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Dynamic instability of functionally graded material plates 
subjected to aero-thermo-mechanical loads
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Abstract. Here, the dynamic instability characteristics of aero-thermo-mechanically stressed functionally
graded plates are investigated using finite element procedure. Temperature field is assumed to be a
uniform distribution over the plate surface and varied in thickness direction only. Material properties are
assumed to be temperature dependent and graded in the thickness direction according to simple power law
distribution. For the numerical illustrations, silicon nitride/stainless steel is considered as functionally
graded material. The aerodynamic pressure is evaluated based on first-order high Mach number
approximation to the linear potential flow theory. The boundaries of the instability region are obtained
using the principle of Bolotin’s method and are conveniently represented in the non-dimensional excitation
frequency-load amplitude plane. The variation dynamic instability width is highlighted considering various
parameters such as gradient index, temperature, aerodynamic and mechanical loads, thickness and aspect
ratios, and boundary condition. 

Key words: functionally graded plate; forced vibration frequency; aspect ratio; temperature; gradient
index; aerodynamic pressure; periodic load; instability width.

1. Introduction

Functionally graded materials (FGMs) are the new generation of composite materials in which the

micro-structural details are spatially varied through non-uniform distribution of the reinforcement

phase. This can be achieved by using reinforcement with different properties, sizes and shapes, as

well as by interchanging the role of reinforcement and matrix phases in a continuous manner. The

result is a microstructure that produces continuous change on thermal and mechanical properties at

the macroscopic or continuum level. Due to recent advances in material processing capabilities, that

aid in manufacturing wide variety of functionally graded materials, its use in application involving

severe thermal environments is gaining acceptance in composite community, the aerospace and

aircraft industry (Koizumi 1993, 1997, Suresh and Mortensen 1997, Pindera et al. 1994). For
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instance, in a thermal protection system, FGMs take advantage of heat and corrosion resistance

typical of ceramics, and mechanical strength and toughness typical of metals. In view of these, there

is an increased interest among researchers to study the dynamic behavior of the structural

components made of these materials.

It is seen from the literature that the amount of work carried out on the vibration characteristics of

isotropic plates and composite laminates are exhaustive. However, the investigations of FGM plates

under thermo-mechanical environment are limited in number and are discussed briefly here.

Tanigawa et al. (1996) have examined transient thermal stress distribution of FGM plates induced

by unsteady heat conduction with temperature dependent material properties. Reddy and Chin

(1998) have dealt with many problems, including transient response of plate due to heat flux.

Senthil and Batra (2003) have carried out three-dimensional analysis of transient thermal stress in

functionally graded plates adopting Laplace transformation technique and power series method. He

et al. (2001) presented finite element formulation based on thin plate theory for the shape and

vibration control of FGM plate with integrated piezoelectric sensors and actuators under mechanical

load whereas Liew et al. (2001) have analyzed the active vibration control of plate subjected to a

thermal gradient using shear deformation theory. Yang and Shen (2001) have analyzed dynamic

response of thin FGM plates subjected to impulsive loads using Galerkin procedure coupled with

modal superposition method whereas, by neglecting the heat conduction effect, such plates and

panels in thermal environments have been examined based on shear deformation with temperature

dependent material properties (Yang and Shen 2002). Cheng and Batra (2000) studied the steady

state vibration of a simply supported functionally graded polygonal plate with temperature

independent material properties. Sills et al. (2002) have presented different modeling aspects and

also simulated the dynamic response under a step load. 

Studies of static-stability/buckling of functionally graded plates have received its due importance

in the literature (Esther and Jacob 1997, Najafizadeh and Eslami 2002, Ma and Wang 2003).

However, structural components, in general, under periodic loads can undergo parametric resonance

that may occur over a range of forcing frequencies and if the load is compressive to the structure,

resonance or instability can usually occurs even if the magnitude of the load is below the critical

buckling load of the structure. It is thus, of importance to investigate the dynamic stability of

systems under periodic load (Bolotin 1964, Evan-Iwanowski 1965, Patel et al. 1999). Knowledge

pertaining to such instability characteristics of FGM plate structure is meager in the literature and it

is necessary for the optimal design and assessment of the structural failures. Ng et al. (2000) have

investigated the parametric resonance of simply supported square FGM plates based on thin plate

theory, without considering thermal and aerodynamic loads. Furthermore, the governing equations

are obtained using Hamilton’s principle and the solutions are determined analytically employing the

assumed mode technique. 

