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Probabilistic analysis of peak response to 
nonstationary seismic excitations
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Abstract. The main objective of this study is to examine the accuracy of the complete quadratic
combination (CQC) rule with the modal responses defined by the ordinates of the uniform hazard spectra
(UHS) to evaluate the peak responses of the multi-degree-of-freedom (MDOF) systems subjected to
nonstationary seismic excitations. For the probabilistic analysis of the peak responses, it is considered that
the seismic excitations can be modeled using evolutionary power spectra density functions with uncertain
model parameters. More specifically, a seismological model and the Kanai-Tajimi model with the boxcar
or the exponential modulating functions were used to define the evolutionary power spectral density
functions in this study. A set of UHS was obtained based on the probabilistic analysis of transient
responses of single-degree-of-freedom systems subjected to the seismic excitations. The results of
probabilistic analysis of the peak responses of MDOF systems were obtained, and compared with the
peak responses calculated by using the CQC rule with the modal responses given by the UHS. The
comparison seemed to indicate that the use of the CQC rule with the commonly employed correlation
coefficient and the peak modal responses from the UHS could lead to significant under- or over-
estimation when contributions from each of the modes are similarly significant. 
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1. Introduction 

The peak responses of single-degree-of-freedom (SDOF) systems subjected to the seismic

excitations can be succinctly represented by the response spectra; and the peak responses of linear

multi-degree-of-freedom (MDOF) systems can be estimated using the complete quadratic

combination (CQC) rule (Rosenblueth and Elorduy 1969, Der Kiureghian 1981, Chopra 1996) with

the modal peak responses given by the spectra. 

If the uniform hazard spectra (UHS), (i.e., the response spectra at different frequencies having the

same probability of exceedance Pe), are used to represent the seismic demand due to all possible

seismic excitations, it is desirable that the use of this modal combination rule with the peak modal

responses given by the UHS will lead to the peak responses of the MDOF systems having same

probability of exceedance Pe. This is because it is hoped that the use of probability-consistent peak

† Post-doctoral Fellow, Institute for Research in Construction, National Research Council of Canada
‡ Associate Professor, Corresponding author, E-mail: hongh@fes.engga.uwo.ca 

DOI: http://dx.doi.org/10.12989/sem.2005.20.5.527



528 S. S. Wang and H. P. Hong 

responses in design will likely result the designed structures having a consistent reliability level.

Unfortunately, such a desirable probability consistency is not always achieved and in occasions the

differences could be very large (Hong and Wang 2002) if the UHS are considered and the CQC rule

with the correlation coefficient given by Der Kiureghian (1981) is employed. The conclusions given

by Hong and Wang (2002) were based on the results obtained by considering the seismic excitation

as a Gaussian stationary process. It provided a first step in identifying the possible weakness

associated with the use of the CQC rule with the UHS. However, the seismic excitation is inherently

nonstationary. To further verify this possible weakness, a systematic probabilistic analysis of the

peak responses must be carried out by considering the seismic excitations as nonstationary processes. 

In this study, results of probabilistic analysis of the peak responses of MDOF systems are

presented for assessing the adequacy of the CQC rule with peak modal responses given by the

UHS. For the analysis, the seismic excitations are characterized by evolutionary power spectral

density (EPSD) functions that consist a time modulating function and a power spectral density

(PSD) function of a Gaussian stationary process. More specifically, the boxcar or the exponential

modulating functions are used as the time modulating function, and the Kanai-Tajimi PSD function

or the Fourier amplitude spectrum of a seismological model are employed to characterize the

stationary process. Further, parameters for the EPSD functions are considered to be uncertain. This

is aimed at representing the uncertainty in seismic excitations from all potential earthquakes.

Detailed formulation, analysis procedure and results are presented in the following sections. 

2. Ground motion and structural response 

2.1 Stationary ground motion 

The seismic excitation modeled as a stationary process can be characterized by a PSD function

Gx(ω) (Tajimi 1960, Hu and Zhou 1962, Clough and Penzien 1975, Brune 1970, Boore 1983). In

this study, we only consider two often used PSD functions, namely the Kanai-Tajimi PSD function

(Tajimi 1960) and the PSD function based on the seismological model of radiated spectra (Brune

1970, Boore 1983). 

