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Abstract. Free vibration of orthotropic functionally graded beams, whose material properties can vary
arbitrarily along the thickness direction, is investigated based on the two-dimensional theory of elasticity.
A hybrid state-space/differential quadrature method is employed along with an approximate laminate
model, which allows us to obtain the semi-analytical solution easily. With the introduction of continuity
conditions at each fictitious interface and boundary conditions at the top and bottom surfaces, the
frequency equation for an inhomogeneous beam is derived. A completely exact solution of an FGM beam
with material constants varying in exponential way through the thickness is also presented, which serves a
benchmark to verify the present method. Numerical results are performed and discussed.

Key words: functionally graded beams; differential quadrature; state space method; approximate
laminate model; exact solution.

1. Introduction

Functionally graded materials (FGMs) are known for the nature that they possess the properties
varying with location continuously. For their perfect performance of material and mechanics, FGMs
are finding increasing applications in the fields of aerospace, electromagnetics, optics, biomedicine
and nuclear etc. (Suresh and Mortensen 1998). Hence, the activities of developing new and efficient
analysis methods are of great practical significance in the structural design and mechanical behavior
investigation.

In the past decade, behaviors of FGM plates and shells, such as thermal stresses, thermal
deformations and vibrations etc., have been posing intensive research focuses (Reddy et al. 1999,
Chen et al. 2003a). As regards FGM beams, Wetherhold et al. (1996) analyzed the thermal
deformation by the beam theory and showed that the deformation could be controlled by selecting
proper material variations along the thickness. Sankar (2001) derived an exact elasticity static
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solution for a simply-supported isotropic FGM beam with the Young’s modulus being exponential
function of the thickness coordinate while the Poisson’s ratio keeping constant. He also proposed a
simple Euler-Bernoulli type beam theory for slender FGM beams on the basis of the hypothesis
that cross sections remain plane and normal to the beam axis after deformation. Recent works on
FGM beams can also be found in the papers of Chakraborty et al. (2003), Chakraborty and
Gopalakrishnan (2003).

In this study, a newly developed hybrid method, i.e., the state-space-based differential quadrature
method (SSDQM) (Chen et al. 2003b), is employed to investigate the free vibration of orthotropic
FGM beams. Details on the applications of differential quadrature method (DQM) in science and
engineering fields can be found in Bert and Malik’s review paper (1996) and Shu’s work (2000).
Due to its excellent properties, DQM has continuously received extensive applications in the new
century (Redekop and Makhoul 2000, Jiang and Redekop 2002, Civalek and Ülker 2004). In the
current work, the conventional state equation, derived from the fundamental elasticity equations of
plane stress problem, is discretized along the beam axis by virtue of the differential quadrature (DQ)
technique. The proper form of discrete state equation is obtained by involving the exact end
conditions. For the sake of analysis, the approximate laminate model (Wang et al. 1999, Ootao and
Tanigawa 2000, Chen and Ding 2002) is employed to turn the discrete state equation with variable
coefficients into the one with constant coefficients within each separate layer. Use of the continuity
conditions at each hypothetic interface leads to a transfer relationship between the unknown state
variables at the upper and lower surfaces. The eigen-equation is then derived by taking account of
the boundary conditions at the two surfaces.

Using the above method, the elastic constants and mass density can vary arbitrarily through the
thickness direction of the beam. However, for the purpose of validating the effectiveness of the present
approach, exact solution is deduced for the case of a simply-supported FGM beam with the material
constants varying along the thickness direction in the following exponential way (Sankar 2001),

Type I: (1)

where y is the thickness coordinate of the beam, and κ 0 is the material constant. This solution is
then utilized to check the validity and effectiveness of the proposed hybrid method. Then, numerical
examples are performed for beams composed of two material phases with the material constants
varying through the thickness direction in a power way (Reddy et al. 1999) as

Type II: (2)

where  and  denote the material constants of the two phases in a composite beam, and h is the
beam thickness. In the above two types of materials, α1 and α2 are known as the gradient indexes,
and κ (y) represents an arbitrary material constant of the FGM depending on the thickness
coordinate y. It should be pointed out that for all the cases, the Poisson’s ratios remain constant
along the thickness direction.

2. Theoretical formulations

Consider an orthotropic functionally graded material composite beam of small width b, depth h
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and length l placed in a referred system of Cartesian coordinates, which is originating at the bottom
plane of the beam with the x axis coincident with the beam axial direction and the y axis with the
thickness-wise direction (Fig. 1). For each of the material component, the principle material axes are
assumed to coincide with the coordinate axes.