Due to the increasing utilization of FGM structural components in the design of flight vehicle

structures, their stability characteristics in the presence airflow is one of the major considerations in

structural design. Such investigation is scarce in the literature and the available work deals primarily

with the determination of critical aerodynamic pressure of isotropic/laminated structures (Ashley and

Zartarian 1956, Dixon 1966, Birman and Librescu 1990). In reality, panels may also be subjected to

in-plane forces induced by edge constraints or thermal loadings, in addition to aerodynamic forces.

A detailed study including the influences of thickness/aspect ratio, and aerodynamic load on the

instability region is necessary for the engineers while developing structural strategies with

functionally graded materials. 
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Here, an eight-noded shear flexible quadrilateral plate element developed based on consistency

approach (Prathap et al. 1988, Ganapathi et al. 1991) is used to analyze dynamic instability

behavior of aero-thermo-mechanically stressed FGM plate. The plate is further subjected to periodic

in-plane mechanical load. The temperature field is assumed to be constant in the plane and varied

only in the thickness direction of the plate. The material is assumed to be temperature dependent

and graded in the thickness direction according to the power-law distribution in terms of volume

fractions of the constituents. The aerodynamic pressure is determined based on first-order high Mach

number approximation to the linear potential flow theory. A detailed investigation has been carried

out to bring out the influences of thickness and aspect ratios, thermal, mechanical and aerodynamic

loads and boundary condition on the dynamic instability region of functionally graded plates. 

2. Theoretical development and formulation 

A functionally graded rectangular plate (length a, width b, and thickness h) made of a mixture of

ceramics and metals is considered with the coordinates x, y along the in-pane directions and z along

the thickness direction. The material in top surface (z = h/2) of the plate and in bottom surface

(z = −h/2) of the plate is ceramic and metal, respectively. The effective material properties P, such as

Young’s modulus E, and thermal expansion coefficient α, can be written as (Praveen and Reddy

1998)

 (1)

where Pc and Pm are the material properties of the ceramic rich top surface and metal rich bottom

surface, respectively. Vc and Vm are volume-fractions of ceramic and metal respectively and are

related by

  (2)

The properties of the plate are assumed to vary through the thickness. The property variation is

assumed to be in terms of a simple power law. The volume fraction Vc is expressed as

  (3)

where k is the volume fraction exponent (k ≥ 0). The material properties P that are temperature

dependent can be written as

 (4)

where  and P3 are the coefficients of temperature T(K) and are unique to each

constituent.

From Eqs. (1)-(4), the modulus of elasticity E, the coefficient of thermal expansion α, the density

ρ and the thermal conductivity K are written as
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 (5)

Here the mass density ρ and thermal conductivity K are assumed to be independent of temperature.

The Poisson’s ratio ν is assumed to be a constant ν(z) = ν0.

The temperature variation is assumed to occur in the thickness direction only and the temperature

field is considered constant in the xy plane. In this case, the temperature through thickness is

governed by the one-dimensional Fourier equation of heat conduction:

,

 (6)
    

The solution of Eq. (6) is obtained by means of polynomial series (Wu 2004) and given by

 

  (7)

where

 
and 

Using Mindlin formulation, the displacements u, v, w at a point (x, y, z) in the plate (Fig. 1) from

the medium surface are expressed as functions of mid-plane displacements u0, v0 and w, and

independent rotations θx and θy of the normal in xz and yz planes, respectively, as

 (8)

where t is the time. The strains in terms of mid-plane deformation can be written as
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The mid-plane strain {εp}, bending strains {εb} and shear strains {εs} in Eq. (9) are written as 

 (10)

  (11)

  (12)

where the subscript comma denotes the partial derivative with respect to the spatial coordinate

succeeding it. 