The Kanai-Tajimi PSD function of the ground acceleration Gx1(ω) is given by Tajimi (1960): 

(1)

where ω (rad/sec) is the frequency, G0 is the intensity of the white noise; ωg (rad/sec) is the filter

frequency that determines the dominant range of input frequencies; and the damping coefficient ξg

is a parameter that influences the shape of the PSD function. 

The PSD function based on the seismological model of radiated spectra can be expressed by the

following form (Boore 1983, Quek et al. 1990, 1991): 

(2)
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acceleration at rock sites due to seismic excitation.  is a scaling factor, in

which Rφ , FS and Pr are the factors accounting for the radiation pattern, free surface effect and

partition of energy into horizontal components, respectively; ρ is the density of the medium, βw is

the seismic wave velocity; M0 = 10(1.5 Mrec + 9.05) (N · m) is the seismic moment where Mrec is recorded

earthquake magnitude; R is the hypocentral distance; κ = κRR +κc characterizes the attenuation of

the seismic wave with the attenuation constants κR and κc; ωc = 2π · (0.49βw) · (∆σ /M0)
1/3 is the corner

circular frequency, in which ∆σ is the stress drop. In Eq. (2), , in which A(t) is the time

modulating function which will be discussed in next section. 

2.2 Time modulating function 

The time modulating function, A(t), is taken as a boxcar function (Vanmarcke 1976) or an

exponential function (Shinozuka and Sato 1967). 

The boxcar modulating function takes the form 

(3)

where T0 is the strong ground motion duration and A0 is a scaling factor. For simplicity and without

loss of generality, A0 is taken as unit in the study. 

The exponential modulating function A(t) can be written as 

(4)

where the values of the shape parameters, b1 and b2, can be calculated for any earthquake record

having a strong motion duration T0, and a rise time fraction, ε (Quek et al. 1990). In this study, the

scaling factor A0 is chosen to be  such that the maximum value of the

exponential modulating function equals unit as well. 

2.3 Nonstationary responses to nonstationary seismic excitation 

The seismic ground motion is inherently a nonstationary process which may be characterized by

the EPSD function (Priestly 1967), Gx(ω, t), 

(5)

where Gx(ω) equals Gx1(ω) for the Kanai-Tajimi model and Gx2(ω) for the seismological model. 

For a linear SDOF system with the natural frequency ω0 and the damping ratio ξ subjected to a

nonstationary ground motion with the EPSD function Gx(ω, t), the relative displacement R(t) of the

system is also nonstationary with the EPSD function, GR(ω, t), given by: 

(6)
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where , in which

(7)

Similarly, for an n-degree-of-freedom system with ωi and ξi denoting, respectively, the frequency

and damping ratio of the i-th mode, the EPSD function of its response can be expressed as: 

(8)

where Ci is the effective participation factor of the i-th mode; the asterisk denotes the complex

conjugate; , in which hi(t) is the response of i-th mode which is

defined in Eq. (7) with ξ and ω0 replaced by ξi and ωi. 

3. Probabilistic analysis of peak structural response 

3.1 Variability of parameters 

It is considered that the seismic excitation for all potential earthquakes can be characterized by the

EPSD function with uncertain parameters in stationary PSD function, as well as in time modulating

function. 

Probabilistic characterizations of the model parameters (G0, ωg, ξg) in Eq. (1) for the Kanai-Tajimi

PSD function, taken basically from Lai (1982) and used by Hong and Wang (2002), are shown in

Table 1 and, are adopted in the present study. Note that this characterization was based on more

than 100 strong ground motion records for soil sites. The statistics of the strong ground motion

duration T0 and the rise time fraction adopted from Lai (1982) and Quek et al. (1991) for defining

the time modulating function are also shown in the table. 