According to the theory of two-dimensional elasticity, for a beam with small width in the state of
plane stress (σz = τyz = τxz = 0), the constitutive relations read (Timoshenko and Goodier 1970)

(3)

where σx and σy are two normal stresses, τxy is the shear stress, u and v are respectively the
displacement components in x and y directions, and crs (r, s = 1, 2, 6) are the elastic constants.

In the absence of body forces, the differential equilibrium equations for free vibration of an elastic
body are written as

(4)

in which ρ is the mass density of the elastic body and t is the time. In this paper, we assume that
the elastic constants as well as the mass density are all functions of the coordinate variable y.

Following a routine method of derivation (Das and Setlur 1970, Bahar 1975), the following state
equation can be derived from Eqs. (3) and (4),

(5)

where ω is the circular frequency, u, σy , v and τxy are the state variables, and the induced variable
σx is obtained as

(6)

The end supporting conditions for a special problem are expressed in terms of the state variables
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Fig. 1 An FGM beam divided into m layers
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different supports, including simply supported (S), clamped (C) and free (F) ends:

v = 0, σx = 0, at a simply supported end (7a)

u = 0, v = 0, at a clamped end (7b)

σx = 0, τxy = 0, at a free end (7c)

Hereafter, for brevity, S-S, C-C or C-F beam signifies the beam with simply supported-simply
supported, clamped-clamped or clamped-free ends.

3. Exact solution of a particular orthotropic FGM beam

Provided that an S-S FGM beam is composed of the material with the mechanical properties
dependent on the thickness coordinate in an exponential way (Sankar 2001) as described in Eq. (1),
an exact solution can be derived using a method similar to that employed by Zhong and Shang
(2003). Herein, it is assumed that

(8)

where ξ = x/l, η = y/h, n is the half-wave number along the beam axis, an over-bar represents the
non-dimensional variable, and the superscript ‘0’ of elastic constants  denotes the value at y = 0.
Note that the state variables given by Eq. (8) automatically satisfy the simply-supported conditions
at ξ = 0 and ξ = 1. Substitution of Eq. (8) into Eqs. (3) and (4) yields

(9)

where , and the constant coefficient matrix A is obtained as

(10)

where  is the non-dimensional frequency parameter. According to the matrix
theorem, the solution of  in Eq. (9) is derived as
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(11)

One can get the relationship between the state vectors at upper and lower surfaces by setting η = 1,
that is

(12)

where T = exp(A) is known as the global transfer matrix. By incorporating the tractions-free
boundary conditions at the lateral surfaces (η = 0 and η = 1) into Eq. (12), one gets

(13)

Eq. (13) has nontrivial solutions for  and  only if the determinant of the coefficient
matrix vanishes, giving rise to the following frequency equation for the beam,

(14)

in which Tij are elements of matrix T. From Eq. (14) one can calculate the natural frequency of the
beam. Different from that described in various conventional beam theories or numerical
methodologies, Eq. (14) is not a polynomial equation but a transcendental one about ω2. Actually,
the number of solutions to this equation is infinite for every mode number n, that is, one can obtain
innumerable natural frequencies from this equation.

4. Approximate solutions

Recently, Chen et al. utilized the DQ technique to solve the partial differential state equations
based on the theory of elasticity for static and vibration problems of laminated composite beams
and plates (Chen et al. 2003b, 2004, Chen and Lü 2005). In this section, the authors will apply this
technique in the analysis of FGM beams coupled with the approximate laminate model.

4.1 Application of DQM

As it comes to a beam with other supporting conditions, say clamped or free end condition, it is
rather difficult to seek an exact solution to Eq. (5). According to the main point of differential
quadrature, an arbitrary partial differentiation about x of a continuous function f (x, y) at a given
point xi can be approximated as a linear sum of weighted function values at all the discrete points in
the domain of x. If N sampling points are adopted, one gets

(15)

where  are the weighted coefficients that can be thoroughly determined by the coordinates of all
discrete points (Shu and Richards 1992).
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By virtue of Eq. (15), one can obtain the discrete form of Eqs. (5) and (6) as

(16)

(17)

where ui, σyi, vi, τi and σxi are continuous functions about the independent variable y at the given
sampling point xi.