The membrane stress resultants {N} and the bending stress resultants {M} can be related to the

membrane strains {εp} and bending strains {εb} through the constitutive relations by

  (13)

  (14)
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Fig. 1 Configuration and coordinate system of a rectangular FGM plate subjected to periodic in-plane load
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where the matrices [Aij], [Bij] and [Dij] (i, j = 1, 2, 6) are the extensional, bending-extensional coupling

and bending stiffness coefficients and are defined as [Aij, Bij, Dij] = . The thermal

stress resultant {NT} and moment resultant {MT} are

(15)

(16)

where the thermal coefficient of expansion α(z, T) is given by Eq. (5), and  is

temperature rise from the reference temperature T0 at which there are no thermal strains. 

Similarly the transverse shear force {Q} representing the quantities  is related to the

transverse shear strains {εs} through the constitutive relations as

  (17)

where  

Here  are the transverse shear stiffness coefficients, κi is the transverse shear

coefficient for non-uniform shear strain distribution through the plate thickness.  are the stiffness

coefficients and are defined as

  (18)

where the modulus of elasticity E(z, T) is given by Eq. (5). 

The strain energy functional U is given as

  (19)

where δ is the vector of the degree of freedom associated to the displacement filed in a finite

element discretization. 

The kinetic energy of the plate is given by
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where  and ρ(z) is mass density which varies through the thickness

of the plate and is given by Eq. (5). The dot over the variables denotes in Eq. (20) the derivative

with respect to time.

The plate is subjected to temperature filed and this, in turn, results in-plane stress resultants

. Thus, the potential energy due to pre-buckling stresses  developed

under thermal load can be written as

   (21)

The potential energy due to external in-plane mechanical forces,  in y direction is written as,

  (22)

The work done by the applied non-conservative load is

   (23)

where ∆p is the aerodynamic pressure. The aerodynamic pressure based on first-order, high Mach

number approximation to the linear potential flow (Ashley and Zartarian 1956) is

  (24)

where ρa, Ua and  are the free stream air density, velocity and Mach number, respectively.

Further, it has been shown by Dixon (1966) that the two-dimensional static aerodynamic

approximation provides results that are in complete agreement with those based on exact

aerodynamic theories for Mach numbers between  and 2. The aerodynamic pressure for high

supersonic speed, within the 2D static approximation, neglecting the aerodynamic damping is given

as (Birman and Librescu 1990)

  (25)

Substituting Eqs. (19)-(25) in Lagrange’s equation of motion, one obtains the governing equations

as

  (26)

where [K] and [M] are stiffness matrix and the consistent mass matrix;  is the acceleration

vector. [KG]th & [KG]m are geometric stiffness matrices due to thermal and mechanical loads;  is

the aero-dynamic force. Here  refers the aerodynamic pressure.
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3. Parametric instability analysis

The state of periodic load is the uniform pulsating axial compressive force , which may be

defined as

 (27)

where,  are static buckling load of the plate and the frequency of

the dynamic in-plane load, respectively. From Eqs. (23) and (24), we have the governing equation

of the form

  (28)

Eq. (28) represents the dynamic stability problem of a system subjected to a periodic in-plane axial

force. The dynamic instability boundary is determined using the method suggested in the literature

(Bolotin 1964, Evan-Iwanowski 1965, Patel et al. 1999). To obtain points on the boundaries of the

instability region, the components {δ} are written in the Fourier series as

 (29)

with period T, where , or
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with period 2T. These expressions are substituted in the Eq. (28) and the coefficients of each sine

and cosine terms are set equal to zero, as well as the sum of the constant terms. For nontrivial

solutions, the determinants of the coefficients of these groups of linear homogeneous equations are

equal to zero. The problem is now reduced to that of finding the eigenvalues of the systems. Using

the standard eigenvalue extraction scheme, for the given value of , the variation of the

eigenvalues  with respect to β can be found out. The plot of such variation in  plane shows

the instability regions associated with the given plate subjected to harmonically excited in-plane

load.