A study of the required model parameters in Eq. (2) for the seismological model was carried out

in Quek et al. (1991) based on the results of 54 acceleration records from 8 earthquakes for rock

sites. To consider the uncertainty in Mrec, a bias factor γM was introduced, and M0 was rewritten as

M0 = (N · m). It is noted that instead of Mrec and R, the local magnitude ML and the

epicentral distance Repi were used in Quek et al. (1991) for the analysis because these values are
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Table 1 Statistics of model parameters in Kanai-Tajimi PSD function

Model parameter Mean Standard deviation Distribution type 

ωg (rad/sec) 19.06 8.139 Gamma 

ξg 0.316 0.135 Lognormal 

G0 (cm2/sec3) 35.32 86.675 Lognormal 

T0 (sec) 10.09 9.081 Gumbel 

ε 0.159 0.092 Uniform 
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readily available for all records considered. Further, it was suggested in Quek et al. (1991) that κ

and T0 can be evaluated through the use of κ = κR Repi + κc + κ0 and T0 = τM ML + τR Repi + τc + τ0. The

values of these parameters κR, κc, τm, τR, and τc determined from the regression analysis and the

values of ρ, βw, Rφ , Pr, and FS are shown in Table 2 (Quek et al. 1991). The remaining parameters

(γM, ∆σ, κ0, τ0, ML, Repi, ε) are treated as random variables with the statistics shown in Table 3

(Quek et al. 1991). 

3.2 Probability of non-exceedance 

For the structural response characterized by Eq. (6) or Eq. (8), the probability that the peak

response is within the prescribed barriers ±r during (0, t), L(r, t), can be evaluated using

(Vanmarcke 1976): 

 (9)

where  represents the decay rate; the shape factor,

, measures the variability in the frequency content of the

response;  is the r-level crossing rate; and π is
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Table 2 Values of parameters in Fourier Amplitude of seismological model 

Model parameter Value Model parameter Value 

ρ (kg/m3) 2700 κR 5.007 × 10−8 

βw (m/sec) 3200 κc  0.0293 

Rφ 0.63 τR  0.118 × 10−3  

Pr 0.71 τM  6.3 

Fs 2.0 τc  −31.06 

Table 3 Statistics of model parameters in Fourier Amplitude of seismological model 

Model parameter Mean Standard deviation Distribution type 

 γM 0.969 0.076 Lognormal 

∆σ (N/m3) 1.413 × 108 2.67 × 108  Lognormal 

κ0 (sec/rad) 0.0 0.0065 Normal 

τ0 (sec) 0.0 4.31 Normal 

 ε 0.159 0.092 Uniform 

ML 6.116 0.582 Normal 

Repi (m) 40196 27179 Lognormal 
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(10)

where GR(ω, t) is given by Eq. (6) for SDOF systems and by Eq. (8) for MDOF systems. 

Since the parameters of the EPSD function of ground motion are uncertain as discussed in the

previous section, GR(ω, t) that is conditioned on these parameters is also uncertain. This uncertainty

can be incorporated in evaluating the unconditional probability that the peak response exceeds the

prescribed barriers ±r, Pe(r), by using: 

 (11)

where Ω denotes the domain of a set of random variables X which is  for the

Kanai-Tajimi model and is  for the seismological model; and fX (x)

represents the joint probability density function of X. Note that in Eq. (11),  is used to

replace  to emphasize that it is dependent on the value of X. 

3.3 Fractile of peak response 

Given an EPSD function and structural characteristics, the probability Pe(r), and the (1 − PTe)-

fractile of peak response rT (i.e., Pe(rT) = PTe) can be evaluated by solving the integral equation

(iteratively) shown in Eq. (11). For the case of stationary excitations, the calculation steps including

the use of the first order reliability method (FORM) were given by Hong and Wang (2002). For the

nonstationary case, the analysis steps for evaluating Pe(r) can be stated as follows:

1) Give an initial value r; 

2) Evaluate  using FORM where g = z − Φ−1

 is the inverse of the standard normal distribution function Φ(•), and

Pe(r) is approximated by Φ(−β). For each iteration, this calculation involves: 

2a) For the value of X, x, dictated by FORM, calculate the moments λR,k(t), k = 0, 1, 2, defined in

Eq. (10) with GR(ω, t) defined in Eq. (8) by the Gaussian numerical integration method (with

20 points); 

2b) Evaluate  defined in Eq. (9) by using the Gaussian numerical integration method

(with 20 points). 

For estimating rT, the above steps should be modified to include: 

3) If  is less than a specified tolerance, convergence is achieved and r is assigned to

rT; otherwise, calculate a new r, using the Quasi-Newton method, and repeat Step 2). 

