretic damping factor βf = 0.05 is also specified for this

material.

Fig. 2 Dam-reservoir-foundation system: (a) Complete model, (b) Close-up view 
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4. Results

The first stage of the study is concentrated on the effects of parameter L (rigorous fluid-

foundation interaction length (Fig. 1)) in the response of the dam. For this purpose, three sets of

low, moderate and high values of L are considered.

In this part, the foundation rock elastic modulus is set equal to the dam concrete elastic modulus.

Based on this selection and the properties mentioned before, the wave reflection coefficient is

obtained as α = 0.71. This is only utilized for type II condition, which is imposed over the

remaining length of the reservoir base where the fluid-foundation interaction is not treated

rigorously. Therefore, for L = 0, the interaction is completely treated approximately, while for high

values of L, one can expect results similar to the case where the rigorous interaction length is

infinite.

The response of horizontal acceleration at dam crest due to horizontal and vertical harmonic

ground excitations are presented in Fig. 3 for low values of interaction length. 

It is noticed that for horizontal ground motion, the main difference in response is occurring near

the fundamental frequency of the system. Meanwhile, the responses for L/H (rigorous fluid-

foundation interaction length normalized with respect to water depth) values of 2 and 3 are very

close for the whole range of considered frequencies.

As for the vertical ground motion, it is observed that the responses differ at several frequency

regions. These are intervals in the vicinities of fundamental frequency of the system and the

reservoir natural frequencies. Furthermore, the difference between the results corresponding to L/H

values of 2 and 3 are significant at these frequency intervals.

For higher values of normalized rigorous interaction lengths, the results for horizontal ground

motion are practically the same as for L/H = 3 presented. Therefore, it is not shown anymore, and

the results for L/H = 3 can be considered as the converged solution. However, for vertical ground

motion, the trend is quite different. For this type of excitation, the results are compared in Fig. 4 for

two sets of moderate and high values of normalized rigorous interaction length, while the response

for L/H = 0 is also shown as a reference in each case. It is noticed that for moderate L/H values,

Fig. 3 Horizontal accelerations at dam crest due to horizontal and vertical ground motions for low values of
normalized rigorous fluid-foundation interaction length
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the differences occurring at natural frequencies of the reservoir become negligible. However, there

are still significant differences among the responses near the fundamental frequency of the system.

For very high values of L/H, the difference in response becomes negligible even near the

fundamental frequency of the system. Therefore, the result for L/H = 15 can be considered as the

converged solution for vertical ground motion. Moreover, comparing the results for L/H = 0 and 15,

it is noticed that there are significant differences in response occurring near the fundamental

frequency of the system, as well as the peaks corresponding to the first and third natural frequencies

of the reservoir.

It is worthwhile to mention that in other studies (Medina et al. 1990), it was concluded that effect

of rigorous fluid-foundation interaction is not significant for vertical ground motion. This was in

spite of the fact; they had noticed some differences in comparison with an earlier study that fluid-

foundation interaction was treated approximately. This judgment is not correct and it was partially

induced because; they attributed the differences in response mainly to the coarse mesh of finite

elements employed in the earlier study. This can be claimed by the fact that in this study, the model

is totally the same in both rigorous and approximate cases as far as discretization or other basic

assumptions are concerned, and the only difference is the type of condition utilized at reservoir-

foundation interface, and still significant differences are noticed for vertical ground motion results.

In the second part of the investigations, the response of horizontal acceleration at dam crest due to

horizontal and vertical harmonic ground excitations are obtained for several ratios of foundation

rock to dam concrete elastic modulus. In particular, Ef /Ed ratios of 2, 1, and ¼ are considered. The

results for this part are presented in Figs. 5-7. In each graph, three cases are compared. These are

curves related to cases which fluid-foundation interactions are excluded, treated approximately and

considered rigorously.