4. Element description

The plate element employed here is a C0 continuous shear flexible element and needs five nodal

degrees of freedom u0, v0, w, θx, θy at eight nodes in QUAD-8 element. If the interpolation functions

for QUAD-8 are used directly to interpolate the five variables u0 to θy in deriving the shear strains

and membrane strains, the element will lock and show oscillations in the shear and membrane

stresses. Field consistency requires that the transverse shear strains and membrane strains must be
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in the literature (Prathap et al. 1988, Ganapathi et al. 1991). This element is free from locking

syndrome and has good convergence properties. For the sake of brevity, these are not presented

here, as they are available in the literature (Prathap et al. 1988, Ganapathi et al. 1991). Since the

element is based on field consistency approach, exact integration is applied for calculating various

strain energy terms.

5. Results and discussion

In this section, we use the above formulation to investigate the effect of parameters like gradient

index, aspect and thickness ratios, aerodynamic pressure and thermal gradient on the dynamic

instability of functionally graded plates subjected to periodic in-plane mechanical load. Based on

progressive mesh refinement, 8 × 8 mesh idealization is found to be adequate to model the full plate

for the present analysis. Fig. 2 shows the variation of the volume fractions of ceramic and metal

respectively, in the thickness direction z for the FGM plate. The top surface is ceramic rich and the

bottom surface is metal rich. The FGM plate considered here consists of Silicon nitride (Si3N4) and

stainless steel (SUS304). The temperature coefficients corresponding to Si3N4/SUS304 are listed in

Table 1 (Reddy and Chin 1998). The mass density and thermal conductivity are: ρc = 2370 kg/m3,

Kc = 9.19 W/mK for Si3N4; and ρm = 8166 kg/m3, Km = 12.04 W/mK for SUS304. Poisson’s ratio ν

is assumed to be a constant and equals to 0.28. Transverse shear coefficient is taken as 0.91. The

plate is of uniform thickness and boundary conditions considered here are:

Fig. 2 Variation of volume fractions through thickness: a) Ceramic; b) Metal

Table 1 Temperature dependent coefficients for material Si3N4/SUS304 (Reddy and Chin 1998)

Materials Properties P0 P
−1 P1 P2 P3 P (T = 300K) 

Si3N4

E (Pa) 
α (1/K) 

348.43e+9
5.8723e-6

0.0 
0.0 

−3.070e-4
9.095e-4

2.160e-7 
0.0 

−8.946e-11 
0.0 

322.2715e+9
7.4746e-6

SUS304 
E (Pa)

α (1/K) 
201.04e+9
12.330e-6

0.0
0.0 

3.079e-4
8.086e-4

−6.534e-7
0.0 

0.0
0.0 

207.7877e+9
15.321e-6
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simply supported :

clamped support :

Before proceeding for the detailed analysis, the formulation developed herein is validated by

considering the linear free vibration and thermal buckling analyses of FGM plates. Tables 2(a)

and 2(b) show the natural frequencies as well as critical thermal buckling temperature of FGM

plates and are compared with the available solutions (Huang and Shen 2004, Wu 2004). Here, the

calculated non-dimensional linear frequency and the critical temperature difference are defined a

, and ∆Tcr (= Tc − Tm) between the surfaces. ρm and Em are the mass

density and Young’s modulus of metal, respectively. 

u w θy 0 on x 0= , a  and  v w θx 0 on y= = = 0 b,= = = =

u v w θx θy 0 on x 0= , a  & y 0 b,= = = = = =

Ω ω
a
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h
-----⎝ ⎠

⎛ ⎞ ρm 1 ν
2

–( )
Em

-------------------------⎝ ⎠
⎛ ⎞

1/2( )

=⎝ ⎠
⎛ ⎞

Table 2(a) Comparison of non-dimensional frequencies  of simply supported  FGM plate (a/b = 1, a/h = 8) 

Temperature  k

Frequencies 

Huang and 
Shen (2004)

Present 
Huang and 

Shen (2004)
Present 

Huang and 
Shen (2004)

