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Stochastic analysis of fluid-structure interaction systems 
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Abstract. In the present paper it is aimed to perform the stochastic dynamic analysis of fluid and fluid-
structure systems by using the Lagrangian approach. For that reason, variable-number-nodes two-
dimensional isoparametric fluid finite elements are programmed in Fortran language by the authors and
incorporated into a general-purpose computer program for stochastic dynamic analysis of structure
systems, STOCAL. Formulation of the fluid elements includes the effects of compressible wave
propagation and surface sloshing motion. For numerical example a rigid fluid tank and a dam-reservoir
interaction system are selected and modeled by finite element method. Results obtained from the modal
analysis are compared with the results of the analytical and numerical solutions. The Pacoima Dam record
S16E component recorded during the San Fernando Earthquake in 1971 is used as a ground motion. The
mean of maximum values of displacements and hydrodynamic pressures are compared with the
deterministic analysis results. 

Key words: fluid-structure interaction; stochastic dynamic analysis; Lagrangian approach; fluid finite
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1. Introduction

Gravity dams, arch dams, underground power plants, harbors, fluid tanks etc. are the application

fields of fluid-structure interaction problems (Mackerle 1999). In fluid-structure interaction systems,

the structure affects the behavior of the fluid as well as the fluid affecting the behavior of structure

under a dynamic effect. Consequently, hydrodynamic pressures in the fluid and additional loads in

the structure due to hydrodynamic pressures occur. Most fluid-structure interaction analyses are

based on simplifying assumptions (e.g. inviscid flow) which allow one of two approaches (Olson

and Bathe 1983): (1) displacements are the variables in the solid, pressures are the variables in fluid

(Eulerian approach); (2) displacements are the variables in both the fluid and solid (Lagrangian

approach). Since the variables in fluid and solid are different in Eulerian approach, a special-

purpose computer program is required for the solution of the coupled systems (Fenves and Chopra

1984, Greeves and Dumano lu 1989). In the Lagrangian approach, the behavior of the fluid and

structure is expressed in terms of displacements. For that reason, compatibility and equilibrium are
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automatically satisfied at the nodes along the interfaces between the fluid and structure. This makes

a Lagrangian displacement-based fluid finite element very desirable, which can be readily

incorporated into a general-purpose computer program for structural analysis, because special

interface equations are not required. It is seen from the literature review that different types of fluid

elements are used in the solution of the fluid and fluid-structure interaction problems (Olson and

Bathe 1983, Akka  et al. 1979, Bathe and Hann 1979, Zienkewics and Bettess 1978, Hamdi et al.

1978, Malkus 1976, Deshpande et al. 1981, Wilson and Khavati 1983). In the fluid element

formulation proposed by Wilson and Khalvati (1983), reduced integration technique as well as

rotational constraints are used to eliminate all unnecessary zero-energy modes. Also, the formulation

includes the fluid free surface sloshing motion. Fluid element proposed by Wilson and Khalvati

(1983) was used by many researchers to determine the dynamic responses of fluid and fluid-

structure interaction problems (Greeves 1990, Calay r and Dumano lu 1993, Calay r 1994,

Bayraktar 1995, Bayraktar et al. 1996). In these papers, loads due to earthquake forces are

considered as deterministic. However, seismic actions have essentially stochastic characteristics,

therefore they should be considered as random loads (Lin 1967). Dynamic responses of fluid-

structure interaction systems subjected to random loads have been investigated by Araujo and

Awruch (1998) and Di Paola and Zingales (2003). In these papers, Eulerian approach is used to

determine the fluid response.

The focus of the present paper is to determine the stochastic dynamic response of fluid and fluid-

structure systems by using the Lagrangian (displacement-based) fluid finite elements. For that

reason, variable-number-nodes two-dimensional fluid finite elements proposed by Wilson and

Khalvati (1983) were programmed in FORTRAN language by the authors and incorporated into a

general-purpose computer program for stochastic dynamic analysis of solid systems, STOCAL

(Button et al. 1981). The program STOCAL is modified for the stochastic dynamic analysis of

fluid-structure interaction systems based on the Lagrangian approach and named as STOCALF.