It should be noted that, when i = 1 or i = N, the end conditions should be incorporated into the
discrete state equation, Eq. (16) (Chen et al. 2003b). In this paper, three representative end
conditions in Eq. (7) are considered. It can be seen that among the three types of boundary
conditions, only σx = 0 is not expressed directly in terms of state variables, for which use should be
made of Eq. (17) to get

(18)

Then the appropriate form of discrete state equation that is suitable for solving practical problem
can be derived. With the incorporation of any type of end conditions in Eq. (7) into Eq. (16), we
assemble all the discrete equations at all sampling points into a global one, and rewrite it in the
following matrix form,

(19)

where  is the state vector at an arbitrary coordinate of y, with the
superscript T denoting the transpose of a matrix and u, σy, v and τ column vectors composed of all
unknown discrete state variables at y, and M is the global coefficient matrix.

4.2 Approximate laminate model and frequency equation

As stated earlier in this paper, the elastic constants crs (r, s = 1, 2, 6) and the mass density ρ in the
coefficient matrix M are not constant; actually they can vary along the thickness direction in
arbitrary ways. Thus, it is difficult to obtain the exact solution to Eq. (19). Hereby, we adopt the
approximate laminate model (Wang et al. 1999, Ootao and Tanigawa 2000, Chen and Ding 2002) to
transform Eq. (19) into the one with constant coefficients.
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In detail, the FGM beam is divided into m layers (see Fig. 1), each with a sufficiently small
thickness of hk = yk − yk-1, in which yk is the coordinate of the fictitious interface between the k-th
and the (k + 1)-th layers. In this circumstance, the material constants within the k-th layer can be
assumed invariable, and their values at the mediate plane of that layer are to be taken, that is,

(20)

for . Thus, the coefficient matrix M in Eq. (19) becomes constant within the k-th
layer and is denoted as Mk hereafter. Once the beam is treated as a laminated one, the following
relation between the state vectors δ(h) and δ(0) is then obtained similar to the procedure outlined in
our previous papers (Chen et al. 2003b, Chen and Lü 2005),

(21)

where  is the global transfer matrix for the discrete state variables, and Sij are the
corresponding partitioned matrices. Similarly, for free vibration problem, we can derive the
frequency equation as

(22)

From this equation, the natural frequency of the beam can easily be calculated. Similarly, this
equation is also transcendental with respect to ω2, and can yield an infinite number of natural
frequencies.

5. Numerical illustrations

It should be noted that the use of uniformly distributed discrete points in DQM usually could not
precisely describe the deformation near the supporting ends, which leads to a bad convergence and
accuracy when predicting higher-order natural frequencies (Bert and Malik 1996). Hence, the
following unequally spaced sampling points in cosine pattern
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are adopted, which is known as the Chebyshev-Gauss-Lobatto points (Sherbourne and Pandey
1991).

Now, we consider an S-S orthotropic FGM beam of Type I, for which a completely exact
elasticity solution can be derived, as described in Section 3. This solution can serve as a benchmark
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material constants of material A listed in Table 1 are employed. The first ten non-dimensional
frequencies  for different length-to-depth ratios are presented in Table 2, where
m and N represent the layer number and sampling point number, respectively.

It can easily be seen that the results obtained by the present method, either for the slender thin or
for the short thick beams, agree well with the exact ones. In particular, the difference between
results for three different layer division schemes with a given sampling point number, say N = 16, is
completely negligible. This illustrates that the present approximate laminate model has a very good
convergence characteristics. It should be pointed out that although the analysis based on beam
theories is simpler, it can only predict several lowest frequencies, which will further suffer from
inaccuracy when the length-to-depth ratio decreases. On the other hand, the present method can
predict any higher-order frequencies, from the theoretical point of view, by using large layer number
and sampling point number. 

Ω ωh ρ
0/c66

0( )A=

Table 1 Material constants

Material Constants 

A

B

c
rs

0 1010 N/m2

– ρ
0 kg/m3

–,( )

c11

0 13.9= ,  c12

0 1.4= ,  c22

0 33.64= ,  c66

0 16.25= ,  ρ0 7.5 103

×=

c11

0 20.97= ,  c12

0 10.51= ,  c22

0 21.09= ,  c66

0 4.25= ,  ρ0 5.676 103

×=

Table 2 Comparisons of Ω of the present method with the exact solution for an S-S FGM beam (Type I,
α1 = 0.5)