Present 

Tc = 400
Tm = 300 

0.0 12.397 12.311 29.083 29.016 43.835 44.094

0.5 8.615 8.483 20.215 19.979 30.530 30.391

1.0 7.474 7.444 17.607 17.511 26.590 26.648 

2.0 6.693 6.679 15.762 15.706 23.786 23.894 

10.0 --- 5.742 --- 13.560 --- 20.609 

Tc = 600
Tm = 300

0.0 11.984 11.888 28.504 28.421 43.107 43.343

0.5 8.269 8.150 19.784 19.534 29.998 29.836

1.0 7.171 7.131 17.213 17.101 26.109 26.139

2.0 6.398 6.376 15.384 15.314 23.327 23.410

10.0 --- 5.423 --- 13.146 --- 20.100 

Ωij( )

Ω11 Ω12 Ω13

Table 2(b) Critical buckling temperature difference (∆Tcr) of simply supported aluminum-alumina FGM plate
(a/h = 10, Tm = 5 deg, free to move in-plane)

k a/b = 1 a/b = 2 a/b = 3 a/b = 4 a/b = 5

0
Present 3259.915 7648.325 13847.425 20774.597 27600.137

Wu (2004) 3256.310 7640.640 13835.530 20760.850 27586.740

1
Present 1978.512 4696.518 8627.139 13150.701 17749.685

Wu (2004) 1976.297 4691.691 8619.424 13141.430 17740.250

5
Present 1482.941 3481.831 6294.315 9421.755 12487.570

Wu (2004) 1481.297 3478.338 6288.939 9415.583 12481.590
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It is observed from these Tables that the present results agree very well with the existing

literature. It is further revealed from Table 2(a) that, with the increase in power law index k up to

certain value, the rate of decrease in the frequency value is high, and further increase in k leads to

less reduction in the frequency. For the high values of k, the stiffness degradation occurs due to the

increase in the metallic volumetric fraction. Here, in view of the computational time involved for

the parametric resonance analysis, one term solution of Eq. (28) is employed, which furnishes

accurate results for the low values of load amplitude. Furthermore, the analysis is focused mainly

on the determination of boundaries of the primary instability region that occurs in the vicinity of

simple resonance of first order, 2 ωi (ωi is the ith the natural frequency where i = 1, 2, 3…) which

is by far the largest one compared to the neighborhood of combination resonance of first order, (ωi

± ωj). This is the most dangerous zone and has the greatest practical importance (Bolotin 1964,

Evan-Iwanowski 1965, Patel et al. 1999). 

Next, the dynamic instability of square plates (a/b= 1, a/h = 20) is studied considering mechanically

/thermally/aerodynamically pre-stressed functionally graded plates and the results obtained are

plotted in Fig. 3. Here, the plot of primary instability region in the neighborhood of 2 ωi in terms of

non-dimensional excitation frequencies, Ω  versus the dynamic in-planeω
a

2

h
-----⎝ ⎠
⎛ ⎞ 12ρm 1 ν

2
–( )

Em

-----------------------------⎝ ⎠
⎛ ⎞

1/2( )

=⎝ ⎠
⎛ ⎞

Fig. 3 Instability region versus dynamic in-plane load amplitude of a simply supported FGM plate (a/b = 1,
a/h = 20) with different gradient index: (a)  = 0, Tc = 300, Tm= 300, λ = 0; (b)  = 0.2, Tc = 300, Tm

= 300, λ = 0; (c) = 0.2, Tc = 400, Tm= 300, λ = 0; (d)  = 0.2, Tc = 400, Tm = 300, λ = 200
α α

α α
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load β are depicted. The width of primary instability ∆Ω is the separation of the boundaries of the

primary instability region for the given plate. This can be used as an instability measure to study the

influence of other parameters. It is observed from Fig. 3(a) that, with the increase in the value of

gradient index k, the origin of instability shifted to lower forcing frequency, and the width of the

instability region decreases for the given dynamic load amplitude β. The instability zone in general

increases with dynamic load amplitude. Furthermore it is noticed that the boundaries of the

instability regions with respect to gradient index k overlap at higher dynamic load, leading to wide

range of operating frequency under which the system becomes unstable. It is also revealed from

Figs. 3(b) and (c) that the variation of parametric resonance zone of mechanically/thermally pre-

stressed FGM plate is qualitatively similar to those of without pre-stressed case. However, the

presence of compressive nature of in-plane loads resulting from statically applied mechanical and

thermal field, further enlarge the dangerous zone and occurs at low operating frequency. The

influence of aerodynamic force is rather to reduce the instability region and postpone the occurrence

of resonance to higher forcing frequency value as inferred from Fig. 3(d) and the overlap of

instability zone with k occurs at higher amplitude compared to those of without airflow case. 