Stationary and ergodic assumptions are made for the stochastic processes and results are obtained

using the program STOCALF.

2. Formulation

2.1 Finite element formulation of fluid systems

The formulation of the fluid system based on Lagrangian approach is given according to (Wilson

and Khalvati 1983, Calay r and Dumano lu 1993). Fluid is assumed to be linear-elastic, inviscid

and irrational. For this fluid, the relation between pressure and volumetric strain is given by

(1)

where P is pressure, β is the bulk modulus of the fluid, and εv is the volumetric strain which can be

expressed in terms of the displacements. For two-dimensional problems, εv can be expressed as

follows;

(2)

where ufy and ufz are the components of the displacement in the y and z directions, respectively. 
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To enforce the rotational constraint, the following rotation is defined by

(3)

where w is rigid body rotation about the axis normal to the plane. The relation between the stress

and stiffness associated with this rotation is given by 

(4)

where Pw and α are the rotational stress and stiffness (constraint parameter), respectively.

Using the Eqs. (1)-(4), the total strain energy of the fluid system can be expressed as follows; 

(5)

where e is a vector of strains given by eT = [εv  w] and Cf is a diagonal matrix whose elements are

given by the elasticity parameters in Eqs. (1) and (4). Using the finite element method, Eq. (5) may

be expressed as 

(6)

where Kf and uf are the stiffness matrix and the nodal displacement vector of the fluid system,

respectively. 

An important behavior of fluid systems is the ability to displace without a change in volume. For

reservoir and storage tanks, this movement is known as sloshing waves in which the displacement is

in the vertical direction. The increase in the potential energy of the system due to the free surface

motion can be written as

(7)

where ρ and g are the mass density of the fluid and the gravitational acceleration, respectively, and

ufs is the free surface vertical displacement of the fluid. Using the finite element method, the free

surface potential energy, Eq. (7), is expressed in terms of the vertical node displacements at the

surface as

(8)

where Sf and ufs are the free surface stiffness matrix and the free surface vertical displacement

vector of the fluid system, respectively.

Finally, to complete the energy contributions, the kinetic energy of the fluid must be considered.

This energy is given by

(9)

where  and  are the components of the velocity in the y and z directions, respectively. Using

the finite element method, Eq. (9) can be written in the form
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(10)

where Mf and  are the mass matrix and the nodal velocity vector of the fluid system, respectively.

The direct application of Lagrange’s equation (Clough and Penzien 1975) to Eqs. (6), (8) and (10)

yields the following set of equations

(11)

where  and Ff are the system stiffness matrix including the free surface stiffness and time-

varying nodal forces vector for the fluid system, respectively.

2.2 Stochastic analysis formulation of fluid-structure interaction systems

Equations of motion for fluid system, Eq. (11), have similar form with that of the structure when

Lagrangian approach is used. But, it requires a different sensitivity to determine interface condition

of the system. At the interface of the fluid-structure system, only the displacements in normal

direction to the interface are assumed to be compatible in the structure as well as in the fluid. This

condition is imposed by the constraint equations (Bathe 1982).

In matrix form, the equations of motion of a fluid-structure system based on Lagrangian approach

with N degrees of freedom are

(12)

where M, C, K are n × n, positive definite, mass, damping and stiffness matrices; 

are the vectors of displacement, velocity and acceleration, respectively. δ is the direction vector that

links the mass terms to the ground acceleration, .

As seen from Eq. (12), equation of motion of fluid-structure system based on Lagrangian

approach is the same form with that of the structural systems. Since the formulation of the

stochastic dynamic analysis of structural systems has been well known for many years, only the

final equations will be given in this study. Detailed formulations for stochastic dynamic analysis are

given in (Lin 1967, Clough and Penzien 1975, Yang 1986, Manolis and Koliopoulos 2001).