Mode
N = 11 N = 12 N = 13 N = 14 N = 15 N = 16

Exact
m = 5 m = 4 m = 5 m = 6

15

1
2
3
4
5
6
7
8
9

10

0.011573
0.045802
0.101317
0.176313

*0.193298
0.264284

-
-
-
-

0.011573
0.045802
0.101319
0.176104

*0.193298
0.268781
0.364344

*0.386593
-
-

0.011573
0.045802
0.101320
0.176128

*0.193298
0.267747
0.377290

*0.386593
0.473157

*0.579880

0.011573
0.045802
0.101320
0.176130

*0.193298
0.267916
0.373560

*0.386593
0.501127

*0.579880

0.011573
0.045802
0.101320
0.176130

*0.193298
0.267914
0.374365

*0.386593
0.490590

*0.579880

0.011573
0.045802
0.101320
0.176129

*0.193299
0.267912
0.374290

*0.386594
0.493408

*0.579882

0.011573
0.045802
0.101320
0.176130

*0.193298
0.267914
0.374295

*0.386593
0.493418

*0.579880

0.011573
0.045802
0.101320
0.176131

*0.193297
0.267917
0.374299

*0.386591
0.493424

*0.579877

0.011572
0.045801
0.101319
0.176130

*0.193297
0.267916
0.374308

*0.386591
0.493076

*0.579877

7

1
2
3
4
5
6
7
8
9

10

0.052471
0.200726

*0.414206
0.423795
0.700641

*0.828374
1.000475

*1.242446
-
-

0.052471
0.200726

*0.414206
0.423803
0.699899

*0.828375
1.015241

*1.242459
1.318731

*1.656278

0.052471
0.200726

*0.414206
0.423805
0.699984

*0.828375
1.011850

*1.242462
1.358519

*1.645163

0.052471
0.200726

*0.414206
0.423805
0.699992

*0.828375
1.012403

*1.242462
1.347085

*1.656409

0.052471
0.200726

*0.414206
0.423805
0.699992

*0.828375
1.012397

*1.242462
1.349553

*1.656408

0.052471
0.200725

*0.414207
0.423798
0.699973

*0.828377
1.012362

*1.242466
1.349285

*1.656412

0.052471
0.200726

*0.414206
0.423805
0.699991

*0.828375
1.012398

*1.242462
1.349340

*1.656407

0.052471
0.200728

*0.414204
0.423810
0.700002

*0.828370
1.012418

*1.242455
1.349370

*1.656398

0.052470
0.200727

*0.414204
0.423816
0.700022

*0.828370
1.012457

*1.242456
1.349458

*1.656399

Note: ‘-’ denotes the frequency not obtainable, and that marked with an asterisk correspond to the modes that
longitudinal modes are more dominating.

l

h
---
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The frequencies labeled by an asterisk in Table 2 correspond to those vibration modes in which
the longitudinal displacement is more dominating (Further investigation based on Eqs. (3) and (4)
show that pure longitudinal vibration can not exist due to the inhomogeneity of the beam). These
frequencies usually can not be predicted by beam theories based on the bending hypothesis. The
orders of those modes (referred to longitudinal mode hereafter for simplicity; but we should bear in
mind that they are not purely longitudinal) are also different for different length-to-depth ratios. For
example, the first longitudinal mode corresponds to the fifth frequency for l/h = 15, while it
corresponds to the third frequency for l/h = 7.

Now we consider an orthotropic FGM beam of Type II, with  and  respectively
corresponding to materials A and B listed in Table 1. The free vibrations of C-F and C-C beams
are studied and the numerical results are tabulated in Tables 3 and 4. The gradient index is taken

κ1

0
κ2

0

Table 3 Non-dimensional frequency Ω of a C-F beam (Type II, α2 = 1.0)

Mode

l/h = 15 l/h = 7

N = 15
m = 7

N = 15
m = 8

N = 16
m = 8

N = 15
m = 7

N = 15
m = 8

N = 16
m = 8

1
2
3
4
5
6
7
8
9

10

0.00467
0.02884
0.07898

*0.10990
0.15019
0.23951

*0.32961
0.34414
0.46251

*0.54902

0.00467
0.02883
0.07895

*0.10989
0.15014
0.23944

*0.32959
0.34404
0.46240

*0.54898

0.00467
0.02883
0.07896

*0.10990
0.15015
0.23949

*0.32961
0.34374
0.46093

*0.54905

0.02127
0.12529

*0.23573
0.32341
0.57609

*0.70638
0.86432
1.16500

*1.18456
1.50292

0.02127
0.12525

*0.23571
0.32332
0.57596

*0.70633
0.86415
1.16483

*1.18446
1.50266

0.02132
0.12527

*0.23576
0.32336
0.57597

*0.70633
0.86427
1.16456

*1.18414
1.49682

Note: Frequencies marked with an asterisk correspond to the modes that longitudinal modes are more domi-
nating