If the SDOF systems with a range of natural frequency of vibration and damping ratios are

considered, the fractiles of the peak responses of these SDOF systems can be used to form the

response spectra. These response spectra can be viewed as the UHS since they have equal

probability of exceedance PTe, and the seismic risk was reflected by considering the uncertainty in

the parameters of EPSD function. 

The fractiles of peak responses of the MDOF systems can also be estimated using the

probabilistic analysis steps. However, for practical applications, the peak response of a MDOF
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system is commonly evaluated using the CQC rule with peak modal responses obtained from a

response spectrum. According to the CQC rule, the response of a MDOF system r0 can be

calculated using (Der Kiureghian 1981, Chopra 2000), 

(12)

where ri0 is the i-th modal peak response with effective participation factor equal to one (i.e.,

response given by response spectrum), and the correlation coefficient of the responses ρij is given

by Der Kiureghian (1981), 

(13)

4. Numerical results 

4.1 Uniform hazard spectra 

Consider the responses of the systems subjected to the nonstationary seismic excitation

characterized by the evolutionary Kanai-Tajimi PSD function with the statistics of the random

variables X =  shown in Table 1. The probability levels of the non-exceedance of

the UHS, (1 − PTe), are chosen to be 0.368, 0.57, and 0.841 which are consistent with those used by

Hong and Wang (2002) and will facilitate the comparison of the results between nonstationary and

stationary cases. The fractiles of the peak responses of a set of SDOF systems are calculated and

shown in Fig. 1(a) for the boxcar modulating function, and in Fig. 1(b) for the exponential

modulating function. For the results shown in the figure and the subsequent numerical analysis in

this study, the damping ratios of 0.05 are employed. A simple analysis of the fractiles of the peak
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Fig. 1 Peak responses of SDOF systems to the evolutionary Kanai-Tajimi PSD function. (a) Boxcar
modulating function, (b) Exponential modulating function
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responses shown in Fig. 1 suggests that the ratios of the fractiles and the ratios of the logarithmic of

fractiles vary with natural vibration periods. Also, the logarithmic of these ratios are slightly

different as well. These imply that the peak responses at different natural periods are not fully

correlated. Therefore, the peak responses cannot be represented accurately by the product of or the

logarithmic of product of a deterministic function (i.e., traditional response spectrum) of the natural

frequency and a random variable (i.e., the peak ground acceleration or the peak ground velocity),

which provides justification of the use of the UHS. These findings are similar to the ones given in

Hong and Wang (2002) where the responses and the seismic excitations are treated as stationary

processes. Further, comparison of the results shown in Figs. 1(a) and 1(b) indicates that the peak

responses for the boxcar modulating function are larger than those for the exponential modulating

function. This is due to the way the modulating functions are normalized. 

For comparison purpose, the fractiles of the peak responses obtained by considering stationary

excitation with the Kanai-Tajimi PSD function (Hong and Wang 2002) is also shown in Fig. 1. It

indicates that the fractiles of the peak responses to the stationary excitation are larger than those to

the nonstationary excitation modeled as the time-modulated Kanai-Tajimi PSD function. This is

expected because that the nonstationary excitation is equal to the stationary excitation multiplied by

the modulating function with magnitude less than or equal to one. The comparison also suggests

that the nonstationarity of the ground motion affects the peak response of flexible systems more

significantly than that of rigid systems. This can be explained because for a rigid system whose

fundamental period is several times shorter than the duration of strong ground motion its response

reaches stationarity much faster than that of a flexible system. 

Similar analysis was carried out for the nonstationary seismic excitation characterized by the

EPSD function of the seismological model. In the analysis, the deterministic parameters shown in

Table 2 and the statistics of random variables shown in Table 3 are used. The obtained results are

presented in Figs. 2(a) and 2(b). Again, it appears that the peak responses at different natural

periods are not fully correlated since they do not have exactly the same shape. However, unlike the

results shown in Fig. 1, the peak responses to the exponentially modulated nonstationary excitation

are not always less than those to the nonstationary excitation modulated by the boxcar modulating

function. This is because that the EPSD function for the seismological model shown in Eq. (5) with

Fig. 2 Peak responses of SDOF systems to the evolutionary PSD function of seismological model. (a) Boxcar
modulating function, (b) Exponential modulating function

(a) (b)
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Gx(ω) substituted by Gx2(ω) given in Eq. (2) is independent of the magnitude of the modulating

functions. 