Here we assume that the natural frequencies and mode shapes of the fluid-structure system have

been calculated from the equations of motion for a freely vibrating undamped system previously

(Clough and Penzien 1975).

The modal force corresponding to the jth mode can be obtained by 

(13)

The Fourier transform of the Eq. (13) in the frequency domain may be written as 

(14)

where A(ω) is the Fourier transform of the ground acceleration.
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For all the modal forces taken into account,

(15)

in which Φ is the matrix of the modal shapes.

For the jth mode, the relationship between the modal coordinates Yj(t) and modal forces may be

expressed in the frequency domain as follow

(16)

where Hj (ω) is the complex frequency response function for jth mode and can be defined by 

(17)

Here ωj and ξj are the natural frequency and the damping ratio corresponding jth mode. 

For all modes taken together

(18)

where H(ω) is the diagonal matrix of the Hj(ω) from Eq. (17). 

A structural response uj(t) in Eq. (12) may be expressed in terms of modal coordinates as,

(19)

where N is the number of modes which are considered to contribute to the response, Ψjr is the

contribution of the jth mode to the uj(t), Yr(t) is the modal coordinate. The Fourier transform of

Eq. (19) gives

(20)

Substituting Eq. (18) into Eq. (20)

(21)

For the response displacements ui(t) and uj(t), the cross power spectral density function, Sij(ω), may

be obtained as (Lin 1967, Clough and Penzien 1975)

 (22)

where * shows complex conjugate and T is the duration of the process. By substituting Eq. (21) into

Eq. (22) 

(23)

where S(ω) represents the spectral density function of the input. 
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If a single ground acceleration record is used for the input, then by substituting Eq. (15) into

Eq. (21) and using Eq. (22), the cross power spectral density function, Sij(ω), can be simplified as

(Button et al. 1981) 

(24)

where ω is the frequency, Sin(ω) is the power spectral density function of the input.

The basic equation to obtain the autocorrelation function or the cross-correlation function of the

stationary output of a multi-degree of freedom system is the modal cross-correlation function given

by (Clough and Penzien 1975)

(25)

where t is the time. The cross-correlation function for the displacements in the nodal points i and j

can be expressed as (Clough and Penzien 1975)

(26)

where τ = t1 − t2
Statistics related to the structural behaviour can be determined for a stationary process using the

zeroth, the first and the second spectral moments of the output process. Spectral moments, which

can be expressed in terms of power spectral density function and frequency, may be determined as

follow (Button et al. 1981)

, m = 0, 1, 2  (27)

Here, m = 0, 1, 2 is the zeroth, the first and the second spectral moments, respectively. Substituting

Eq. (24) into Eq. (27), λm, ij may be obtained as (Button et al. 1981)

(28)

where

(29)

in which λm, rs is the cross-spectral moment of the normal coordinates with modes r and s. Re shows

the real part.

The cross-correlation coefficients related with the spectral moments can be expressed as 

, m = 0, 1, 2 (30)
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, m = 0, 1, 2 (31)

λm, rr shows the spectral moments of the response of a single degree system with the frequency ωn

and the damping coefficient ξr to the specified input.

The mean of maximum value is considered to be the most important parameter in the analysis of

structures affected by dynamic loads. In stochastic analysis the mean of maximum value µ is the

mean value of all maximum values. The mean of maximum value depends on the peak factor and

on the root-mean-square response, which can be expressed as (Der Kiureghian 1980)

(32)

and its standard deviation can be given as

(33)

where λ0 is the spectral moment, p and q are the peak factors, which are the functions of the

duration of the motion and the mean zero crossing rate, respectively. 

Frequency of occurrence is the average number of times in which the line ( y(t) = 0) is crossed by

the response in a unit of time. For a Gaussian process, the mean zero-crossing rate is given as,

(34)

Frequency of occurrence will be equal to v/2, because the zero level is crossed two times for each

cycle. Therefore, frequency of occurrence may be obtained as (Der Kiureghian 1980)

(35)

where λ0, λ2 are the zeroth and the second spectral moments, respectively.