Fig. 4 highlights the influences of aspect ratio of FGM plate on the unstable operating frequency

range. It is viewed that the origin of unstable zone is shifted to higher frequency with the increase

in the aspect ratio. However, for the given gradient index, it can be noted that the width of

instability zone increases with aspect ratio. As the aspect ratio increases, the origin of instability is

closer for higher ingredient index compared to the lower k value. The effect of thickness ratio is

also examined and is shown in Fig. 5 for different values of gradient index. It can be inferred from

Fig. 4 Effect of aspect ratio on the instability region with dynamic in-plane load amplitude of a simply
supported FGM Plate (a/h = 20) with different gradient index ( = 0.2, Tc = 400, Tm = 300, λ = 400)α
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Fig. 5 Effect of thickness ratio on the instability region with dynamic in-plane load amplitude of a simply
supported square FGM Plate with different gradient index (  = 0.2, Tc = 400, Tm = 300, λ = 200)α

Fig. 6 Effect of temperature on the instability region with dynamic in-plane load amplitude of a simply
supported FGM Plate (a/b = 1, a/h = 20) with different gradient index (  = 0.2, λ = 200)α
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Fig. 7 Effect of aerodynamic pressure on the instability region with dynamic in-plane load amplitude of a simply
supported FGM Plate (a/b = 1, a/h = 20) with different gradient index ( = 0.2, Tc = 400, Tm = 300)α

Fig. 8 Effect of boundary condition on the instability region with dynamic in-plane load amplitude of a FGM
Plate (a/b = 1, a/h = 20) with different gradient index (  = 0.2, Tc = 400, Tm = 300, λ = 200)α
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Fig. 5 that, with the increase in thickness, the instability initiates at higher operating frequency and

yields low frequency band for the system to be unstable. For the low value of k, overlap in the

instability regions occurs relatively at low dynamic load amplitude while increasing the thickness. 

Finally, Fig. 6 describes the influence of thermal gradient on the dynamic instability of FGM

plate. It can be noted that, with the increase in the surface temperature difference, the origin of

instability is shifted to lower frequency and the unstable frequency width is more, as expected. The

effect of aerodynamic load on the parametric resonance is investigated and given in Fig. 7. It is

observed that it enhances the stability strength by shifting the origin of unstable region to higher

operating value and reducing the width of the instability. For low k, the overlap of unstable region

occurs at low load amplitude while increasing the aerodynamic pressure. The effect of boundary

condition is also studied and exhibited in Fig. 8. It can be seen that the origin of instability as well

as the width of the unstable region are high for clamped case compared to simply supported case. 

6. Conclusions

Parametric instability study of aero-thermo-mechanically pre-stressed functionally graded plates,

subjected periodic in-plane load, is examined using eight-noded plate element based on first-order

shear flexible theory. Numerical results have been obtained various geometric parameters, boundary

condition and gradient index. From the detailed study, the following observations can be made:

i) With the increase in the value of gradient index, the origin of the primary dynamic instability

region shifts to lower excitation frequencies and decreases the width of the unstable excitation

frequency range. 

ii) At higher amplitude of load, the dynamic stability regions overlap with the increase in the

value of gradient index. 

iii) The effect high thermal gradient is to destabilize the system at lower excitation frequency as

expected.

iv) Unlike the pre-stressed cases of mechanical and thermal, the aerodynamic pressure load

enhances the stability strength by shifting the origin of instability to higher value and

reducing the width of operating frequency range.

v) The increase in the aspect ratio and rigidity of the support results in shifting the origin of in

stability to higher frequency and remains unstable for wide range of excitation frequency. 

vi) With the increase in aspect ratio, the origins of instability are closer for higher ingredient

index.

vii) With increase in thickness, the instability is postponed to higher forcing frequency, and the

overlap in the instability regions occurs relatively at low dynamic load amplitude. 
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