It must be mentioned that results for excluding interaction cases are obtained similar to

approximate cases (Type II condition implemented at the reservoir base) except that wave reflection

coefficient is specified as α = 1 in these cases (total reflection condition). Further, the approximate

cases correspond to models where rigorous interaction length are taken as zero (L = 0), while in the

actual rigorous cases, these lengths are chosen equal to a large value (L = 15H). Moreover, the

consistent α values for the approximate cases corresponding to Ef /Ed ratios of 2, 1, and ¼ (taking

Fig. 4 Horizontal accelerations at dam crest due to vertical ground motion for two sets of moderate and high
values of normalized rigorous fluid-foundation interaction length
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Fig. 5 Horizontal accelerations at dam crest due to horizontal and vertical ground motions (Ef /Ed = 2)

Fig. 6 Horizontal accelerations at dam crest due to horizontal and vertical ground motions (Ef /Ed = 1)

Fig. 7 Horizontal accelerations at dam crest due to horizontal and vertical ground motions (Ef /Ed = 1/4)
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into account the other parameters previously mentioned) work out to be 0.787, 0.710 and 0.495,

respectively.

From comparison of the results related to horizontal ground motion for Ef /Ed = 2, it is observed

that there is significant difference in the peak response at the fundamental frequency of the system

between the rigorous and approximate cases. Meanwhile, the response for rigorous case is even

higher than the one where interaction is excluded. For other frequencies, the response of all three

cases are very similar, and there are no major changes, except near natural frequencies of the

reservoir, where some dips are noticed in the case related to excluding interaction, which are

diminished in the other two cases. Similar behavior is consistently noticed for other ratios of Ef /Ed

as well.

For vertical ground motion, it is clear that response becomes infinite at reservoir natural

frequencies when the reservoir-foundation interaction is excluded (α = 1). However, for

approximate, as well as rigorous cases, it is noticed that response is bounded at these frequencies,

while the peaks corresponding to rigorous cases are higher than approximate cases, except at the

first natural frequency of the reservoir related to Ef /Ed = 1/4, where the peak for rigorous case is

slightly lower than the approximate case. It is also observed that at the fundamental frequency of

the system, the trend is similar to the response for horizontal ground motion. That is, the response

for rigorous case is higher than approximate case and even set slightly over the case where

interaction is excluded. However, contrary to horizontal ground motion, this increase in response

becomes negligible for low ratio of foundation rock to dam concrete elastic modulus (Ef /Ed = 1/4).

To evaluate the importance of rigorous fluid-foundation interaction more precisely, percent

increase in response for rigorous cases with respect to approximate ones are also calculated and

summarized in Table 2. These quantities are determined at peaks corresponding to fundamental

frequency of the system and the first three natural frequencies of the reservoir.

It is noticed that for horizontal ground motion, the maximum value is 32% corresponding to Ef /Ed

= 2, occurring at the fundamental frequency of the system. This increase in response, decreases

slowly as the foundation becomes softer.

For vertical ground motion, the maximum increase at the fundamental frequency of the system is

40% related to Ef /Ed = 2, which is even more significant than the corresponding value for

horizontal excitation. However, contrary to horizontal ground motion results, this increase in

response decreases very rapidly as the foundation becomes softer. Significant increases in response

Table 2 Increase in response for rigorous interaction method in comparison to approximate case

Ground Motion Ef /Ed

Increase in response (%)

At the fundamental
 frequency of the 

system

At the natural frequencies of the reservoir

First Second Third

Horizontal

2 32 * * *

1 30 * * *

1/4 20 * * *

Vertical

2 40 22 * 23

1 28 17 * 27

1/4 * * 24 50

Note: * stands for negligible increase or even slight decrease in response
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are also noticed at natural frequencies of the reservoir with a maximum value of 50% occurring for

Ef /Ed = 1/4. Therefore, it can be concluded that rigorous fluid-foundation interaction could also

become important for vertical ground motion, and in some cases increase in response with respect

to approximate case would be much higher than what is obtained for horizontal ground motion.

At this point, the importance of rigorous fluid-foundation interaction has become clear. However,

a question remains to be answered. That is why the responses at the fundamental frequency of the

system are higher in rigorous cases than cases where interactions are excluded. To examine this

behavior, it was decided to study three cases similar to the cases corresponding to Ef /Ed = 1, already

considered. Everything in these new cases, are the same as the ones mentioned previously, except

that the displacement degrees of freedom at the dam base are fixed. This would create three

fictitious cases, which dam-foundation rock interactions are excluded, even though the foundation is

present in the models. It should be noted that this would actually eliminate the coupling of the

foundation impedance matrix with the rest of the system for the first two cases which fluid-

foundation interactions are excluded or treated approximately. However, the coupling still exists for

the rigorous interaction case through the reservoir-foundation interface.