For any stochastic analysis it is valuable to be able to calculate the probability of occurrence of a

particular value of the selected structural response quantity, and this has been achieved by

Vanmarcke (1975) through a cumulative probability distribution function for the first crossing time

of a symmetric barrier for a zero-mean stationary Gaussian process.

3. Numerical applications

In this study, it is aimed to perform the stochastic dynamic analysis of fluid and fluid-structure

systems by using the Lagrangian approach. A rigid fluid tank and a dam-reservoir interaction

system are selected as numerical applications. These systems are modeled by the finite element

method.

3.1 Modal analysis of rigid fluid tank

A rectangular rigid fluid tank is firstly selected to evaluate the correctness of the frequencies
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obtained from program STOCALF. The finite element model of the rigid fluid tank is given in Fig. 1.

In the finite element model, nine-noded isoparametric quadrilateral fluid finite elements, in which

surface sloshing is taken into account, is used. Although the nodes in the fluid domain can make

horizontal and vertical displacement, the vertical and horizontal exterior edge of the rigid tank can

only make vertical and horizontal displacement, respectively.

Element matrices are computed using 2 × 2 reduced integration orders. The bulk modulus and the

mass density of the fluid, and the gravitational acceleration are taken as 207 × 107 N/m2, 1000 kg/m3,

9.81 m/s2, respectively. The sloshing, volume change and rotational modes occur in modal analysis

of fluids when the Lagrangian approach is used. The rotational frequencies increase with the

increasing rotational constraint parameter. As a result of this, the frequencies related with volume

change go towards the first range in the frequency table. This causes a decrease in the number of

frequencies to be found in the modal analysis. In case of the nine-noded fluid element it is offered

that the rotational constraint parameter can be chosen as 100 times of the bulk modulus (Wilson and

Khalvati 1983, Calay r and Dumano lu 1993). In this study, the value of rotational constraint

parameter is taken as 100 times of the bulk modulus. The first 9 frequencies calculated from the

program STOCALF for the rigid fluid tank is shown in Table 1. The first 5 frequencies are surface

sloshing and the others are volume change frequencies. It can be seen from Table 1 that the

frequencies obtained from the program STOCALF are very close to the frequencies calculated using

the same finite element model by Calay r (1994) and Bayraktar (1995). It is thought that the small

differences between the results are due to the solution technique of the program STOCALF.

Because the mass values of each degree of freedom in the program STOCALF are calculated with

hand and given as input from outside, and a different solution technique is used in modal analysis.

The first surface sloshing frequency for the rigid fluid tank is obtained as 0.368 Hz with the

analytical solution given by Lamb (1932). The first volume change frequency from analytical

i g
o

i

Fig. 1 The finite element model of the rigid fluid tank

Table 1 The first 9 frequencies of rigid fluid tank

Frequency (Hz) 1 2 3 4 5 6 7 8 9

Calay r (1994) 0.368 0.398 0.571 0.650 0.668 239.800 287.700 394.500 490.100

Bayraktar (1995) 0.368 0.398 0.571 0.650 0.668 239.800 287.700 394.500 490.100

STOCALF 0.296 0.364 0.522 0.544 0.596 236.981 285.071 387.334 529.268

i
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solution (Olson and Bathe 1983) is obtained as 239.791 Hz. It can be seen from Table 1 that the

frequencies obtained from analytical solutions are very close to the frequencies obtained from the

program STOCALF.