Table 4 Non-dimensional frequency Ω of a C-C beam (Type II, α2 = 1.0)

Mode

l/h = 15 l/h = 7

N = 15
m = 7

N = 15
m = 8

N = 16
m = 8

N = 15
m = 7

N = 15
m = 8

N = 16
m = 8

1
2
3
4
5
6
7
8
9

10

0.02927
0.07882
0.14981

*0.22321
0.23945
0.34320

*0.44362
0.45820
0.58425

*0.66684

0.02928
0.07886
0.14988

*0.22320
0.23953
0.34332

*0.44365
0.45835
0.58442

*0.66687

0.02922
0.07864
0.14951

*0.22054
0.23843
0.34243

*0.44116
0.45853
0.58288

*0.66099

0.12676
0.31930

*0.47268
0.56825
0.85334

*0.94347
1.16092

*1.41044
1.47977
1.80176

0.12673
0.31922

*0.47265
0.56814
0.85321

*0.94341
1.16077

*1.41034
1.47960
1.80156

0.12638
0.31839

*0.47191
0.56747
0.85145

*0.94247
1.16038

*1.40835
1.48428
1.80282

Note: Frequencies marked with an asterisk correspond to the modes that longitudinal modes are more domi-
nating.
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to be α2 = 1.0. From the tables, it is seen that although the convergence of our method behaves
slightly differently for various parameters (end condition, length-to-depth ratio, layer number as
well as sampling point number), the results are very accurate even for the high modes, from the
engineering point of view. Further numerical investigations show that although for the beam with
the same end conditions, yet different material properties result in different convergence behaviors
of the present method. It can be expected that when the material property varies sharply along the
thickness direction, then more separate layers are needed to yield an accurate result. It is known
from beam theory that the fastener the constraint of the beam, the higher the frequency will be.
The present method also predicts this character as shown in Tables 3 and 4. We also note that the
order of the longitudinal modes further depends on the end conditions as well as the material
properties.

Fig. 2 shows the curves of the first four non-dimensional frequencies Ω versus the gradient index
α2, of a C-C beam with l/h = 15. The layer number and sampling point number are taken to be
N = 15 and m = 8, respectively. From the figure, it is seen that Ω increases with the increasing of α2

for all the modes in consideration. Furthermore, the variation of Ω with α2 is quite acute when
, while it becomes gentle when . Note that when  the beam is a homogenous

one made of material A, while it becomes the one made of material B when . Thus the
frequency will gradually approaches the one of a homogeneous beam made of material Β when α2

becomes larger and larger.
Fig. 3 displays the curves of the first four non-dimensional frequencies Ω of a C-C beam with

α2 = 1.0 versus the length-to-depth ratio l/h. The layer number and sampling point number are the
same as that taken in the above example. It is shown that the decreasing of Ω is significant when

, but when l/h > 40 all curves tend to be horizontal indicating that Ω becomes almost
invariant. This particular phenomenon for the slender thin FGM beam agrees with that predicated
by the classical beam theory for homogeneous beams.

α2 2≤ α2 2> α2 0=

α2 ∞→

l/h 40≤

Fig. 2 Effect of gradient index α2 on non-dimensional frequency Ω of a C-C beam (Type II, l/h = 15)
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6. Conclusions

In this paper, the recently developed SSDQM (Chen et al. 2003b) is combined with the
approximate laminate model to study the free vibration of FGM beams directly based on the
orthotropic elasticity theory of plane stress problem. The validity and efficiency of the current
methodology is clarified by considering several numerical examples. The following advantages of
the present method can be concluded:

(1) By comparing the numerical results to the exact ones for an S-S FGM beam with material
constants varying exponentially through the thickness coordinate, it is seen that the present
method has a perfect performance even for higher vibration modes of thick beams. The
present method can deal with arbitrary end conditions, breaking through the limitation of the
conventional state-space approach, and can provide a benchmark for clarifying various beam
theories or numerical methods.

(2) The employment of approximate laminate model makes it possible for us to deal with arbitrary
material inhomogeneity easily. The thickness of each layer also can be different to match the
variations of the material constants. In particular, in the area where the material constants vary
rapidly, the layers should be sufficiently thin. It is obvious that when the number of layers
increases, the solution based on the laminate model will gradually approach the solution of the
original FGM beam.
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