4.2 Peak response of two-degree-of-freedom system 

As described previously, the peak responses of MDOF systems can be calculated using the CQC

rule with the modal peak responses from the response spectra. For a two-degree-of-freedom (2DOF)

system with modal frequencies ω1 and ω2, the calculated peak response denoted by ra is given by, 

(14)

where r10p and r20p denote the peak modal responses with the specified probability of exceedance

PTe; ρ12 is the correlation coefficient shown in Eq. (13); C1 and C2 represent the effective

participation factors due to the first mode and the second mode. The peak modal responses ri0p, i =

1, 2, are obtained directly from the UHS at ωi. 

To carry out a systematic assessment of the adequacy of the CQC rule for the 2DOF systems with

ranges of values of C1 and C2, we use a parameter , in which rABS = +

, to represent the contribution of the second mode to the system. Thus, Eq. (14) can be

rewritten as follows: 

(15)

where sgn( ) returns the sign of the argument. 

By assigning different values of ζ from 0 to 1, different percentage of the contribution due to each

mode to the system can be obtained. In particular, if ζ equals zero or one, the system is a SDOF

system. If ζ equals 0.5, it implies that the contribution of the first mode to the system response is

equally important as that of the second mode. 

Note that since GR(ω, t) shown in Eq. (8) for a 2DOF system can be expressed as: 

(16)

where  and . Since the quantity inside of the parenthesis on

the left side of Eq. (16) is independent of rABS, α (r, t) in Eq. (9) is independent of rABS. In other

words, given the value of ζ the probability that the peak response of the 2DOF system exceeds a

fraction of or a multiple of rABS can be evaluated using Eq. (11) without the actual value of the rABS.

Consider that a set of 2DOF systems with the same fundamental period, T1 = 0.2 sec, and

different period ratios, T2/T1 = 1.2, 1.5 and 2.0, subjected to the nonstationary seismic excitations

with modulated Kanai-Tajimi PSD functions. To verify the accuracy of using the CQC rule with

peak modal responses from the UHS to assess the peak responses of the 2DOF systems, the peak

responses of the systems, ra, are calculated by using Eq. (15) with r10p and r10p obtained from

Figs. 1(a) and 1(b), and are compared with the (1 − PTe)-fractile of the peak responses, rT, obtained

using the probabilistic analysis procedure described in the previous section. The values of the ratio,

η = ra/rT, are shown in Figs. 3(a) and 3(b) for the boxcar modulating function, and in Figs. 3(c) and

3(d) for the exponential modulating function. The results shown in Figs. 3(a) and 3(c) are obtained
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when two modes displace in the same direction (i.e., sgn(C1C2) > 0), while those in Figs. 3(b) and

3(d) are for two modes displacing in the opposite direction (i.e., sgn(C1C2) < 0). The figures indicate

that the ratios vary significantly with ζ. The peak responses, ra and rT, are almost identical when ζ

is close to 0 or 1; otherwise they are different. This suggests that when the response is dominated

by one mode the use of the CQC rule with the UHS, even under nonstationary excitation, is

adequate. However, if the contributions of both modes to the system response are significant, the

use of the CQC rule with the UHS could lead ra to be significantly different than rT. The results

also indicate that the error of the peak response (i.e., absolute value of 1 − η) decreases as the

probability of non-exceedence, (1 − PTe), increases. This implies that the accuracy of the CQC rule

is improved for high probability of non-exceedance levels. For these 2DOF systems, the CQC rule

under- and over-estimates the peak responses of the systems for sgn(C1C2) > 0 and sgn(C1C2) < 0,

respectively. The ratio attains the lowest value for sgn(C1C2) > 0 and the highest value for

sgn(C1C2) < 0 when ζ is within about 0.4 to 0.6. It is noted that the highest value of η almost

reaches 2 in Fig. 3(d). In such a case the error of the peak response evaluated by the CQC rule with