3.2 Stochastic analysis of fluid-structure interaction systems

The dimensions of the dam and the finite element model of the dam-reservoir interaction system

selected for the determination of the stochastic dynamic responses of fluid-structure interaction

systems subjected to earthquakes are given in Figs. 2 and 3, respectively. The dam and the reservoir

are represented by eight-noded and nine-noded isoparametric quadrilateral solid and fluid finite

elements, respectively. There are two unknown displacements at each nodal point in the dam and

reservoir. Element matrices for fluid and solid systems are computed using 2 × 2 and 3 × 3

Fig. 2 The dimensions of the dam

Fig. 3 The finite element model of the dam-reservoir interaction system
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integration orders, respectively (Bathe 1982). The normal components of the displacements of the

reservoir-dam interfaces are to be continuous. This condition is accomplished by using short and

axially almost rigid truss elements in the normal direction of the interfaces. Plane strain conditions

are taken into account in the calculations. The dam material is assumed to be linear-elastic,

homogeneous and isotropic. For the dam, the elasticity modulus, the unit weight and Poisson’s ratio

are chosen as 35 × 109 N/m2, 24 × 103 N/m3, 0.20, respectively. For the reservoir, the bulk modulus

and the mass density are taken as 207 × 107 N/m2, 1000 kg/m3, respectively. The value of rotational

constraint parameter is taken as 100 times of the bulk modulus. The selection of the mode number

in the modal analysis that is based on the Lagrangian approach is very important. The number of

surface sloshing modes, which vary with the finite element model of the reservoir, becomes very

much. These modes take place in the first ranges of the frequency table. The effects of these modes

on the behavior of dams are very little. For that reason, the first 20 modes are taken into account in

this study (Calay r and Dumano lu 1993).

3.2.1 Frequencies

The first 10 frequencies obtained from the modal analysis of dam-reservoir interaction system by

using the program STOCALF and Bayraktar (1995) are given in Table 2. For dam-reservoir

interaction system, the first 7 frequencies are surface sloshing, and the others are volume change

frequencies. As can be seen from the tables that the frequencies obtained from both programs are

close to each other.

3.2.2 Displacements

A stationary assumption is made for the stochastic dynamic analysis where the statistical

parameters are independent of time. Also ergodic assumptions are made for the stochastic processes.

The Pacoima Dam record S16E component recorded during the San Fernando earthquake in 1971 is

used as a ground motion (Fig. 4). The earthquake motion continued up 13.5 s is applied to the dam-

reservoir system in horizontal direction. The power spectral density function of Pacoima Dam

record is determined with the Fourier transforms of the autocorrelation function as shown in Fig. 5.

A damping ratio of 5% and a time interval of 0.005 s are adopted for calculating displacements.

The stochastic and deterministic dynamic analyses of dam-reservoir interaction system are

performed by the programs STOCALF and MULSAPF (Bayraktar 1995), respectively. To show the

correctness of the results of the stochastic dynamic analysis, the time history of the horizontal

displacement on the upstream crest point of the dam obtained from deterministic dynamic analysis

is depicted in Fig. 6. Taking the average of 18 maximum horizontal displacements from Fig. 6, the

mean of maximum horizontal displacement is calculated as 3.48 cm. The mean of maximum

horizontal displacement obtained from stochastic dynamic analysis is 3.44 cm. These values are

close to each other. The frequency of occurrence values of the horizontal displacements on the

upstream face of the dam is shown in Fig. 7. From Fig. 7, the frequency of occurrence value of the

horizontal displacement at the upstream crest is 4.55 Hz, with period of 0.22 s. The period of

i g
o

Table 2 The first 10 frequencies of dam-reservoir interaction system

Frequency (Hz) 1 2 3 4 5 6 7 8 9 10

Bayraktar (1995) 0.075 0.078 0.111 0.126 0.133 0.150 0.177 3.944 4.983 7.343

STOCALF 0.059 0.077 0.098 0.113 0.135 0.154 0.173 3.738 4.801 7.149
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maximum horizontal displacement is 0.23 s from Fig. 6. As can be seen, the periods obtained for

both programs are very close to each other. This situation shows the accuracy of the stochastic

dynamic analysis results.