The results for these three fictitious cases are presented in Fig. 8. It is noticed that for horizontal

excitation, the response at the fundamental frequency of the system for the rigorous fluid-foundation

interaction case is much closer to the case which interaction is treated approximately in comparison

to real cases. Meanwhile, both of these responses are significantly lower than the response related to

the case which interaction is excluded. Similar observations are noticed for responses due to vertical

excitation.

This change in trend for the fictitious cases in comparison to the real cases reveals the importance

of a factor, which is missing when the fluid-foundation interaction is excluded or treated

approximately. This factor relates to the fact that hydrodynamic pressures are not exerted over the

foundation surface at the reservoir base when the fluid-foundation interaction is excluded or treated

approximately. Therefore, it is believed that in real cases, these hydrodynamic pressures cause the

additional increase in response at the fundamental frequency of the system for the rigorous cases in

comparison to approximate cases, such that the responses are even higher than those corresponding

Fig. 8 Horizontal accelerations at dam crest due to horizontal and vertical  ground motions (Fictitious cases:
Ef /Ed = 1 and rigid dam base)
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to excluding interaction cases. These pressures influence the response of the dam mainly through its

base, which was artificially disrupted in fictitious cases. Of course, for low ratios of foundation rock

to dam concrete elastic modulus (Ef /Ed = 1/4), the increase in response at the fundamental

frequency of the system due to vertical ground motion is negligible as already mentioned.

5. Conclusions 

A formulation was presented for dynamic analysis of concrete gravity dams in the frequency

domain based on the FE-BE-(FE-HE) method. The special computer program “MAP-76” was

enhanced by this technique, and the response of an idealized dam-foundation-reservoir system was

studied taking into account the fluid-foundation interaction rigorously. Overall, this investigation

leads to the following conclusions:

• In general, rigorous fluid-foundation interaction effects could be important for both horizontal

and vertical ground motions.

For the horizontal ground motion, it was observed that:

• The effective rigorous fluid-foundation interaction length is in the order of L = 3H.

• The main difference in the response utilizing rigorous interaction in comparison to approximate

one, occur near the fundamental frequency of the system.

• The maximum increase in the peak response for rigorous case in comparison to approximate

case is 32% and it corresponds to Ef /Ed = 2. As the ratio Ef /Ed decreases, the increase in the

peak response is lowered. However, even for low ratios of foundation rock to dam concrete

elastic modulus (Ef /Ed = 1/4), the increase is still significant.

For the vertical ground motion, the following observations were noted:

• A rigorous fluid-foundation interaction length in the order of L = 15H is required for the

solution to converge.

• The response utilizing rigorous interaction in comparison to approximate one, differ at several

frequency regions. These are intervals in the vicinities of the fundamental frequency of the

system and the reservoir natural frequencies.

• The maximum increase in the response at the fundamental frequency of the system is 40% for

the rigorous case in comparison to the approximate case and it corresponds to Ef /Ed = 2, which

is even more significant than the corresponding value for horizontal excitation. However,

contrary to horizontal ground motion results, this increase in response decreases very rapidly as

the foundation becomes softer. 

• Significant increases in response are also noticed at the natural frequencies of the reservoir for

the rigorous cases in comparison to the approximate cases with a maximum value of 50%

occurring for
 

Ef /Ed = 1/4.

• Although the difference between the response of the rigorous and approximate models due to

vertical excitation becomes negligible near the fundamental frequency of the system or first

natural frequency of the reservoir for the soft foundation case considered (Ef /Ed = 1/4), it

increases appreciably at higher natural frequencies of the reservoir.
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Moreover, for both excitations, it could be claimed that:

• An important factor, which is missing when the fluid-foundation interaction is treated

approximately, relates to the fact that hydrodynamic pressures are not exerted over the

foundation surface at the reservoir base. Therefore, it is believed that in real cases, these

pressures cause the additional increase in response at the fundamental frequency of the system

for the rigorous case in comparison to approximate case, such that the response is even higher

than the one corresponding to excluding interaction case. These pressures influence the response

of the dam mainly through its base. 
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