Fig. 3 Ratios of ra to rT calculated using the evolutionary Kanai-Tajimi PSD function. (a) Effect of T1/T2 for
T1 = 0.2s, sgn(C1C2) > 0, boxcar modulating function, (b) Effect of T1/T2 for T1 = 0.2s, sgn(C1C2) < 0,
boxcar modulating function, (c) Effect of T1/T2 for T1 = 0.2s, sgn(C1C2) > 0, exponential modulating
function, (d) Effect of T1/T2 for T1 = 0.2s, sgn(C1C2) < 0, exponential modulating function 

(a) (b)

(c) (d)
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the modal response from the UHS is about 100%. Further, the results show that the ratio of the

modal period affects the value of η. In Figs. 3(b) and 3(d), it appears that when sgn(C1C2) < 0

differences between ra and rT increase as the vibration modes become closer. However, as shown in

Figs. 3(a) and 3(c), such trend can not be found if sgn(C1C2) > 0. Comparison between Figs. 3(a)

and 3(b), and Figs. 3(c) and 3(d) shows that the errors appear to be larger for the cases with

sgn(C1C2) < 0 than for the cases with sgn(C1C2) > 0. 

The effect of the fundamental natural vibration period T1 on η is investigated by considering

another set of 2DOF systems with T2/T1 = 2.0 and T1 equal to 0.2, 0.5 or 1.5 sec. The obtained η

are shown in Figs. 4(a) and 4(b) for the boxcar modulating function and in Figs. 4(c) and 4(d) for

the exponential modulating function. Again, the values of η vary significantly with ζ. The use of

the CQC rule with the UHS seems to be adequate for assessing the peak responses of the systems

whose peak responses are dominated by one mode, while it leads to error for the systems having

equally significant contributions from both modes to the peak responses. The trend observed in

Fig. 4 Ratios of ra to rT calculated using the evolutionary Kanai-Tajimi PSD function. a) Effect of T1 for T1/T2

= 2.0, sgn(C1C2) > 0, boxcar modulating function, b) Effect of T1 for T1/T2 = 2.0, sgn(C1C2) < 0,
boxcar modulating function, c) Effect of T1 for T1/T2 = 2.0, sgn(C1C2) > 0, exponential modulating
function, d) Effect of T1 for T1/T2 = 2.0, sgn(C1C2) < 0, exponential modulating function

(a) (b)

(c) (d)
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above that the CQC rule under- and over-estimates the peak response of the system for sgn(C1C2) > 0

and sgn(C1C2) < 0, respectively, does not hold for this set of systems. It appears that this trend

depends on whether T1 is larger or smaller than the mean value of the filter period Tg(Tg = 2π/ωg =

0.33 sec), as observed for the case of stationary excitation (Hong and Wang 2002). 

To investigate the influence of treating the excitations as nonstationary processes versus as

stationary processes on η, the values of η for 2DOF systems under both types of excitations are

compared in Figs. 5(a) and 5(b) for T1 = 0.2 sec and T1/T2 = 1.2, and in Figs. 5(c) and 5(d) for T1 =

0.2 sec and T1/T2 = 2.0. For the stationary case, the Kanai-Tajimi PSD function is employed; while

for the nonstationary case the boxcar or exponential modulating function together with the Kanai-

Tajimi PSD function is used. The results shown in Figs. 5(a) and 5(c) are for sgn(C1C2)>0 and those

in Figs. 5(b) and 5(d) are for sgn(C1C2) < 0. The results suggest that when the excitation is

considered as a nonstationary process the variations of η are similar to those obtained when the

seismic excitation is treated as a stationary process. However, considering the excitation as a

nonstationary process defined by an EPSD function may lead to η deviate from unit more

significantly. The results also show that the type of the modulating function (boxcar or exponential)

Fig. 5 Comparison between the ratios of stationary cases and nonstationary cases (with the Kanai-Tajimi PSD
function). (a) T1 = 0.2s, T1/T2 = 1.2, sgn(C1C2) > 0, (b) T1 = 0.2s, T1/T2 = 1.2, sgn(C1C2) < 0, (c) T1 =
0.2s, T1/T2 = 2.0, sgn(C1C2) > 0, (d) T1 = 0.2s, T1/T2 = 2.0, sgn(C1C2) < 0

(a) (b)

 (c) (d)
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employed to modulate the seismic excitation does not affect the value of η considerably. 