Maximum horizontal displacements on the upstream face of the dam are plotted in Fig. 8. As it is

expected, the mean of maximum values of horizontal displacements are smaller than the absolute

maximum horizontal displacements obtained from deterministic dynamic analysis. Since the mean

of maximum values are obtained by averaging all the maximum response values in stochastic

dynamic analysis, it should be expected that the absolute maximum values obtained from

deterministic dynamic analysis will be higher than the mean of maximum values. 

Fig. 4 Acceleration record of S16E component of San Fernando earthquake in 1971

Fig. 5 Power spectral density function of S16E com-
ponent of San Fernando earthquake in 1971

Fig. 6 Time history of the horizontal displacement at
the upstream crest point of the dam
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An important characteristic of the stochastic dynamic analysis is being informed about the

probability of the responses by using cumulative probability distribution functions. The cumulative

probability distribution function (CDF) of the horizontal displacement at the crest of the dam is

shown in Fig. 9. From Fig. 9, the probability of exceeding the maximum horizontal displacement of

3.44 cm is about 58%. Also probability of occurrence of a maximum value under 2 cm is very low,

probability of occurrence of a maximum value under 4.8 cm is 100%.

Fig. 7 Frequency of occurrence values of horizontal
displacements on the upstream face of the
dam

Fig. 8 Horizontal displacements on the upstream
face of the dam

Fig. 9 CDF of the horizontal displacement at the upstream crest point of the dam
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3.2.3 Hydrodynamic pressures

To control the accuracy of the hydrodynamic pressures obtained from stochastic dynamic analysis

of the dam-reservoir interaction system, time history of the deterministic hydrodynamic pressure at

the Gauss point A of the fluid element near the upstream heel (Fig. 3) is plotted in Fig. 10. The

hydrodynamic pressure is obtained as 526.42 kN/m2 by taking the average of 18 maximum

hydrodynamic pressures from Fig. 10. This is quite close to 523.17 kN/m2, which is obtained from

Fig. 10 Time history of the hydrodynamic pressure
at Gauss point A

Fig. 11 Frequency of occurrence values of the
hydrodynamic pressure on the upstream
face of the dam

Fig. 12 Hydrodynamic pressure envelopes on the upstream face of the dam
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stochastic dynamic analysis. Frequency of occurrence values for the hydrodynamic pressures on the

upstream face of the dam is given in Fig. 11. From this figure, the frequency of occurrence value of

the hydrodynamic pressure at Gauss point A is 5.179 Hz with period of 0.19 s, which is close to the

period of the maximum hydrodynamic pressure, 0.20 s, in Fig. 10.

Hydrodynamic pressures occurring on the upstream face of the dam are calculated using the

stochastic and the deterministic dynamic analysis based on the Lagrangian approach. The changing

of the hydrodynamic pressures along the dam height is plotted in Fig. 12. Hydrodynamic pressure

values are obtained at Gauss points, which are in the fluid elements near the face of the reservoir-

dam interaction system. The mean of maximum values of the hydrodynamic pressures are smaller

than the absolute maximum hydrodynamic pressures obtained from the deterministic dynamic

analysis (Fig. 12).

4. Conclusions

The stochastic dynamic responses of fluid and fluid-structure systems based on Lagrangian

approach are investigated in this paper. Variable-number-nodes two-dimensional isoparametric fluid

finite elements are programmed in FORTRAN language by the authors and incorporated into a

general-purpose computer program for stochastic dynamic analysis of structural systems, STOCAL

and named as STOCALF. A rigid fluid tank and dam-reservoir interaction system are selected as

numerical examples to evaluate the correctness of the results obtained from the program STOCALF.

The frequency values of rigid fluid tank and dam-reservoir interaction system are close to analytical

and numerical solutions. Frequency of occurrences of mean of maximum values of displacements

and hydrodynamic pressures are compatible with the results of the deterministic dynamic analysis. 

As a result, it may be generally stated that the mean of maximum values of the displacements and

the hydrodynamic pressures obtained from the stochastic dynamic analysis of fluid-structure systems

are smaller than the deterministic results.
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