The above analyses are repeated for the seismic excitations characterized by the EPSD functions

based on the seismological model. The obtained values of η for the set of systems with T1 = 0.2 sec,

and T1/T2 = 1.2, 1.5, and 2.0 are shown in Figs. 6(a) and 6(b) for the boxcar modulating function

and in Figs. 6(c) and 6(d) for the exponential modulating function. Unlike the results shown in Fig. 3,

the value of η in Fig. 6 is not substantially affected by the probability of non-exceedance levels.

The other observed trends for η by considering the Kanai-Tajimi model seem to be equally

applicable for the seismological model. However, as compared to the cases with the Kanai-Tajimi

model, the magnitude of the under- and over-estimations are less for the cases with the

seismological model especially when ζ is within about 0.4 and 0.6. 

The values of η for systems with T1/T2 = 2, and T1 = 0.2, 0.5, and 1.5 sec, are also calculated and

shown in Figs. 7(a) and 7(b) for the boxcar modulating function and in Figs. 7(c) and 7(d) for the

exponential modulating function. Again, the conclusions drawn from the Fig. 7 are similar to those

based on results shown in Fig. 4. 

Fig. 6 Ratios of ra to rT calculated using the EPSD function for seismological model. (a) Effect of T1/T2 for
T1 = 0.2s, sgn(C1C2) > 0, boxcar modulating function, (b) Effect of T1/T2 for T1 = 0.2s, sgn(C1C2) < 0,
boxcar modulating function, (c) Effect of T1/T2 for T1 = 0.2s, sgn(C1C2) > 0, exponential modulating
function, (d) Effect of T1/T2 for T1 =0.2s, sgn(C1C2) < 0, exponential modulating function

(a) (b)

(c) (d)
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5. Conclusions 

The adequacy of the use of the complete quadratic combination (CQC) rule with the modal peak

responses defined by the ordinates of the uniform hazard spectra (UHS) to calculate the peak

responses of multi-degree-of-freedom (MDOF) systems subjected to the nonstationary seismic

excitations with uncertain model parameters were assessed. The assessment was based on the ratios

of the peak responses obtained from the CQC with the UHS to the fractiles of the MDOF systems.

The excitations were characterized by the evolutionary power spectral density (EPSD) functions

with the boxcar or the exponential modulating function and the PSD function from the Kanai-Tajimi

or the seismological model. 

The analysis results show that the use of the CQC rule with the adopted correlation coefficient

and the modal responses obtained from the UHS is adequate if the peak responses of MDOF

systems are dominated by one of the modes. Otherwise, severe under- or over-estimations may

result. More specifically, the over- or under-estimations appear to be 

Fig. 7 Ratios of ra to rT calculated using the EPSD function for seismological model. (a) Effect of T1 for
T1/T2 = 2.0, sgn(C1C2) > 0, boxcar modulating function, (b) Effect of T1 for T1/T2 = 2.0, sgn(C1C2) < 0,
boxcar modulating function, (c) Effect of T1 for T1/T2 = 2.0, sgn(C1C2) > 0, exponential modulating
function, (d) Effect of T1 for T1/T2 = 2.0, sgn(C1C2) < 0, exponential modulating function

(a)

(c) (d)

(a)

(b)
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1) Minor or moderate (i.e., less than 10% or 20%) if the peak response of the MDOF system is

dominated by one of the modes (i.e., the contribution of the dominant mode is over 90% or

80% of the absolute sum of the effective modal peak response); 

2) Severe if the modal contributions to the peak responses of the MDOF system are about equally

significant; and 

3) Less for the cases when the effective modal participation factors have the same sign than for

the cases when they have opposite signs. 

The under- or over-estimation is also affected by the modal periods, the probability of non-

exceedance levels, the PSD function used (i.e., Kanai-Tajimi versus seismological model), and by

the modulating function to a lesser degree. Comparison of the obtained results to the results for

stationary cases seem to suggest that the under- or over- estimations for nonstationary excitations

are larger than those for stationary excitations. However, the trends of the under- or over-

estimations for both types of excitations are similar. 

The above conclusions could be used as a guideline for calibrating correlation coefficients that

lead to more probability-consistent peak responses of MDOF systems. 
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